化工进展 ›› 2024, Vol. 43 ›› Issue (7): 4102-4117.DOI: 10.16085/j.issn.1000-6613.2024-0075
• 资源与环境化工 • 上一篇
孔祥蕊1,2(), 董玥岑2, 张蒙雨3, 王彪4, 尹水娥3, 陈冰3, 陆家纬3, 张媛3, 冯乐乐4(), 王洪涛2, 徐海云3()
收稿日期:
2024-01-11
修回日期:
2024-03-01
出版日期:
2024-07-10
发布日期:
2024-08-14
通讯作者:
冯乐乐,徐海云
作者简介:
孔祥蕊(1996—),女,博士,研究方向为固体废物处置。E-mail:kongxiangrui121@mail.tsinghua.edu.cn。
基金资助:
KONG Xiangrui1,2(), DONG Yuecen2, ZHANG Mengyu3, WANG Biao4, YIN Shui′e3, CHEN Bing3, LU Jiawei3, ZHANG Yuan3, FENG Lele4(), WANG Hongtao2, XU Haiyun3()
Received:
2024-01-11
Revised:
2024-03-01
Online:
2024-07-10
Published:
2024-08-14
Contact:
FENG Lele, XU Haiyun
摘要:
焚烧是我国生活垃圾最主要的处置手段,焚烧飞灰含有二英和重金属,属于危险废物,处理方式比较受限,但处理需求量大。推动生活垃圾焚烧飞灰无害化处置与资源化利用处理技术的发展,积极补齐城镇生活垃圾处理设施短板,符合国家节能减排与绿色发展的要求。本文系统分析了我国典型地区生活垃圾焚烧飞灰基础特性、二英和重金属产生特征,综述了飞灰二英的主要处理技术,包括高温烧结、高温熔融/玻璃化、水泥回转窑热处理、低温催化热解、水热处理技术、机械化学降解技术,对比了飞灰中重金属的主要处理方法,包括固化稳定化、固热处理、金属分离技术,并对飞灰处理技术的工程化应用进行总结与展望,以期为我国生活垃圾焚烧飞灰减量化、无害化、资源化技术发展提供理论支撑。
中图分类号:
孔祥蕊, 董玥岑, 张蒙雨, 王彪, 尹水娥, 陈冰, 陆家纬, 张媛, 冯乐乐, 王洪涛, 徐海云. 生活垃圾焚烧飞灰处理技术研究进展[J]. 化工进展, 2024, 43(7): 4102-4117.
KONG Xiangrui, DONG Yuecen, ZHANG Mengyu, WANG Biao, YIN Shui′e, CHEN Bing, LU Jiawei, ZHANG Yuan, FENG Lele, WANG Hongtao, XU Haiyun. Treatment technologies of fly ash from municipal solid waste incineration[J]. Chemical Industry and Engineering Progress, 2024, 43(7): 4102-4117.
地点 | 炉型 | 集中粒径/μm | CaO/% | SiO2/% | K2O/% | Al2O3/% | Fe2O3/% | Na2O/% | Cl/% | SO3/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|---|
国内 | |||||||||||
浙江 | 流化床 | — | 29.38 | 32.79 | — | 10.97 | 10.88 | — | 17.44 | — | [ |
山东 | 炉排炉 | — | 45.52 | 1.28 | 10.85 | 0.56 | 1.05 | 13.73 | 16.17 | 5 | [ |
山东 | 炉排炉 | — | 52.67 | 1.14 | 7.93 | 0.69 | 0.63 | 13.62 | 11.09 | 5.58 | |
山东 | 炉排炉 | — | 61.49 | 2.67 | 5.07 | 0.56 | 1.92 | 1.18 | 17.7 | 5.97 | |
浙江 | 炉排炉 | — | 74.11 | 2.91 | 1.74 | 0.68 | 1.13 | 0.34 | 11.56 | 4.66 | |
浙江 | 炉排炉 | — | 45.11 | 1.53 | 1.81 | 0.26 | 28.2 | — | 2.82 | 3.31 | |
上海 | 炉排炉 | — | 57.88 | 1.76 | 4.61 | 0.26 | 0.88 | 1.37 | 25.01 | 4.62 | |
四川 | 炉排炉 | — | 61.86 | 2.07 | 4.98 | 0.48 | 0.9 | 0.81 | 15.93 | 10 | |
江苏 | 炉排炉 | — | 56 | 3.71 | 5.12 | 1.19 | 2.75 | 1.6 | 19.92 | 5.27 | |
浙江 | 炉排炉 | 75~2000 | 34.39 | 3.42 | 7.71 | 2.58 | 1.85 | 11.38 | 24.31 | 5.33 | [ |
浙江 | 流化床 | 5~75 | 44.07 | 9.82 | 3.19 | 9.85 | 5.47 | 3.99 | 10.32 | 2.89 | |
上海 | 炉排炉 | 38~75 | 41.38 | 3.44 | 6.15 | 0.66 | 0.52 | 13.4 | 26.07 | 5.31 | [ |
山东 | 炉排炉 | — | 52.42 | 2.84 | 5.3 | 0.88 | 0.92 | 5.09 | 22.26 | 6.3 | [ |
北京 | 炉排炉 | — | 42.81 | 6.78 | 6.41 | 2.96 | 0.96 | 6.19 | 14.83 | 5.01 | [ |
北京 | 炉排炉 | 56.38 | 32.46 | 3.27 | 8.46 | 0.802 | 0.649 | 11.34 | 35.21 | 4.38 | [ |
河南 | 炉排炉 | 108.8 | 38.4 | 6.6 | 6.09 | 2.25 | 1.75 | 9.44 | 26.62 | 4.74 | |
贵州 | 炉排炉 | 64.84 | 52.13 | 2.52 | 5.17 | 1.06 | 1.14 | 10.06 | 21.78 | 3.22 | |
辽宁 | 炉排炉 | 55.16 | 36.72 | 3.17 | 7.01 | 0.727 | 0.65 | 16.47 | 27.23 | 4.59 | |
天津 | 流化床 | 70.95 | 38.16 | 8.59 | 3.88 | 7.61 | 1.68 | 12.27 | 16.37 | 2.99 | |
重庆 | 炉排炉 | 2~100 | 55.08 | 3.97 | 4.23 | 1.2 | 2.28 | 2.74 | 16.95 | 6.92 | [ |
天津 | 炉排炉 | 2~100 | 52.7 | 6.34 | 3.42 | 2.7 | 2.77 | 2.52 | 10.51 | 7.06 | |
天津 | 炉排炉 | — | 41.7 | 2.27 | 7.69 | 0.72 | 0.49 | 12.9 | 24.2 | 7.54 | [ |
山西 | 流化床 | — | 30.09 | 17.91 | 2.35 | 11.9 | 4.4 | 1.26 | 5.23 | 5.45 | [ |
云南 | 炉排炉 | 10~176 | 36.727 | 21.926 | 1.383 | 8.525 | 9.349 | 1.969 | 2.658 | 3.779 | [ |
江苏 | 炉排炉 | — | 42.71 | 5.63 | 6.16 | 2.47 | — | — | 23.41 | 10.6 | [ |
辽宁 | 炉排炉 | — | 45.25 | 2.12 | 8.15 | 2.36 | 0.75 | 9.94 | 21.48 | 8.55 | [ |
广东 | 炉排炉 | 50~280 | 30.57 | 15.92 | 4.18 | 5.74 | 2.26 | 4.49 | 14.1 | 6.91 | [ |
广东 | 炉排炉 | 2~100 | 26.87 | 5.22 | 10.04 | — | — | 9.84 | 20.96 | 11 | [ |
国外 | |||||||||||
瑞典 | 流化床 | — | 40.6 | 6 | 2.4 | 4.5 | 1.7 | 6.2 | 12 | 8.7 | [ |
新加坡 | 炉排炉 | — | 58.79 | 4.71 | 4.66 | — | 2.63 | — | 20.94 | 3.96 | [ |
丹麦 | 炉排炉 | — | 21 | 4.9 | 13.3 | 2.3 | 1.1 | 17.5 | 8.9 | 22.5 | [ |
韩国 | 炉排炉 | — | 41.64 | 3.22 | 6.65 | 1.38 | 0.57 | 9.41 | — | — | [ |
表1 国内外生活垃圾焚烧飞灰中主要组分含量(体积分数)
地点 | 炉型 | 集中粒径/μm | CaO/% | SiO2/% | K2O/% | Al2O3/% | Fe2O3/% | Na2O/% | Cl/% | SO3/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|---|
国内 | |||||||||||
浙江 | 流化床 | — | 29.38 | 32.79 | — | 10.97 | 10.88 | — | 17.44 | — | [ |
山东 | 炉排炉 | — | 45.52 | 1.28 | 10.85 | 0.56 | 1.05 | 13.73 | 16.17 | 5 | [ |
山东 | 炉排炉 | — | 52.67 | 1.14 | 7.93 | 0.69 | 0.63 | 13.62 | 11.09 | 5.58 | |
山东 | 炉排炉 | — | 61.49 | 2.67 | 5.07 | 0.56 | 1.92 | 1.18 | 17.7 | 5.97 | |
浙江 | 炉排炉 | — | 74.11 | 2.91 | 1.74 | 0.68 | 1.13 | 0.34 | 11.56 | 4.66 | |
浙江 | 炉排炉 | — | 45.11 | 1.53 | 1.81 | 0.26 | 28.2 | — | 2.82 | 3.31 | |
上海 | 炉排炉 | — | 57.88 | 1.76 | 4.61 | 0.26 | 0.88 | 1.37 | 25.01 | 4.62 | |
四川 | 炉排炉 | — | 61.86 | 2.07 | 4.98 | 0.48 | 0.9 | 0.81 | 15.93 | 10 | |
江苏 | 炉排炉 | — | 56 | 3.71 | 5.12 | 1.19 | 2.75 | 1.6 | 19.92 | 5.27 | |
浙江 | 炉排炉 | 75~2000 | 34.39 | 3.42 | 7.71 | 2.58 | 1.85 | 11.38 | 24.31 | 5.33 | [ |
浙江 | 流化床 | 5~75 | 44.07 | 9.82 | 3.19 | 9.85 | 5.47 | 3.99 | 10.32 | 2.89 | |
