| [1] |
HAOUNATI Redouane, ALAKHRAS Fadi, OUACHTAK Hassan, et al. Synthesized of zeolite@Ag2O nanocomposite as superb stability photocatalysis toward hazardous rhodamine B dye from water[J]. Arabian Journal for Science and Engineering, 2023, 48(1): 169-179.
|
| [2] |
MOHOD Ashish V, MOMOTKO Malwina, SHAH Noor Samad, et al. Degradation of rhodamine dyes by advanced oxidation processes (AOPs)-Focus on cavitation and photocatalysis—A critical review[J]. Water Resources and Industry, 2023, 30: 100220.
|
| [3] |
ANWER Hassan, MAHMOOD Asad, LEE Jechan, et al. Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges[J]. Nano Research, 2019, 12(5): 955-972.
|
| [4] |
REN Guangmin, HAN Hongtao, WANG Yixuan, et al. Recent advances of photocatalytic application in water treatment: A review[J]. Nanomaterials, 2021, 11(7): 1804.
|
| [5] |
姚丹, 阳艺, 郑安妮, 等. S-BiOI/BiOBr吸附型光催化剂的制备及其对 2,4-二氯苯氧乙酸的去除性能[J/OL]. 复合材料学报, 2024, 41(11): 6065-6076.
|
|
YAO Dan, YANG Yi, ZHENG Anni, et al. Preparation of S-BiOI/BiOBr adsorption photocatalyst and its removal properties for 2,4-dichlorophenoxyacetic acid[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 6065-6076.
|
| [6] |
SENASU Teeradech, NIJPANICH Supinya, JUABRUM Sawitree, et al. CdS/BiOBr heterojunction photocatalyst with high performance for solar-light-driven degradation of ciprofloxacin and norfloxacin antibiotics[J]. Applied Surface Science, 2021, 567: 150850.
|
| [7] |
郭天宇, 范祥瑞, 白德豪, 等. 异质结CeO2/BiOBr的构筑及其光催化降解罗丹明B[J]. 中国环境科学, 2023, 43(11): 5845-5854.
|
|
GUO Tianyu, FAN Xiangrui, BAI Dehao, et al. Construction of CeO2/BiOBr heterojuction for photocatalytic degradation of rhodamine B[J]. China Environmental Science, 2023, 43(11): 5845-5854.
|
| [8] |
ZHAO Shengzhe, LU Yun, LU Ran, et al. Constructing BiOBr/TiO2 heterostructure nanotubes for enhanced adsorption/photocatalytic performance[J]. Journal of Water Process Engineering, 2023, 54: 103972.
|
| [9] |
QI Yaozhong, SHEN Yanbai, ZHAO Sikai, et al. Degradation of multiple xanthates using highly efficient visible light-responsive BiOBr-TiO2 composite photocatalysts[J]. Journal of Industrial and Engineering Chemistry, 2024, 132: 461-473.
|
| [10] |
戴月明, 周梅芳, 沈建华, 等. TiO2纳米颗粒烧结机制分子动力学模拟[J]. 化工进展, 2025, 44(4): 2202-2214.
|
|
DAI Yueming, ZHOU Meifang, SHEN Jianhua, et al. Molecular dynamics simulation of sintering mechanism of TiO2 nanoparticles [J]. Chemical Industry and Engineering Progress, 2025, 44(4): 2202-2214.
|
| [11] |
JIA Tao, ZHANG Jing, WU Jiang, et al. Synthesis amorphous TiO2 with oxygen vacancy as carriers transport channels for enhancing photocatalytic activity[J]. Materials Letters, 2020, 265: 127465.
|
| [12] |
HU Xiaolong, LI Chunquan, SONG Junying, et al. Multidimensional assembly of oxygen vacancy-rich amorphous TiO2-BiOBr-sepiolite composite for rapid elimination of formaldehyde and oxytetracycline under visible light[J]. Journal of Colloid and Interface Science, 2020, 574: 61-73.
|
| [13] |
XIAO Shanshan, ZHAO Lei, LENG Xuning, et al. Synthesis of amorphous TiO2 modified ZnO nanorod film with enhanced photocatalytic properties[J]. Applied Surface Science, 2014, 299: 97-104.
|
| [14] |
WANG Xiaojing, YANG Wenyan, LI Fatang, et al. Construction of amorphous TiO2/BiOBr heterojunctions via facets coupling for enhanced photocatalytic activity[J]. Journal of Hazardous Materials, 2015, 292: 126-136.
|
| [15] |
SONG Mengxi, QI Kemin, WEN Yuan, et al. Rational design of novel three-dimensional reticulated Ag2O/ZnO Z-scheme heterojunction on Ni foam for promising practical photocatalysis[J]. Science of the Total Environment, 2021, 793: 148519.
|
| [16] |
陈震雷, 董永春, 王鹏, 等. 纳米TiO2/SiO2负载棉织物的制备及其光催化降解染料的研究[J]. 材料导报, 2016, 30(14): 34-38.