上海 | 炉排炉 | 38~75 | 41.38 | 3.44 | 6.15 | 0.66 | 0.52 | 13.4 | 26.07 | 5.31 | [ |
山东 | 炉排炉 | — | 52.42 | 2.84 | 5.3 | 0.88 | 0.92 | 5.09 | 22.26 | 6.3 | [ |
北京 | 炉排炉 | — | 42.81 | 6.78 | 6.41 | 2.96 | 0.96 | 6.19 | 14.83 | 5.01 | [ |
北京 | 炉排炉 | 56.38 | 32.46 | 3.27 | 8.46 | 0.802 | 0.649 | 11.34 | 35.21 | 4.38 | [ |
河南 | 炉排炉 | 108.8 | 38.4 | 6.6 | 6.09 | 2.25 | 1.75 | 9.44 | 26.62 | 4.74 | |
贵州 | 炉排炉 | 64.84 | 52.13 | 2.52 | 5.17 | 1.06 | 1.14 | 10.06 | 21.78 | 3.22 | |
辽宁 | 炉排炉 | 55.16 | 36.72 | 3.17 | 7.01 | 0.727 | 0.65 | 16.47 | 27.23 | 4.59 | |
天津 | 流化床 | 70.95 | 38.16 | 8.59 | 3.88 | 7.61 | 1.68 | 12.27 | 16.37 | 2.99 | |
重庆 | 炉排炉 | 2~100 | 55.08 | 3.97 | 4.23 | 1.2 | 2.28 | 2.74 | 16.95 | 6.92 | [ |
天津 | 炉排炉 | 2~100 | 52.7 | 6.34 | 3.42 | 2.7 | 2.77 | 2.52 | 10.51 | 7.06 | |
天津 | 炉排炉 | — | 41.7 | 2.27 | 7.69 | 0.72 | 0.49 | 12.9 | 24.2 | 7.54 | [ |
山西 | 流化床 | — | 30.09 | 17.91 | 2.35 | 11.9 | 4.4 | 1.26 | 5.23 | 5.45 | [ |
云南 | 炉排炉 | 10~176 | 36.727 | 21.926 | 1.383 | 8.525 | 9.349 | 1.969 | 2.658 | 3.779 | [ |
江苏 | 炉排炉 | — | 42.71 | 5.63 | 6.16 | 2.47 | — | — | 23.41 | 10.6 | [ |
辽宁 | 炉排炉 | — | 45.25 | 2.12 | 8.15 | 2.36 | 0.75 | 9.94 | 21.48 | 8.55 | [ |
广东 | 炉排炉 | 50~280 | 30.57 | 15.92 | 4.18 | 5.74 | 2.26 | 4.49 | 14.1 | 6.91 | [ |
广东 | 炉排炉 | 2~100 | 26.87 | 5.22 | 10.04 | — | — | 9.84 | 20.96 | 11 | [ |
国外 | |||||||||||
瑞典 | 流化床 | — | 40.6 | 6 | 2.4 | 4.5 | 1.7 | 6.2 | 12 | 8.7 | [ |
新加坡 | 炉排炉 | — | 58.79 | 4.71 | 4.66 | — | 2.63 | — | 20.94 | 3.96 | [ |
丹麦 | 炉排炉 | — | 21 | 4.9 | 13.3 | 2.3 | 1.1 | 17.5 | 8.9 | 22.5 | [ |
韩国 | 炉排炉 | — | 41.64 | 3.22 | 6.65 | 1.38 | 0.57 | 9.41 | — | — | [ |
地点 | 炉型 | PCDDs/ng·g-1 | PCDFs/ng·g-1 | PCDDs/PCDFs比值 | dl-PCBs/ng·g-1 | TEQ毒性当量/ng·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|
国内 | |||||||
吉林 | 流化床 | 1.1 | 1.6 | 0.69 | 0.095 | 0.034 | [ |
北京 | 炉排炉 | 10 | 31 | 0.32 | 0.5 | 0.55 | |
山东 | 流化床 | 51 | 79 | 0.65 | 2.3 | 1.8 | |
江苏 | 炉排炉 | 38 | 24 | 1.58 | 1.4 | 0.71 | |
江苏 | 炉排炉 | 7.3 | 17 | 0.43 | 0.55 | 0.44 | |
上海 | 炉排炉 | 39 | 16 | 2.44 | 0.37 | 0.56 | |
上海 | 炉排炉 | 26 | 24 | 1.08 | 1.5 | 0.64 | |
浙江 | 流化床 | 27 | 52 | 0.52 | 2.1 | 1.3 | |
重庆 | 炉排炉 | 28 | 35 | 0.80 | 1.7 | 1 | |
四川 | 炉排炉 | 3.3 | 8.1 | 0.41 | 0.18 | 0.21 | |
福建 | 炉排炉 | 5.6 | 4.2 | 1.33 | 0.21 | 0.11 | |
广东 | 流化床 | 100 | 73 | 1.37 | 9.3 | 2.5 | |
广东 | 炉排炉 | 10 | 17 | 0.59 | 0.36 | 0.44 | |
福建 | 炉排炉 | 59 | 34 | 1.74 | 2.9 | 1 | |
浙江 | 流化床 | 2.384 | 9.21 4 | 0.26 | — | 0.234 | [ |
浙江 | 流化床 | 0.717 | 0.951 | 0.75 | — | 0.058 | [ |
浙江 | 炉排炉 | 0.32 | 1.118 | 0.29 | — | 0.048 | |
国外 | |||||||
法国 | 炉排炉 | 99.48 | 92.55 | 1.07 | — | 6.83 | [ |
日本 | 炉排炉 | 54 | 86 | 0.63 | — | 3.3 | [ |
韩国 | 炉排炉 | 80 | 30 | 2.67 | — | 3.35 | [ |
表2 国内外生活垃圾焚烧飞灰中二𫫇英含量
地点 | 炉型 | PCDDs/ng·g-1 | PCDFs/ng·g-1 | PCDDs/PCDFs比值 | dl-PCBs/ng·g-1 | TEQ毒性当量/ng·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|
国内 | |||||||
吉林 | 流化床 | 1.1 | 1.6 | 0.69 | 0.095 | 0.034 | [ |
北京 | 炉排炉 | 10 | 31 | 0.32 | 0.5 | 0.55 | |
山东 | 流化床 | 51 | 79 | 0.65 | 2.3 | 1.8 | |
江苏 | 炉排炉 | 38 | 24 | 1.58 | 1.4 | 0.71 | |
江苏 | 炉排炉 | 7.3 | 17 | 0.43 | 0.55 | 0.44 | |
上海 | 炉排炉 | 39 | 16 | 2.44 | 0.37 | 0.56 | |
上海 | 炉排炉 | 26 | 24 | 1.08 | 1.5 | 0.64 | |
浙江 | 流化床 | 27 | 52 | 0.52 | 2.1 | 1.3 | |
重庆 | 炉排炉 | 28 | 35 | 0.80 | 1.7 | 1 | |
四川 | 炉排炉 | 3.3 | 8.1 | 0.41 | 0.18 | 0.21 | |
福建 | 炉排炉 | 5.6 | 4.2 | 1.33 | 0.21 | 0.11 | |
广东 | 流化床 | 100 | 73 | 1.37 | 9.3 | 2.5 | |
广东 | 炉排炉 | 10 | 17 | 0.59 | 0.36 | 0.44 | |
福建 | 炉排炉 | 59 | 34 | 1.74 | 2.9 | 1 | |
浙江 | 流化床 | 2.384 | 9.21 4 | 0.26 | — | 0.234 | [ |
浙江 | 流化床 | 0.717 | 0.951 | 0.75 | — | 0.058 | [ |
浙江 | 炉排炉 | 0.32 | 1.118 | 0.29 | — | 0.048 | |
国外 | |||||||
法国 | 炉排炉 | 99.48 | 92.55 | 1.07 | — | 6.83 | [ |
日本 | 炉排炉 | 54 | 86 | 0.63 | — | 3.3 | [ |
韩国 | 炉排炉 | 80 | 30 | 2.67 | — | 3.35 | [ |
地点 | 炉型 | Pb/mg·kg-1 | Cr/mg·kg-1 | Cd/mg·kg-1 | Ni/mg·kg-1 | Cu/mg·kg-1 | Zn/mg·kg-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
国内 | ||||||||
浙江 | 流化床 | 493.75 | 311.09 | 11.36 | 78.38 | 588.16 | 2265.04 | [ |
山东 | 炉排炉 | 1239 | 89 | 184 | 22 | 563 | 4716 | [ |
山东 | 炉排炉 | 922 | 42 | 152 | 11 | 376 | 4325 | |
山东 | 炉排炉 | 720 | 85 | 65 | 25 | 400 | 2420 | |
浙江 | 炉排炉 | 635 | 50 | 65 | 10 | 350 | 2985 | |
浙江 | 炉排炉 | 710 | 480 | 25 | 125 | 750 | 4715 | |
上海 | 炉排炉 | 1115 | 35 | 75 | 15 | 435 | 4650 | |
四川 | 炉排炉 | 980 | 70 | 140 | 15 | 280 | 4490 | |
江苏 | 炉排炉 | 720 | 140 | 75 | 55 | 575 | 2595 | |
浙江 | 炉排炉 | 1310.8 | 147.7 | 127.8 | 46 | 901.2 | 4582 | [ |
浙江 | 流化床 | 1343.5 | 296.5 | 60 | 53.6 | 1438.9 | 9411.2 | |
上海 | 炉排炉 | 4039 | 140.4 | 267.1 | — | 694.4 | 7714.8 | [ |
山东 | 炉排炉 | 2120 | — | 220 | — | — | — | [ |
浙江 | 炉排炉 | 1830 | 229 | 191 | 44.1 | 757 | 7640 | [ |
浙江 | 流化床 | 1604 | 767.8 | 71.75 | 299.7 | 4084 | 9782 | |
山西 | 流化床 | 677.4 | — | 60.9 | — | 1070.2 | 1166.3 | [ |
安徽 | 流化床 | 1063.35 | 468.04 | 77.38 | 145.61 | 2237.22 | 6305.25 | [ |
江苏 | 炉排炉 | 1647.26 | 40.7 | 280.3 | 24.23 | 626.8 | 6803.43 | |
西藏 | 炉排炉 | 1578 | 57.4 | 107.4 | 25.4 | 561 | 3842 | [ |
黑龙江 | 流化床 | 715 | 307 | 107 | 114 | 1122 | 5664 | [ |
黑龙江 | 炉排炉 | 1653 | 221 | 424 | 62 | 872 | 6532 | |
江苏 | 炉排炉 | 2622 | 787 | 111 | — | 950 | 4803 | [ |
辽宁 | 炉排炉 | 924 | 50 | 172 | 36 | 506 | 4516 | [ |
广东 | 炉排炉 | 1700 | — | — | 40 | 860 | 4900 | [ |
国外 | ||||||||
瑞典 | 流化床 | 5730 | 190 | 90 | 30 | 5400 | 5780 | [ |
瑞典 | 流化床 | 3630 | 23.1 | 62.7 | — | 6940 | 6860 | [ |
挪威 | 炉排炉 | 2900 | 500 | 200 | — | 1200 | 15900 | [ |
日本 | 流化床 | 1274 | 192 | 17 | — | 3517 | 5029 | [ |
奥地利 | 炉排炉 | 2300 | 190 | 180 | — | 780 | 13000 | [ |
瑞士 | 炉排炉 | 9540 | 650 | 227 | — | 3901 | 26770 | [ |
丹麦 | 炉排炉 | 6250 | 126 | 280 | — | 1070 | 34690 | [ |
表3 国内外生活垃圾焚烧飞灰中重金属含量
地点 | 炉型 | Pb/mg·kg-1 | Cr/mg·kg-1 | Cd/mg·kg-1 | Ni/mg·kg-1 | Cu/mg·kg-1 | Zn/mg·kg-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
国内 | ||||||||
浙江 | 流化床 | 493.75 | 311.09 | 11.36 | 78.38 | 588.16 | 2265.04 | [ |
山东 | 炉排炉 | 1239 | 89 | 184 | 22 | 563 | 4716 | [ |
山东 | 炉排炉 | 922 | 42 | 152 | 11 | 376 | 4325 | |
山东 | 炉排炉 | 720 | 85 | 65 | 25 | 400 | 2420 | |
浙江 | 炉排炉 | 635 | 50 | 65 | 10 | 350 | 2985 | |
浙江 | 炉排炉 | 710 | 480 | 25 | 125 | 750 | 4715 | |
上海 | 炉排炉 | 1115 | 35 | 75 | 15 | 435 | 4650 | |
四川 | 炉排炉 | 980 | 70 | 140 | 15 | 280 | 4490 | |
江苏 | 炉排炉 | 720 | 140 | 75 | 55 | 575 | 2595 | |
浙江 | 炉排炉 | 1310.8 | 147.7 | 127.8 | 46 | 901.2 | 4582 | [ |
浙江 | 流化床 | 1343.5 | 296.5 | 60 | 53.6 | 1438.9 | 9411.2 | |
上海 | 炉排炉 | 4039 | 140.4 | 267.1 | — | 694.4 | 7714.8 | [ |
山东 | 炉排炉 | 2120 | — | 220 | — | — | — | [ |
浙江 | 炉排炉 | 1830 | 229 | 191 | 44.1 | 757 | 7640 | [ |
浙江 | 流化床 | 1604 | 767.8 | 71.75 | 299.7 | 4084 | 9782 | |
山西 | 流化床 | 677.4 | — | 60.9 | — | 1070.2 | 1166.3 | [ |
安徽 | 流化床 | 1063.35 | 468.04 | 77.38 | 145.61 | 2237.22 | 6305.25 | [ |
江苏 | 炉排炉 | 1647.26 | 40.7 | 280.3 | 24.23 | 626.8 | 6803.43 | |
西藏 | 炉排炉 | 1578 | 57.4 | 107.4 | 25.4 | 561 | 3842 | [ |
黑龙江 | 流化床 | 715 | 307 | 107 | 114 | 1122 | 5664 | [ |
黑龙江 | 炉排炉 | 1653 | 221 | 424 | 62 | 872 | 6532 | |
江苏 | 炉排炉 | 2622 | 787 | 111 | — | 950 | 4803 | [ |
辽宁 | 炉排炉 | 924 | 50 | 172 | 36 | 506 | 4516 | [ |
广东 | 炉排炉 | 1700 | — | — | 40 | 860 | 4900 | [ |
国外 | ||||||||
瑞典 | 流化床 | 5730 | 190 | 90 | 30 | 5400 | 5780 | [ |
瑞典 | 流化床 | 3630 | 23.1 | 62.7 | — | 6940 | 6860 | [ |
挪威 | 炉排炉 | 2900 | 500 | 200 | — | 1200 | 15900 | [ |
日本 | 流化床 | 1274 | 192 | 17 | — | 3517 | 5029 | [ |
奥地利 | 炉排炉 | 2300 | 190 | 180 | — | 780 | 13000 | [ |
瑞士 | 炉排炉 | 9540 | 650 | 227 | — | 3901 | 26770 | [ |
丹麦 | 炉排炉 | 6250 | 126 | 280 | — | 1070 | 34690 | [ |
处理技术 | 优点 | 缺点 |
---|---|---|
高温烧结 | 减容效果好,运行条件与高温熔融相比简单 | 烧结过程会产生重金属烟气,产生二次飞灰,成本较高,能耗较高 |
高温熔融/玻璃化 | 减容效果好,降低重金属浸出 | 能耗高,工艺流程复杂,熔融过程会产生烟气 |
水泥回转窑热处理 | 技术较成熟,标准体系较完善 | 需要与水泥窑协同处置,前端水洗工艺增加成本,水泥产品出路 |
低温催化热解 | 能耗较低 | 技术不够成熟,流程比较复杂 |
水热处理 | 操作简单,工艺流程简单 | 能耗高,废液再处理,规模化比较困难 |
机械化学 | 反应条件温和,工艺流程简单 | 能耗高,规模化比较困难 |
表4 生活垃圾焚烧飞灰二𫫇英处理技术分析
处理技术 | 优点 | 缺点 |
---|---|---|
高温烧结 | 减容效果好,运行条件与高温熔融相比简单 | 烧结过程会产生重金属烟气,产生二次飞灰,成本较高,能耗较高 |
高温熔融/玻璃化 | 减容效果好,降低重金属浸出 | 能耗高,工艺流程复杂,熔融过程会产生烟气 |
水泥回转窑热处理 | 技术较成熟,标准体系较完善 | 需要与水泥窑协同处置,前端水洗工艺增加成本,水泥产品出路 |
低温催化热解 | 能耗较低 | 技术不够成熟,流程比较复杂 |
水热处理 | 操作简单,工艺流程简单 | 能耗高,废液再处理,规模化比较困难 |
机械化学 | 反应条件温和,工艺流程简单 | 能耗高,规模化比较困难 |
处理技术 | 优点 | 缺点 |
---|---|---|
固化稳定化 | 成本低,流程简单 | 对多种重金属的固化效果普适性较差,长期容易浸出,对二𫫇英没有去除效果,增大体积 |
固热处理 | 减容效果好,对多种重金属的适用性强 | 能耗高,成本高,工艺流程复杂,产生烟气和二次飞灰 |
金属热分离 | 对多种金属的分离效率均较高 | 能耗高,处理后飞灰与添加剂分离问题,产生烟气处理 |
金属化学浸出与电化学分离 | 国外技术较成熟,分离回收效率高 | 工艺流程复杂,增加废水处理 工艺流程复杂,国内技术不成熟,缺乏政策支持 |
表5 生活垃圾焚烧飞灰重金属处理技术分析
处理技术 | 优点 | 缺点 |
---|---|---|
固化稳定化 | 成本低,流程简单 | 对多种重金属的固化效果普适性较差,长期容易浸出,对二𫫇英没有去除效果,增大体积 |
固热处理 | 减容效果好,对多种重金属的适用性强 | 能耗高,成本高,工艺流程复杂,产生烟气和二次飞灰 |
金属热分离 | 对多种金属的分离效率均较高 | 能耗高,处理后飞灰与添加剂分离问题,产生烟气处理 |
金属化学浸出与电化学分离 | 国外技术较成熟,分离回收效率高 | 工艺流程复杂,增加废水处理 工艺流程复杂,国内技术不成熟,缺乏政策支持 |
处理技术 | 工程实验条件 | 工程实验效果 | 参考文献 |
---|---|---|---|
高温烧结 | 处理量为100t/d的回转窑,将飞灰与烧结剂按照2∶1质量比混合,窑内温度1200℃,回转窑长度为45m,混合物在45min内缓慢迁移通过回转窑,配备脱酸塔、活性炭、袋式除尘器 | 烟气中PCDD/Fs 0.019~0.025ng I-TEQ/m3,低于国际标准,烧结产物中PCDD/Fs从原始飞灰的2.593~2.704μg I-TEQ/kg,降至0.002~0.008μg I-TEQ/kg,在二次飞灰中发现14.3μg I-TEQ/kg高浓度,PCDD/Fs的破坏率较低(8.9%),烧结产物的重金属浸出浓度远低于标准限值 | [ |
高温熔融/玻璃化 | 使用柴油炉,柴油消耗量为5L/h,熔化温度为1230~1350℃、飞灰进料速率为20~25kg/h,反应时间为15~20 min,研究温度为1260℃、1320℃和1350℃ | 在1260~1350℃高温下原始飞灰与水洗飞灰的体积减量率为75%~80%,烟气中PCDD/Fs浓度约为0.053ng TEQ/m3,远低于国家标准限值,二次飞灰中的主要组分是NaCl和KCl,熔渣中重金属浸出浓度低于标准 | [ |
水泥回转窑热处理 | 飞灰经过水洗、脱氯预处理、干燥,使用气动输送机将飞灰送入窑入口的烟道气室,最大输送能力为8t/h,水泥窑为干法回转窑,配有五级旋风预热器和预分解器,熟料生产能力为2500t/d | 水泥窑热处理能够保证飞灰中二𫫇英含量显著降低,并通过指纹图谱技术揭示了水泥窑生产并未受到影响,熟料中二𫫇英含量远低于国家标准,且来源于窑内其他杂质而非飞灰二𫫇英的转移 | [ |
低温催化热解 | 低温热分解+水洗处理+蒸发结晶分盐工艺技术,每年处理飞灰量5万吨,在350~400℃绝氧的环境下进行二𫫇英解毒处理,解毒后的飞灰进行多级逆流漂洗,在MVR蒸发结晶单元将废水中的钠盐、钾盐分离 | 最高可将二𫫇英降从2500ng/kg降低至50ng/kg以下,二𫫇英降解效率大于99%,分离的钠盐、钾盐满足工业钠盐、钾盐产品标准 | [ |
固化稳定化 | 200t/d生活垃圾焚烧飞灰模袋填埋示范工程,添加螯合剂实现飞灰中重金属固化稳定,对于充灌进模袋内的飞灰增加二次螯合工艺,采用飞灰膏体制备-管道泵送-模袋充灌工艺一体化技术 | 固结后模袋体内的飞灰含水率、重金属浸出指标均满足标准要求,与常规吨袋填埋相比,飞灰模袋填埋库容率增加25%左右 | [ |
金属化学浸出与电化学分离 | 瑞士的FLUWA和FLUREC工艺,飞灰通过多级淋洗,使用酸性和中性的洗涤水进行浸出,结合电沉积回收金属 | FLUWA工艺可以提取约60%~80%的Zn、80%~95%的Cd、50%~85%的Pb和Cu,FLUREC工艺从富含重金属的滤液中回收高纯度Zn(回收率>99.995%) | [ |
表6 生活垃圾焚烧飞灰处理技术工程应用案例总结
处理技术 | 工程实验条件 | 工程实验效果 | 参考文献 |
---|---|---|---|