|
|
CHEN Zhenlei, DONG Yongchun, WANG Peng, et al. Preparation of nano-TiO2/SiO2-loaded cotton fabrics and its photocatalytic performance for dyes degradation[J]. Material Review, 2016, 30(14): 34-38.
|
| [17] |
施明惠, 李成才, 徐毅辉, 等. 具有ZnS负载富羧基PVDF复合膜的制备及乳液分离和光催化染料降解[J]. 水处理技术, 2023, 49(6): 68-72.
|
|
SHI Minghui, LI Chengcai, XU Yihui, et al. Preparation of ZnS-loaded carboxy-rich PVDF composite membranes and emulsion separation and photocatalytic dye degradation[J]. Technology of Water Treatment, 2023, 49(6): 68-72.
|
| [18] |
范婷婷, 张洋洋, 王春梅. Ag/AgCl/MIL-100(Fe)/PAN复合材料的制备及其去除水中Cr(Ⅵ)的性能[J]. 化工进展, 2024, 43(12): 6828-6837.
|
|
FAN Tingting, ZHANG Yangyang, WANG Chunmei. Preparation of Ag/AgCl/MIL-100 (Fe)/PAN composite and its performance of removing Cr(Ⅵ) in water[J]. Chemical Industry and Engineering Progress, 2024, 43(12): 6828-6837.
|
| [19] |
王慧, 刘新懿, 王伟, 等. 静电纺特殊形貌纳米纤维的应用研究进展[J]. 化工进展, 2022, 41(8): 4341-4356.
|
|
WANG Hui, LIU Xinyi, WANG Wei, et al. Research and application of electrospun nanofibers with special morphology: A review[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4341-4356.
|
| [20] |
蔡博华, 邹伟, 朱雪梅, 等. PVA/SiO2@BiOBr纳米纤维的制备及其光催化性能[J]. 工业水处理, 2022, 42(6): 140-145.
|
|
CAI Bohua, ZOU Wei, ZHU Xuemei, et al. Fabrication of PVA/SiO2@BiOBr nanofibers and their photocatalytic characteristics[J]. Industrial Water Treatment, 2022, 42(6): 140-145.
|
| [21] |
FATIMAH Siti, RAGADHITA Risti, HUSAENI Dwi Fitria AL, et al. How to calculate crystallite size from X-ray diffraction (XRD) using Scherrer method[J]. ASEAN Journal of Science and Engineering, 2021, 2(1): 65-76.
|
| [22] |
周美梅, 向婉婷, 王鹏博, 等. 电纺BiOCl@UiO-66-NH2@TSPAN纳米纤维可见光催化还原Cr(Ⅵ)[J]. 中国环境科学, 2024, 44(3): 1366-1375.
|
|
ZHOU Meimei, XIANG Wanting, WANG Pengbo, et al. Electrospun BiOCl@UiO-66-NH2@TSPAN nanofibers for visible-light-driven Cr(Ⅵ) photocatalytic reduction[J]. China Environmental Science, 2024, 44(3): 1366-1375.
|
| [23] |
何家慧, 向婉婷, 邹伟, 等. 柔性电纺BiOCl@PAN/TiO2纳米纤维光催化还原水中Cr(Ⅵ)[J]. 环境科学学报, 2024, 44(8): 259-269.
|
|
HE Jiahui, XIANG Wanting, ZOU Wei, et al. Flexible electrospun BiOCl@PAN /TiO2 nanofibers for enhanced photocatalytic reduction of Cr(Ⅵ)in water[J]. Acta Scientiae Circumstantiae, 2024, 44(8): 259-269.
|
| [24] |
李一菲, 赵金纯, 师小丽, 等. 原位构建BiOCl/ZnTi-LDH异质结及其光催化性能[J]. 环境科学学报, 2023, 43(8): 65-73.
|
|
LI Yifei, ZHAO Jinchun, SHI Xiaoli, et al. In situ fabrication of BiOCl/ZnTi-LDH heterostructure and its photocatalytic performance[J]. Acta Scientiae Circumstantiae, 2023, 43(8): 65-73.
|
| [25] |
HU Juanmin, DING Jie, ZHONG Qin. In situ fabrication of amorphous TiO2/NH2-MIL-125 (Ti) for enhanced photocatalytic CO2 into CH4 with H2O under visible-light irradiation[J]. Journal of Colloid and Interface Science, 2020, 560: 857-865.
|
| [26] |
SHAO Penghui, TIAN Jiayu, ZHAO Zhiwei, et al. Amorphous TiO2 doped with carbon for visible light photodegradation of rhodamine B and 4-chlorophenol[J]. Applied Surface Science, 2015, 324: 35-43.
|
| [27] |
WU Liangpeng, WANG Xiaoyang, WANG Wenguang, et al. Fabrication of amorphous TiO2 shell layer on Ag2CO3 surface with enhanced photocatalytic activity and photostability[J]. Journal of Alloys and Compounds, 2019, 806: 603-610.
|