高温烧结 | 处理量为100t/d的回转窑,将飞灰与烧结剂按照2∶1质量比混合,窑内温度1200℃,回转窑长度为45m,混合物在45min内缓慢迁移通过回转窑,配备脱酸塔、活性炭、袋式除尘器 | 烟气中PCDD/Fs 0.019~0.025ng I-TEQ/m3,低于国际标准,烧结产物中PCDD/Fs从原始飞灰的2.593~2.704μg I-TEQ/kg,降至0.002~0.008μg I-TEQ/kg,在二次飞灰中发现14.3μg I-TEQ/kg高浓度,PCDD/Fs的破坏率较低(8.9%),烧结产物的重金属浸出浓度远低于标准限值 | [ |
高温熔融/玻璃化 | 使用柴油炉,柴油消耗量为5L/h,熔化温度为1230~1350℃、飞灰进料速率为20~25kg/h,反应时间为15~20 min,研究温度为1260℃、1320℃和1350℃ | 在1260~1350℃高温下原始飞灰与水洗飞灰的体积减量率为75%~80%,烟气中PCDD/Fs浓度约为0.053ng TEQ/m3,远低于国家标准限值,二次飞灰中的主要组分是NaCl和KCl,熔渣中重金属浸出浓度低于标准 | [ |
水泥回转窑热处理 | 飞灰经过水洗、脱氯预处理、干燥,使用气动输送机将飞灰送入窑入口的烟道气室,最大输送能力为8t/h,水泥窑为干法回转窑,配有五级旋风预热器和预分解器,熟料生产能力为2500t/d | 水泥窑热处理能够保证飞灰中二𫫇英含量显著降低,并通过指纹图谱技术揭示了水泥窑生产并未受到影响,熟料中二𫫇英含量远低于国家标准,且来源于窑内其他杂质而非飞灰二𫫇英的转移 | [ |
低温催化热解 | 低温热分解+水洗处理+蒸发结晶分盐工艺技术,每年处理飞灰量5万吨,在350~400℃绝氧的环境下进行二𫫇英解毒处理,解毒后的飞灰进行多级逆流漂洗,在MVR蒸发结晶单元将废水中的钠盐、钾盐分离 | 最高可将二𫫇英降从2500ng/kg降低至50ng/kg以下,二𫫇英降解效率大于99%,分离的钠盐、钾盐满足工业钠盐、钾盐产品标准 | [ |
固化稳定化 | 200t/d生活垃圾焚烧飞灰模袋填埋示范工程,添加螯合剂实现飞灰中重金属固化稳定,对于充灌进模袋内的飞灰增加二次螯合工艺,采用飞灰膏体制备-管道泵送-模袋充灌工艺一体化技术 | 固结后模袋体内的飞灰含水率、重金属浸出指标均满足标准要求,与常规吨袋填埋相比,飞灰模袋填埋库容率增加25%左右 | [ |
金属化学浸出与电化学分离 | 瑞士的FLUWA和FLUREC工艺,飞灰通过多级淋洗,使用酸性和中性的洗涤水进行浸出,结合电沉积回收金属 | FLUWA工艺可以提取约60%~80%的Zn、80%~95%的Cd、50%~85%的Pb和Cu,FLUREC工艺从富含重金属的滤液中回收高纯度Zn(回收率>99.995%) | [ |
1 | 马斌斌, 杨琥, 孙志翱, 等. 城市垃圾焚烧飞灰中氯盐及重金属分离提取技术研究进展[J]. 环境化学, 2024, 43(3): 790-805. |
MA Binbin, YANG Hu, SUN Zhiao, et al. Research progress on separation and extraction technologies of chlorine salts and heavy metals from municipal solid waste incineration fly ash[J]. Environmental Chemistry, 2024, 43(3): 790-805. | |
2 | QUINA Margarida J, BORDADO João C, QUINTA-FERREIRA Rosa M. Treatment and use of air pollution control residues from MSW incineration: An overview[J]. Waste Management, 2008, 28(11): 2097-2121. |
3 | 马懿, 郑仁栋, 周志昊, 等. 生活垃圾焚烧飞灰处置技术与应用瓶颈[J]. 环境工程, 2022, 40(5): 237-243. |
MA Yi, ZHENG Rendong, ZHOU Zhihao, et al. Bottleneck of application of disposal technologies for fly ash from municipal solid waste incineration[J]. Environmental Engineering, 2022, 40(5): 237-243. | |
4 | 余卓君, 吴建会, 张裕芬, 等. 垃圾焚烧厂排放颗粒物组分粒径分布特征[J]. 环境科学, 2019, 40(6): 2533-2539. |
YU Zhuojun, WU Jianhui, ZHANG Yufen, et al. Characteristics of component particle size distributions of particulate matter emitted from a waste incineration plant[J]. Environmental Science, 2019, 40(6): 2533-2539. | |
5 | 唐影. 垃圾焚烧发电过程污染物排放控制研究[D]. 北京: 华北电力大学, 2015. |
TANG Ying. Study on the control of pollutants emissions of waste incineration power generation process[D]. Beijing: North China Electric Power University, 2015. | |
6 | LONG Ling, JIANG Xuguang, LV Guojun, et al. Characteristics of fly ash from waste-to-energy plants adopting grate-type or circulating fluidized bed incinerators: A comparative study[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2020: 1-17. |
7 | FAN Chengcheng, WANG Baomin, AI Hongmei, et al. A comparative study on characteristics and leaching toxicity of fluidized bed and grate furnace MSWI fly ash[J]. Journal of Environmental Management, 2022, 305: 114345. |
8 | 潘卓. 渗滤液浓缩液脱除垃圾焚烧飞灰中盐分的研究[D]. 鞍山: 辽宁科技大学, 2021. |
94 | XIE Kang, HU Hongyun, XU Sihua, et al. Fate of heavy metals during molten salts thermal treatment of municipal solid waste incineration fly ashes[J]. Waste Management, 2020, 103: 334-341. |
95 | WEIBEL Gisela, EGGENBERGER Urs, KULIK Dmitrii A, et al. Extraction of heavy metals from MSWI fly ash using hydrochloric acid and sodium chloride solution[J]. Waste Management, 2018, 76: 457-471. |
96 | QUINA Margarida J, BONTEMPI Elza, BOGUSH Anna, et al. Technologies for the management of MSW incineration ashes from gas cleaning: New perspectives on recovery of secondary raw materials and circular economy[J]. Science of the Total Environment, 2018, 635: 526-542. |
97 | WEIBEL Gisela, ZAPPATINI Anna, WOLFFERS Mirjam, et al. Optimization of metal recovery from MSWI fly ash by acid leaching: Findings from laboratory- and industrial-scale experiments[J]. Processes, 2021, 9(2): 352. |
98 | PENG Zheng, WEBER Roland, REN Yong, et al. Characterization of PCDD/Fs and heavy metal distribution from municipal solid waste incinerator fly ash sintering process[J]. Waste Management, 2020, 103: 260-267. |
99 | WANG Qi, TIAN Shulei, WANG Qunhui, et al. Melting characteristics during the vitrification of MSWI fly ash with a pilot-scale diesel oil furnace[J]. Journal of Hazardous Materials, 2008, 160(2/3): 376-381. |
100 | XIAO Haiping, RU Yu, PENG Zheng, et al. Destruction and formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during pretreatment and co-processing of municipal solid waste incineration fly ash in a cement kiln[J]. Chemosphere, 2018, 210: 779-788. |
101 | 李唯实, 李丽, 文卓钰, 等. 低温热处理生活垃圾焚烧飞灰中二𫫇英的降解机理[J]. 环境科学研究, 2023, 36(6): 1227-1235. |
LI Weishi, LI Li, WEN Zhuoyu, et al. Degradation mechanism of dioxins in municipal solid waste incineration fly ash by low-temperature thermal treatment[J]. Research of Environmental Sciences, 2023, 36(6): 1227-1235. | |
102 | 张曙光, 郭涛, 王娟娟, 等. 一种生活垃圾焚烧飞灰湿法模袋处理方法及系统: CN106734045A[P]. 2017-05-31. |
ZHANG shuguang, GUO tao, WANG juanjuan, et al. A wet bag filtration method and system for municipal solid waste incineration fly ash: CN106734045A[P]. 2017-05-31. | |
8 | PAN Zhuo. Study on the salts removal from municipal solid waste incineration fly ash via concentrated leachate solution[D]. Anshan: University of Science and Technology Liaoning, 2021. |
9 | 李海丹, 郑丽萍, 周涵, 等. 我国生活垃圾组分的时空分布特征回顾[J]. 环境工程, 2022, 40(9): 126-134. |
LI Haidan, ZHENG Liping, ZHOU Han, et al. Review on spatial-temporal distribution characteristics of municipal solid waste components in China[J]. Environmental Engineering, 2022, 40(9): 126-134. | |
10 | 谭鑫. 固化飞灰中重金属和氯浸出特性及其无害化研究[D]. 荆州: 长江大学, 2022. |
TAN Xin. Study on leaching characteristics of heavy metals and chlorine in solidified fly ash and their harmlessness[D]. Jingzhou: Yangtze University, 2022. | |
11 | 刘靖. 锂、钠、钾等碱金属元素对飞灰介电性质影响机理的实验研究[D]. 保定: 华北电力大学(河北), 2007. |
LIU Jing. Experimental study for the influence mechanism of the contents of alkali elements, lithium, sodium, potassium to electric conduction in the fly ash[D]. Baoding: North China Electric Power University, 2007. | |
12 | 吕紫娟. 典型城市生活垃圾焚烧飞灰特性分析和重金属稳定化效果研究[D]. 青岛: 青岛理工大学, 2021. |
Zijuan LÜ/LV/LU/LYU). Analysis of characteristics of fly ash from typical municipal solid waste incineration and study on stabilization effect of heavy metals[D].Qingdao: Qingdao Tehcnology University, 2021. | |
13 | 彭雯. 城市生活垃圾焚烧飞灰中重金属的浸出特性及沥青固化飞灰的实验研究[D]. 杭州: 浙江大学, 2004. |
PENG Wen. The leaching behavior of heavy metals from MSWI fly ash and experimental study on solidification in treating fly ash with asphalt[D].Hangzhou: Zhejiang University, 2004. | |
14 | 缪建冬, 郑浩, 陈萍, 等. 杭州地区生活垃圾焚烧飞灰基本特性分析[J]. 浙江理工大学学报(自然科学版), 2018, 39(5): 642-650. |
MIAO Jiandong, ZHENG Hao, CHEN Ping, et al. Basic characteristics of municipal solid waste incineration fly ash in Hangzhou, China[J]. Journal of Zhejiang Sci-Tech University (Natural Sciences Edition), 2018, 39(5): 642-650. | |
15 | 孟棒棒. 利用生活垃圾焚烧飞灰协同处理膜浓缩液的研究[D]. 哈尔滨: 哈尔滨理工大学, 2018. |
MENG Bangbang. Study on the synergistic treatment of membrane concentrated leachate by MSWI fly ash[D]. Harbin: Harbin University of Science and Technology, 2018. | |
16 | 郝志鹏. 生活垃圾焚烧飞灰螯合剂稳定化条件对Pb和Cd浸出行为影响研究[D]. 青岛: 青岛理工大学, 2018. |
HAO Zhipeng. Effect of chelating agents stabilization conditions on leaching behavior of Pb and Cd in municipal solid waste incineration fly ash[D].Qingdao: Qingdao Tehcnology University, 2018. | |
17 | 刘念. 生活垃圾焚烧飞灰中二𫫇英中温脱除和重金属迁移规律研究[D]. 徐州: 中国矿业大学, 2022. |
LIU Nian. Study on removal of dioxins and migration of heavy metals in fly ash from municipal solid waste incineration at medium temperature[D]. Xuzhou: China University of Mining and Technology, 2022. | |
18 | 折开浪, 李萍, 刘景财, 等. 碳酸化对不同碱度飞灰中重金属的长期影响[J]. 中国环境科学, 2022, 42(8): 3832-3840. |
SHE Kailang, LI Ping, LIU Jingcai, et al. Long-term effect of carbonation on heavy metals in fly ash of different alkalinity[J]. China Environmental Science, 2022, 42(8): 3832-3840. | |
19 | 魏云梅, 姚瑞轩, 刘思捷, 等. 生活垃圾焚烧飞灰差异性特征对脱氯除盐效果影响研究——以重庆和天津飞灰为例[J]. 环境科学学报, 2021, 41(12): 4986-4994. |
WEI Yunmei, YAO Ruixuan, LIU Sijie, et al. Effect of intrinsic property of MSWI fly ash on dechlorination: Illustrated by two ash samples from Chongqing and Tianjin[J]. Acta Scientiae Circumstantiae, 2021, 41(12): 4986-4994. | |
20 | 李志川. 垃圾焚烧飞灰制备微晶玻璃及其重金属固化机理研究[D]. 天津: 河北工业大学, 2022. |
LI Zhichuan. Preparation of glass-ceramics from waste incineration fly ash and mechanism of heavy metal solidification[D]. Tianjin: Hebei University of Technology, 2022. | |
21 | 高静. 城市垃圾焚烧飞灰低能耗熔融固化方法研究[D]. 北京: 华北电力大学, 2021. |
GAO Jing. Study on A low-energy-consumption melting solidification method of municipal solid waste incineration fly ash[D]. Beijing: North China Electric Power University, 2021. | |
22 | 王博涛, 董思涵, 刘天成. 某垃圾焚烧飞灰理化性质检测及毒性浸出试验研究[J]. 安全与环境学报, 2022, 22(2): 988-995. |
WANG Botao, DONG Sihan, LIU Tiancheng. Physical and chemical properties detection and toxicity leaching experiment of a waste incineration fly ash[J]. Journal of Safety and Environment, 2022, 22(2): 988-995. | |
23 | 孙立. 无机添加物稳固垃圾飞灰重金属实验研究[D]. 南京: 东南大学, 2017. |
SUN Li. Stabilization of heavy metals in municipal solid waste incineration fly ash using inorganic chemicals[D]. Nanjing: Southeast University, 2017. | |
24 | 李夫振. 城市生活垃圾焚烧飞灰的特性及其在染料废水处理中的应用[D]. 广州: 华南理工大学, 2013. |
LI Fuzhen. Characterization of MSWI fly ash and application in dye waste water treatment[D]. Guangzhou: South China University of Technology, 2013. | |
25 | 韩大健. 城市生活垃圾焚烧飞灰中钾盐回收研究[D]. 广州: 广东工业大学, 2017. |
HAN Dajian. A study of potassium salt recovery from municipal solid waste incineration(MSWI) fly ash[D]. Guangzhou: Guangdong University of Technology, 2017. | |
26 | EBERT Benjamin A R, STEENARI Britt-Marie, GEIKER Mette R, et al. Screening of untreated municipal solid waste incineration fly ash for use in cement-based materials: Chemical and physical properties[J]. SN Applied Sciences, 2020, 2(5): 802. |
27 | GOH C K, VALAVAN S E, LOW T K, et al. Effects of different surface modification and contents on municipal solid waste incineration fly ash/epoxy composites[J]. Waste Management, 2016, 58: 309-315. |
28 | SONG Geum-Ju, KIM Seong Heon, SEO Yong-Chil, et al. Dechlorination and destruction of PCDDs/PCDFs in fly ashes from municipal solid waste incinerators by low temperature thermal treatment[J]. Chemosphere, 2008, 71(2): 248-257. |
29 | ZHANG Junjie, ZHANG Shengen, LIU Bo. Degradation technologies and mechanisms of dioxins in municipal solid waste incineration fly ash: A review[J]. Journal of Cleaner Production, 2020, 250: 119507. |
30 | LIN Shunda, JIANG Xuguang, ZHAO Yimeng, et al. Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review[J]. Environmental Pollution, 2022, 311: 119878. |
31 | TRITZ Audrey, Isabelle ZIEGLER-DEVIN, PERRIN Christelle, et al. Experimental study of the oxidation and pyrolysis of dibenzofuran at very low concentration[J]. Journal of Environmental Chemical Engineering, 2014, 2(1): 143-153. |
32 | FUJIMORI Takashi, TANINO Yuta, TAKAOKA Masaki. Coexistence of Cu, Fe, Pb, and Zn oxides and chlorides as a determinant of chlorinated aromatics generation in municipal solid waste incinerator fly ash[J]. Environmental Science & Technology, 2014, 48(1): 85-92. |
33 | 金宜英, 田洪海, 聂永丰, 等. 3个城市生活垃圾焚烧炉飞灰中二𫫇英类分析[J]. 环境科学, 2003, 24(3): 21-25. |
JIN Yiying, TIAN Honghai, NIE Yongfeng, et al. Dioxins contents in fly ash of MSW incinerator in three city[J]. Chinese Journal of Environmental Science, 2003, 24(3): 21-25. | |
34 | PAN Yun, YANG Libo, ZHOU Jizhi, et al. Characteristics of dioxins content in fly ash from municipal solid waste incinerators in China[J]. Chemosphere, 2013, 92(7): 765-771. |
35 | CHANG M B, HUANG T F. The effects of temperature and oxygen content on the PCDD/PCDFs formation in MSW fly ash[J]. Chemosphere, 2000, 40(2): 159-164. |
36 | 潘赟. 我国生活垃圾焚烧飞灰毒性行为及其资源化利用过程的风险评估[D]. 上海: 上海大学, 2015. |
PAN Bin|Yun). Toxicity behavior of MSWIs fly ash and assessment of its recycling risk in china[D]. Shanghai: Shanghai University, 2015. | |
37 | 陈彤. 垃圾焚烧过程飞灰中二𫫇英的分布特性及控制技术初步研究[D]. 杭州: 浙江大学, 2003. |
CHEN Tong. Preliminary study on distribution characteristics and control technology of dioxins in fly ash during garbage incineration[D]. Hangzhou: Zhejiang University, 2003. | |
38 | YING Yuxuan, XU Liang, LIN Xiaoqing, et al. Influence of different kinds of incinerators on PCDD/Fs: A case study of emission and formation pathway[J]. Environmental Science and Pollution Research International, 2023, 30(3): 5903-5916. |
39 | LU Shengyong, DU Yingzhe, YAN Jianhua, et al. Dioxins and their fingerprint in size-classified fly ash fractions from municipal solid waste incinerators in China-mechanical grate and fluidized bed units[J]. Journal of the Air & Waste Management Association (1995), 2012, 62(6): 717-724. |
40 | OSAKO Masahiro, KIM Yong-Jin. Influence of coexisting surface-active agents on leachability of dioxins in raw and treated fly ash from an MSW incinerator[J]. Chemosphere, 2004, 54(1): 105-116. |
41 | 王学涛. 城市生活垃圾焚烧飞灰熔融特性及重金属赋存迁移规律的研究[D]. 南京: 东南大学, 2005. |
WANG Xuetao. Melting characteristics and occurrence and transference of heavy metals during melting process of fly ashes from municipal solid waste incinerator[D]. Nanjing: Southeast University, 2005. | |
42 | 陈志良. 机械化学法降解垃圾焚烧飞灰中二𫫇英及协同稳定化重金属的机理研究[D]. 杭州: 浙江大学, 2019. |
CHEN Zhiliang. Mechanism study of mechanochemistry on PCDD/fs degradation and on heavy metals stabilization in MSWI fly ash[D]. Hangzhou: Zhejiang University, 2019. | |
43 | NI Peng, LI Hailong, ZHAO Yongchun, et al. Relation between leaching characteristics of heavy metals and physical properties of fly ashes from typical municipal solid waste incinerators[J]. Environmental Technology, 2017, 38(17): 2105-2118. |
44 | 贾悦, 王震, 夏苏湘, 等. 上海市生活垃圾重金属来源分析及污染风险评价[J]. 环境卫生工程, 2015, 23(4): 31-34. |
JIA Yue, WANG Zhen, XIA Suxiang, et al. Source analysis and pollution risk assessment of heavy metals from Shanghai domestic waste[J]. Environmental Sanitation Engineering, 2015, 23(4): 31-34. | |
45 | WANG Ping, HU Yuanan, CHENG Hefa. Municipal solid waste (MSW) incineration fly ash as an important source of heavy metal pollution in China[J]. Environmental Pollution, 2019, 252(Pt A): 461-475. |
46 | GU Binxian, JIANG Suqin, WANG Haikun, et al. Characterization, quantification and management of China’s municipal solid waste in spatiotemporal distributions: A review[J]. Waste Management, 2017, 61: 67-77. |
47 | ZHANG Kai, SCHNOOR Jerald L, ZENG Eddy Y. E-waste recycling: Where does it go from here?[J]. Environmental Science & Technology, 2012, 46(20): 10861-10867. |
48 | XIONG Yiqun, TAKAOKA Masaki, SANO Akira, et al. Distribution and characteristics of heavy metals in a first-generation monofill site for incinerator residue[J]. Journal of Hazardous Materials, 2019, 373: 763-772. |
49 | NEDKVITNE Eirik Nøst, Ørnulf BORGAN, ERIKSEN Dag Øistein, et al. Variation in chemical composition of MSWI fly ash and dry scrubber residues[J]. Waste Management, 2021, 126: 623-631. |
50 | 常威. 生活垃圾焚烧飞灰的水洗及资源化研究[D]. 杭州: 浙江大学, 2016. |
CHANG Wei. Study on the washing process and recycling of MSWI fly ash[D]. Hangzhou: Zhejiang University, 2016. | |
51 | 谷忠伟. 稳定剂对垃圾焚烧飞灰中重金属的稳定化效果研究[D]. 杭州: 浙江大学, 2020. |
GU Zhongwei. Research of stabilization effect of stabilizers on heavy metals in municipal solid waste incineration fly ash[D]. Hangzhou: Zhejiang University, 2020. | |
52 | 倪海凤. 拉萨市垃圾焚烧飞灰重金属特性及稳定化实验研究[D]. 拉萨: 西藏大学, 2022. |
NI Haifeng. Experimental study on characteristics and stabilization of heavy metals in fly ash from municipal solid waste incineration in lhasa[D]. Lasa: Tibet University, 2022. | |
53 | 陶应翔. 添加剂对垃圾焚烧飞灰高温熔融的影响研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. |
TAO Yingxiang. Effect of additives on high temperature melting of waste incineration fly ash[D]. Harbin: Harbin Institute of Technology, 2019. | |
54 | FEDJE Karin Karlfeldt, EKBERG Christian, SKARNEMARK Gunnar, et al. Removal of hazardous metals from MSW fly ash—An evaluation of ash leaching methods[J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 310-317. |
55 | JUNG C H, MATSUTO T, TANAKA N, et al. Metal distribution in incineration residues of municipal solid waste (MSW) in Japan[J]. Waste Management, 2004, 24(4): 381-391. |
56 | HUBER Florian, LANER David, FELLNER Johann. Comparative life cycle assessment of MSWI fly ash treatment and disposal[J]. Waste Management, 2018, 73: 392-403. |
57 | WEIBEL Gisela, EGGENBERGER Urs, SCHLUMBERGER Stefan, et al. Chemical associations and mobilization of heavy metals in fly ash from municipal solid waste incineration[J]. Waste Management, 2017, 62: 147-159. |
58 | RISTIC Momcilo, Dj MILOSEVIC S. Frenkel’s theory of sintering[J]. Science of Sintering, 2006, 38(1): 7-11. |
59 | LINDBERG Daniel, MOLIN Camilla, HUPA Mikko. Thermal treatment of solid residues from WtE units: A review[J]. Waste Management, 2015, 37: 82-94. |
60 | XUE Yang, LIU Xiaoming. Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review[J]. Chemical Engineering Journal, 2021, 420: 130349. |
61 | LIU Zhijia, ZHANG Tao, ZHANG Jian, et al. Ash fusion characteristics of bamboo, wood and coal[J]. Energy, 2018, 161: 517-522. |
62 | INABA Tsuginori, NAGANO Masayoshi, ENDO Masao. Investigation of plasma treatment for hazardous wastes such as fly ash and asbestos[J]. Electrical Engineering in Japan, 1999, 126(3): 73-82. |
63 | BIE Rushan, CHEN Pei, SONG Xingfei, et al. Characteristics of municipal solid waste incineration fly ash with cement solidification treatment[J]. Journal of the Energy Institute, 2016, 89(4): 704-712. |
64 | DONTRIROS Suthatta, LIKITLERSUANG Suched, JANJAROEN Dao. Mechanisms of chloride and sulfate removal from municipal-solid-waste-incineration fly ash (MSWI FA): Effect of acid-base solutions[J]. Waste Management, 2020, 101: 44-53. |
65 | BOGUSH Anna A, STEGEMANN Julia A, ZHOU Qizhi, et al. Co-processing of raw and washed air pollution control residues from energy-from-waste facilities in the cement kiln[J]. Journal of Cleaner Production, 2020, 254: 119924. |
66 | LAM Charles Hoi King, BARFORD John Patrick, MCKAY Gordon. Utilization of municipal solid waste incineration ash in Portland cement clinker[J]. Clean Technologies and Environmental Policy, 2011, 13(4): 607-615. |
67 | YAN Dahai, PENG Zheng, YU Lifeng, et al. Characterization of heavy metals and PCDD/Fs from water-washing pretreatment and a cement kiln co-processing municipal solid waste incinerator fly ash[J]. Waste Management, 2018, 76: 106-116. |
68 | WANG Lei, NIU Chen, LI Rundong. Prediction of arsenic and antimony behaviour in MSWI fly ash during co-processing in a cement kiln[J]. Waste and Biomass Valorization, 2018, 9(8): 1475-1484. |
69 | HAGENMAIER Hanspaul, KRAFT Michael, BRUNNER Hermann, et al. Catalytic effects of fly ash from waste incineration facilities on the formation and decomposition of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans[J]. Environmental Science & Technology, 1987, 21(11): 1080-1084. |
70 | XU Xu, JI Shasha, XU Hong, et al. Experimental study on thermal treatment of dioxins in fly ash from medical waste incinerator[C]//2011 Asia-Pacific Power and Energy Engineering Conference. Wuhan, China. IEEE, 2011: 1-4. |
71 | TRINH Minh Man, CHANG Moo Been. Catalytic pyrolysis: New approach for destruction of POPs in MWIs fly ash[J]. Chemical Engineering Journal, 2021, 405: 126718. |
72 | XIAO Haiping, CHENG Qiyong, LIU Meijia, et al. Industrial disposal processes for treatment of polychlorinated dibenzo-p-dioxins and dibenzofurans in municipal solid waste incineration fly ash[J]. Chemosphere, 2020, 243: 125351. |
73 | SUN Zhirong, TAKAHASHI Fumitake, ODAKA Yu, et al. Effects of potassium alkalis and sodium alkalis on the dechlorination of o-chlorophenol in supercritical water[J]. Chemosphere, 2007, 66(1): 151-157. |
74 | BRUNNER G. Near critical and supercritical water. Part Ⅰ. Hydrolytic and hydrothermal processes[J]. The Journal of Supercritical Fluids, 2009, 47(3): 373-381. |
75 | YAMAGUCHI H, SHIBUYA E, KANAMARU Y, et al. Hydrothermal decomposition of PCDDs/PCDFs in MSWI fly ash[J]. Chemosphere, 1996, 32(1): 203-208. |
76 | HU Yuyan, ZHANG Pengfei, LI Jianping, et al. Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process[J]. Journal of Hazardous Materials, 2015, 299: 149-157. |
77 | HU Yuyan, ZHANG Pengfei, CHEN Dezhen, et al. Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition[J]. Journal of Hazardous Materials, 2012, 207/208: 79-85. |
78 | QIU Qili, JIANG Xuguang, Guojun LÜ, et al. Degradation of PCDD/Fs in MSWI fly ash using a microwave-assisted hydrothermal process[J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1708-1715. |
79 | CAGNETTA Giovanni, ROBERTSON John, HUANG Jun, et al. Mechanochemical destruction of halogenated organic pollutants: A critical review[J]. Journal of Hazardous Materials, 2016, 313: 85-102. |
80 | MITOMA Yoshiharu, MIYATA Hideaki, EGASHIRA Naoyoshi, et al. Mechanochemical degradation of chlorinated contaminants in fly ash with a calcium-based degradation reagent[J]. Chemosphere, 2011, 83(10): 1326-1330. |
81 | CHEN Zhiliang, TANG Minghui, LU Shengyong, et al. Mechanochemical degradation of PCDD/Fs in fly ash within different milling systems[J]. Chemosphere, 2019, 223: 188-195. |
82 | CAGNETTA Giovanni, HUANG Jun, YU Gang. A mini-review on mechanochemical treatment of contaminated soil: From laboratory to large-scale[J]. Critical Reviews in Environmental Science and Technology, 2018, 48(7/8/9): 723-771. |
83 | LAMPRIS C, J-A STEGEMANN, PELLIZON-BIRELLI M, et al. Metal leaching from monolithic stabilised/solidified air pollution control residues[J]. Journal of Hazardous Materials, 2011, 185(2): 1115-1123. |
84 | ZHANG Bingru, ZHOU Weixiao, ZHAO Huangpu, et al. Stabilization/solidification of lead in MSWI fly ash with mercapto functionalized dendrimer Chelator[J]. Waste Management, 2016, 50: 105-112. |
85 | ZHU Jiemin, HAO Qingju, CHEN Junjiang, et al. Distribution characteristics and comparison of chemical stabilization ways of heavy metals from MSW incineration fly ashes[J]. Waste Management, 2020, 113: 488-496. |
86 | ZHANG Yuying, LABIANCA Claudia, CHEN Liang, et al. Sustainable ex-situ remediation of contaminated sediment: A review[J]. Environmental Pollution, 2021, 287: 117333. |
87 | ANDREOLA F, BARBIERI L, HREGLICH S, et al. Reuse of incinerator bottom and fly ashes to obtain glassy materials[J]. Journal of Hazardous Materials, 2008, 153(3): 1270-1274. |
88 | KARAMANOV Alexander, ALOISI Mirko, PELINO Mario. Sintering behaviour of a glass obtained from MSWI ash[J]. Journal of the European Ceramic Society, 2005, 25(9): 1531-1540. |
89 | GENG Chao, CHEN Chao, SHI Xianfeng, et al. Recovery of metals from municipal solid waste incineration fly ash and red mud via a co-reduction process[J]. Resources, Conservation and Recycling, 2020, 154: 104600. |
90 | OKADA Takashi, SUZUKI Masaru. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash[J]. Journal of Environmental Management, 2013, 130: 347-353. |
91 | HE Dongyang, HU Hongyun, JIAO Facun, et al. Thermal separation of heavy metals from municipal solid waste incineration fly ash: A review[J]. Chemical Engineering Journal, 2023, 467: 143344. |
92 | KUBOŇOVÁ L, LANGOVÁ Š, NOWAK B, et al. Thermal and hydrometallurgical recovery methods of heavy metals from municipal solid waste fly ash[J]. Waste Management, 2013, 33(11): 2322-2327. |
93 | LANE Daniel J, SIPPULA Olli, KOPONEN Hanna, et al. Volatilisation of major, minor, and trace elements during thermal processing of fly ashes from waste- and wood-fired power plants in oxidising and reducing gas atmospheres[J]. Waste Management, 2020, 102: 698-709. |
[1] | 郑钰, 李靖杰, 张宇峰, 赵梦琦, 张娜, 周澳, 于伟, 谭厚章, 王学斌. 典型炉排炉和流化床垃圾焚烧飞灰及螯合产物的重金属浸出毒性[J]. 化工进展, 2024, 43(3): 1630-1636. |
[2] | 巩志强, 刘雷, 王少华, 韩悦, 郭俊山, 商攀峰, 祝令凯, 郑威. 矿物质化合物对含油污泥焚烧过程中重金属迁移转化的影响[J]. 化工进展, 2024, 43(3): 1614-1620. |
[3] | 任鹏锟, 仲兆平, 杨宇轩, 张杉, 杜浩然, 李骞. 改性海泡石对污泥热解过程中重金属的控制[J]. 化工进展, 2024, 43(1): 541-550. |
[4] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[5] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[6] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[7] | 李东泽, 张祥, 田键, 胡攀, 姚杰, 朱林, 卜昌盛, 王昕晔. 基于水泥窑脱硝的碳基还原NO x 研究进展[J]. 化工进展, 2023, 42(9): 4882-4893. |
[8] | 李卫华, 于倩雯, 尹俊权, 吴寅凯, 孙英杰, 王琰, 王华伟, 杨玉飞, 龙於洋, 黄启飞, 葛燕辰, 何依洋, 赵灵燕. 酸雨环境下填埋飞灰吨袋破损后重金属的溶出行为[J]. 化工进展, 2023, 42(9): 4917-4928. |
[9] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[10] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[11] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[12] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[13] | 庄捷, 薛锦辉, 赵斌成, 张文艺. 猪粪厌氧消化进程中重金属与腐殖质的有机结合机制[J]. 化工进展, 2023, 42(6): 3281-3291. |
[14] | 郑昕, 贾里, 王彦霖, 张靖超, 陈世虎, 乔晓磊, 樊保国. 污泥与煤泥混烧对重金属固留特性的影响[J]. 化工进展, 2023, 42(6): 3233-3241. |
[15] | 常占坤, 张弛, 苏冰琴, 张聪政, 王健, 权晓慧. H2S气态基质对污泥生物沥滤处理效能的影响[J]. 化工进展, 2023, 42(5): 2733-2743. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |