化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4974-4983.DOI: 10.16085/j.issn.1000-6613.2022-1955
收稿日期:
2022-10-19
修回日期:
2022-12-20
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
任俊莉
作者简介:
李由(1999—),男,硕士研究生,研究方向为生物质预处理。E-mail:202120129546@mail.scut.edu.cn。
基金资助:
LI You(), WU Yue, ZHONG Yu, LIN Qixuan, REN Junli()
Received:
2022-10-19
Revised:
2022-12-20
Online:
2023-09-15
Published:
2023-09-28
Contact:
REN Junli
摘要:
秸秆预处理的目的是提高组分拆解以及酶解效率。本研究提出一种绿色温和、可循环使用的酸性熔盐水合物预处理农业秸秆的方法,能实现小麦秸秆中半纤维素的选择性拆解并定向解聚为木糖,同时保持较高的纤维素保留率。预处理体系以氯化锌熔盐水合物为溶剂协同酸作催化剂,研究了反应温度、反应时间与硫酸浓度对组分拆解效率的影响,最优反应条件为:温度97℃,时间19.0min,硫酸质量分数3.3%。在此条件下木糖得率达到90.85%,纤维素保留率为85.87%。将预处理后残渣经过酶水解72h后,葡萄糖酶解得率最高可达77.81%。此外,还研究了该体系中氯化锌的循环利用情况,5次循环利用后,在保持氯化锌固体较高回收率的情况下(质量分数为80%),预处理木糖得率达87.69%,依然表现出良好的预处理效果。
中图分类号:
李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983.
LI You, WU Yue, ZHONG Yu, LIN Qixuan, REN Junli. Pretreatment of wheat straw with acidic molten salt hydrate for xylose production and its effect on enzymatic hydrolysis efficiency[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4974-4983.
样品名称 | 固液比 | 质量收率 /% | 残渣组成/% | ||
---|---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | |||
脱蜡后原料 | — | — | 36.49 | 23.13 | 20.58 |
熔盐处理后残渣 | 1∶10 | 86.77 | 40.34 | 21.93 | 23.67 |
稀酸处理后残渣 | 1∶10 | 85.34 | 43.25 | 19.09 | 24.95 |
酸性熔盐处理后残渣 | 1∶5 | 73.94 | 52.26 | 6.81 | 27.97 |
1∶10 | 68.26 | 53.27 | 3.24 | 33.94 | |
1∶15 | 67.82 | 53.91 | 3.12 | 34.61 |
表1 预处理前后物料组分含量
样品名称 | 固液比 | 质量收率 /% | 残渣组成/% | ||
---|---|---|---|---|---|
纤维素 | 半纤维素 | 木质素 | |||
脱蜡后原料 | — | — | 36.49 | 23.13 | 20.58 |
熔盐处理后残渣 | 1∶10 | 86.77 | 40.34 | 21.93 | 23.67 |
稀酸处理后残渣 | 1∶10 | 85.34 | 43.25 | 19.09 | 24.95 |
酸性熔盐处理后残渣 | 1∶5 | 73.94 | 52.26 | 6.81 | 27.97 |
1∶10 | 68.26 | 53.27 | 3.24 | 33.94 | |
1∶15 | 67.82 | 53.91 | 3.12 | 34.61 |
来源 | 总和 | 自由度 | 均方 | F 值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 1384.69 | 9 | 153.85 | 5.97 | 0.0140 | 显著 |
A | 40.91 | 1 | 40.91 | 1.59 | 0.2482 | |
B | 735.94 | 1 | 735.94 | 28.55 | 0.0011 | |
C | 236.10 | 1 | 236.10 | 9.16 | 0.0192 | |
AB | 2.74 | 1 | 2.74 | 0.11 | 0.7540 | |
AC | 1.08 | 1 | 0.000 | 0.042 | 0.8435 | |
BC | 1.72 | 1 | 0.000 | 0.067 | 0.8038 | |
A2 | 131.47 | 1 | 131.47 | 5.10 | 0.0585 | |
B2 | 61.05 | 1 | 61.05 | 2.37 | 0.1677 | |
C2 | 136.57 | 1 | 136.57 | 5.30 | 0.0549 | |
剩余量 | 180.47 | 7 | 25.78 | |||
失拟 | 144.77 | 3 | 48.26 | 5.41 | 0.0683 | 不显著 |
纯误差 | 35.70 | 4 | 8.92 | |||
总和 | 1565.16 | 16 |
表2 方差结果分析
来源 | 总和 | 自由度 | 均方 | F 值 | P值 | 显著性 |
---|---|---|---|---|---|---|
模型 | 1384.69 | 9 | 153.85 | 5.97 | 0.0140 | 显著 |
A | 40.91 | 1 | 40.91 | 1.59 | 0.2482 | |
B | 735.94 | 1 | 735.94 | 28.55 | 0.0011 | |
C | 236.10 | 1 | 236.10 | 9.16 | 0.0192 | |
AB | 2.74 | 1 | 2.74 | 0.11 | 0.7540 | |
AC | 1.08 | 1 | 0.000 | 0.042 | 0.8435 | |
BC | 1.72 | 1 | 0.000 | 0.067 | 0.8038 | |
A2 | 131.47 | 1 | 131.47 | 5.10 | 0.0585 | |
B2 | 61.05 | 1 | 61.05 | 2.37 | 0.1677 | |
C2 | 136.57 | 1 | 136.57 | 5.30 | 0.0549 | |
剩余量 | 180.47 | 7 | 25.78 | |||
失拟 | 144.77 | 3 | 48.26 | 5.41 | 0.0683 | 不显著 |
纯误差 | 35.70 | 4 | 8.92 | |||
总和 | 1565.16 | 16 |
木糖得率/% | 相对误差/% | |
---|---|---|
实际值 | 预测值 | |
90.05 | 91.91 | 2.02 |
90.85 | 91.91 | 1.15 |
89.76 | 91.91 | 2.34 |
90.34 | 91.91 | 1.71 |
89.82 | 91.91 | 2.27 |
表3 回归模型验证实验
木糖得率/% | 相对误差/% | |
---|---|---|
实际值 | 预测值 | |
90.05 | 91.91 | 2.02 |
90.85 | 91.91 | 1.15 |
89.76 | 91.91 | 2.34 |
90.34 | 91.91 | 1.71 |
89.82 | 91.91 | 2.27 |
生物质 | 溶剂 | 葡萄糖得率 /% | 木糖得率 /% | 阿拉伯糖得率 /% |
---|---|---|---|---|
小麦秸秆 | f-ZnCl2 | 4.58 | 90.61 | 87.96 |
r-ZnCl2-1 | 4.32 | 90.28 | 87.72 | |
r-ZnCl2-2 | 4.18 | 89.45 | 87.55 | |
r-ZnCl2-3 | 4.07 | 88.23 | 86.93 | |
r-ZnCl2-4 | 3.95 | 88.01 | 86.01 | |
r-ZnCl2-5 | 3.75 | 87.69 | 85.72 |
表4 回收氯化锌用于预处理的单糖得率
生物质 | 溶剂 | 葡萄糖得率 /% | 木糖得率 /% | 阿拉伯糖得率 /% |
---|---|---|---|---|
小麦秸秆 | f-ZnCl2 | 4.58 | 90.61 | 87.96 |
r-ZnCl2-1 | 4.32 | 90.28 | 87.72 | |
r-ZnCl2-2 | 4.18 | 89.45 | 87.55 | |
r-ZnCl2-3 | 4.07 | 88.23 | 86.93 | |
r-ZnCl2-4 | 3.95 | 88.01 | 86.01 | |
r-ZnCl2-5 | 3.75 | 87.69 | 85.72 |
1 | WANG Wei, LEE Duu-Jong. Lignocellulosic biomass pretreatment by deep eutectic solvents on lignin extraction and saccharification enhancement: A review[J]. Bioresource Technology, 2021, 339: 125587. |
2 | HUANG Chen, WU Xinxing, HUANG Yang, et al. Prewashing enhances the liquid hot water pretreatment efficiency of waste wheat straw with high free ash content[J]. Bioresource Technology, 2016, 219: 583-588. |
3 | SHI Suan, GUAN Wenjian, KANG Li, et al. Reaction kinetic model of dilute acid-catalyzed hemicellulose hydrolysis of corn stover under high-solid conditions[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 10990-10997. |
4 | WU Changyan, CHEN Wei, ZHONG Linxin, et al. Conversion of xylose into furfural using lignosulfonic acid as catalyst in ionic liquid[J]. Journal of Agricultural and Food Chemistry, 2014, 62(30): 7430-7435. |
5 | CHEN Yanli. Development and application of co-culture for ethanol production by co-fermentation of glucose and xylose: A systematic review[J]. Journal of Industrial Microbiology & Biotechnology, 2011, 38(5): 581-597. |
6 | OUYANG Jia, HE Wenqiang, LI Qingming, et al. Separation of lignocellulose and preparation of xylose from miscanthus lutarioriparius with a formic acid method[J]. Applied Sciences, 2022, 12(3): 1432. |
7 | LUO Yiping, LI Dong, LI Ruiling, et al. Roles of water and aluminum sulfate for selective dissolution and utilization of hemicellulose to develop sustainable corn stover-based biorefinery[J]. Renewable and Sustainable Energy Reviews, 2020, 122: 109724. |
8 | JI Xingxiang, MA Hao, TIAN Zhongjian, et al. Production of xylose from diluted sulfuric acid hydrolysis of wheat straw[J]. Bioresources, 2017, 12(4): 7084-7095. |
9 | ZHENG Jun, CHOO Kim, REHMANN Lars. Xylose removal from lignocellulosic biomass via a twin-screw extruder: The effects of screw configurations and operating conditions[J]. Biomass and Bioenergy, 2016, 88: 10-16. |
10 | LOOW Yu Loong, WU Ta Yeong, YANG Ge Hoa, et al. Deep eutectic solvent and inorganic salt pretreatment of lignocellulosic biomass for improving xylose recovery[J]. Bioresource Technology, 2018, 249: 818-825. |
11 | LOOW Yu Loong, WU Ta Yeong, TAN Khang Aik, et al. Recent advances in the application of inorganic salt pretreatment for transforming lignocellulosic biomass into reducing sugars[J]. Journal of Agricultural and Food Chemistry, 2015, 63(38): 8349-8363. |
12 | BI Zhihao, LAI Bin, ZHAO Yi, et al. Fast disassembly of lignocellulosic biomass to lignin and sugars by molten salt hydrate at low temperature for overall biorefinery[J]. ACS Omega, 2018, 3(3): 2984-2993. |
13 | AWOSUSI Ayotunde A, AYENI Augustine, ADELEKE Rasheed, et al. Effect of water of crystallization on the dissolution efficiency of molten zinc chloride hydrate salts during the pre‐treatment of corncob biomass[J]. Journal of Chemical Technology & Biotechnology, 2017, 92(9): 2468-2476. |
14 | GUAN Mingzhao, LIU Qiyu, XIN Haosheng, et al. Enhanced glucose production from cellulose and corn stover hydrolysis by molten salt hydrates pretreatment[J]. Fuel Processing Technology, 2021, 215: 106739. |
15 | YOO Chang Geun. Pretreatment and fractionation of lignocellulosic biomass for production of biofuel and value-added products [D]. Ames: Iowa State University, 2012. |
16 | CAO N J, XU Q, CHEN L F. Xylan hydrolysis in zinc chloride solution[J]. Applied Biochemistry and Biotechnology, 1995, 51(1): 97-104. |
17 | WHEELER David L, BARRETT Tanya, BENSON Dennis A, et al. Database resources of the national center for biotechnology information[J]. Nucleic Acids Research, 2006, 33(S1): D5-D12. |
18 | CHEN Ming, ZHAO Jing, XIA Liming. Enzymatic hydrolysis of maize straw polysaccharides for the production of reducing sugars[J]. Carbohydrate Polymers, 2008, 71(3): 411-415. |
19 | WANG Lingna, MUHAMMED Mamoun. Synthesis of zinc oxide nanoparticles with controlled morphology[J]. Journal of Materials Chemistry, 1999, 9(11): 2871-2878. |
20 | SHAHBAZI Parvaneh, BEHZAD Tayebeh, HEIDARIAN Pejman. Isolation of cellulose nanofibers from poplar wood and wheat straw: Optimization of bleaching step parameters in a chemo-mechanical process by experimental design[J]. Wood Science and Technology, 2017, 51(5): 1173-1187. |
21 | 张圆圆, 孟永斌, 张琳, 等. 响应面法优化微波辅助水蒸气蒸馏法提取油樟精油工艺[J]. 化工进展, 2020, 39(S2): 291-299. |
ZHANG Yuanyuan, MENG Yongbin, ZHANG Lin, et al. Optimization of microwave-assisted steam distillation extraction of Cinnamomum longepaniculatum essential oil by response surface methodology[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 291-299 | |
22 | ZHANG Hongdan, WU Shubin. Efficient sugar release by acetic acid ethanol-based organosolv pretreatment and enzymatic saccharification[J]. Journal of Agricultural and Food Chemistry, 2014, 62(48): 11681-11687. |
23 | SURI Kanchan, SINGH Balwinder, KAUR Amritpal, et al. Influence of dry air and infrared pre-treatments on oxidative stability, Maillard reaction products and other chemical properties of linseed (Linum usitatissimum L.) oil[J]. Journal of Food Science and Technology, 2021, 59(1): 366-376. |
24 | LIAO Cuiping, WU Chuangzhi, HUANG Haitao. Chemical elemental characteristics of biomass fuels in China[J]. Biomass and Bioenergy, 2004, 27(2): 119-130. |
25 | LU Xinkun, SHEN Xinyuan. Solubility of bacteria cellulose in zinc chloride aqueous solutions[J]. Carbohydrate Polymers, 2011, 86(1): 239-244. |
26 | Sanghamitra SEN, MARTIN James D, ARGYROPOULOS Dimitris S. Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(8): 858-870. |
27 | XIE Ruyue, ZHU Ying, LI Junbao, et al. A new microcomputed-tomography-based approach for visualizing microstructure changes of corn stalk pretreated with dilute sulfuric acid[J]. Energy & Fuels, 2019, 33(10): 9895-9903. |
28 | RODRIGUEZ Quiroz Natalia, PADMANATHAN Arul M D, MUSHRIF Samir H, et al. Understanding acidity of molten salt hydrate media for cellulose hydrolysis by combining kinetic studies, electrolyte solution modeling, molecular dynamics simulations, and 13C NMR experiments[J]. ACS Catalysis, 2019, 9(11): 10551-10561. |
29 | CAO N J, XU Q, CHEN L F. Acid hydrolysis of cellulose in zinc chloride solution[J]. Applied Biochemistry and Biotechnology, 1995, 51(1): 21-28. |
30 | JIN Ci, BAO Jie. Lysine production by dry biorefining of wheat straw and cofermentation of Corynebacterium glutamicum [J]. Journal of Agricultural and Food Chemistry, 2021, 69(6): 1900-1906. |
31 | DOMINIC Onukwuli Okechukwu, CHIKAODILI Anadebe Valentine, SANDRA Okafor Chizoba. Optimum prediction for inhibition efficiency of Sapium ellipticum leaf extract as corrosion inhibitor of aluminum alloy (AA3003) in hydrochloric acid solution using electrochemical impedance spectroscopy and response surface methodology[J]. Bulletin of the Chemical Society of Ethiopia, 2020, 34(1): 175-191. |
32 | XU Huanfei, CHE Xinpeng, DING Yu, et al. Effect of crystallinity on pretreatment and enzymatic hydrolysis of lignocellulosic biomass based on multivariate analysis[J]. Bioresource Technology, 2019, 279: 271-280. |
33 | XU Qinqin, ZHAO Mengjiao, YU Zhenzi, et al. Enhancing enzymatic hydrolysis of corn cob, corn stover and sorghum stalk by dilute aqueous ammonia combined with ultrasonic pretreatment[J]. Industrial Crops and Products, 2017, 109: 220-226. |
34 | WANG Zhinan, HOU Xianfeng, SUN Jin, et al. Comparison of ultrasound-assisted ionic liquid and alkaline pretreatment of Eucalyptus for enhancing enzymatic saccharification[J]. Bioresource Technology, 2018, 254: 145-150. |
35 | ANDERSEN Natalija, JOHANSEN Katja S, MICHELSEN Michael, et al. Hydrolysis of cellulose using mono-component enzymes shows synergy during hydrolysis of phosphoric acid swollen cellulose (PASC), but competition on Avicel[J]. Enzyme and Microbial Technology, 2008, 42(4): 362-370. |
36 | BU Lingxi, TANG Yong, GAO Yuxia, et al. Comparative characterization of milled wood lignin from furfural residues and corncob[J]. Chemical Engineering Journal, 2011, 175: 176-184. |
37 | LEE Christopher M, KUBICKI James D, FAN Bingxin, et al. Hydrogen-bonding network and OH stretch vibration of cellulose: Comparison of computational modeling with polarized IR and SFG spectra[J]. The Journal of Physical Chemistry B, 2015, 119(49): 15138-15149. |
38 | XU Junli, YAO Xiaoqian, XIN Jiayu, et al. An effective two‐step ionic liquids method for cornstalk pretreatment[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(11): 2057-2065. |
39 | JEONG So Yeon, Bonwook KOO, LEE Jae Won. Structural changes in biomass (yellow poplar and empty fruit bunch) during hydrothermal and oxalic acid pretreatments and their effects on enzymatic hydrolysis efficiency[J]. Industrial Crops and Products, 2022, 178: 114569. |
40 | MAO Zhanxin, WANG Minjie, LIU Lu, et al. ZnCl2 salt facilitated preparation of FeNC: Enhancing the content of active species and their exposure for highly-efficient oxygen reduction reaction[J]. Chinese Journal of Catalysis, 2020, 41(5): 799-806. |
41 | KIM Tae Hoon, Kyeong Keun OH, Hyun Jin RYU, et al. Hydrolysis of hemicellulose from barley straw and enhanced enzymatic saccharification of cellulose using acidified zinc chloride[J]. Renewable Energy, 2014, 65: 56-63. |
42 | LUO Lianxin, YUAN Xiaojun, ZHANG Sheng, et al. Effect of pretreatments on the enzymatic hydrolysis of high-yield bamboo chemo-mechanical pulp by changing the surface lignin content[J]. Polymers, 2021, 13(5): 787. |
[1] | 张乐乐, 钱运东, 朱华曈, 冯思龙, 杨秀娜, 于颖, 杨强, 卢浩. 加氢原料煤焦油脱水除盐预处理工艺优化限值[J]. 化工进展, 2023, 42(5): 2298-2305. |
[2] | 王川东, 张君奇, 刘丁源, 马媛媛, 李锋, 宋浩. 微生物共利用木糖和葡萄糖生产化学品研究进展[J]. 化工进展, 2023, 42(1): 354-372. |
[3] | 韩明阳, 乔慧, 付佳铭, 马泽雯, 王妍, 欧阳嘉. 非水溶剂预处理木质纤维原料研究进展[J]. 化工进展, 2022, 41(8): 4086-4097. |
[4] | 解先利, 刘云云, 余强, 张宇, 张荣清, 邱雨心. 低共熔溶剂预处理提高甘草渣酶解效果优化[J]. 化工进展, 2022, 41(3): 1349-1356. |
[5] | 阮敏, 孙宇桐, 黄忠良, 李辉, 张轩, 吴希锴, 赵成, 姚世蓉, 张拴保, 张巍, 黄兢. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516. |
[6] | 王娜, 宋秀兰, 昝博韬. 复合菌群利用模拟APG协同FNA预处理剩余污泥水解液合成PHA[J]. 化工进展, 2022, 41(2): 1017-1024. |
[7] | 王艺霖, 李诗杰. 盐酸预处理对浒苔基活性炭电化学性能的影响[J]. 化工进展, 2022, 41(12): 6454-6460. |
[8] | 刘乾静, 陈晓淼, 王芷, 史吉平, 李保国, 刘莉. 低共熔溶剂预处理杨木水解渣拆解木质素[J]. 化工进展, 2022, 41(10): 5612-5618. |
[9] | 张强, 陈诗阳. 氧气辅助湿热预处理对玉米秸秆酒精发酵的影响[J]. 化工进展, 2022, 41(1): 161-165. |
[10] | 聂煜东, 李金, 张贤明. 水处理过程中膜污染问题及其预处理技术研究进展[J]. 化工进展, 2021, 40(4): 2278-2289. |
[11] | 董艳梅, 安艳霞, 马阳阳, 张剑, 李梦琴. 深度共熔溶剂预处理木质纤维素生物质研究进展[J]. 化工进展, 2021, 40(3): 1594-1603. |
[12] | 王锦雪, 邵立明, 吕凡, 章骅, 何品晶. 生活垃圾收运及处理处置过程中产生恶臭的监测和分析方法[J]. 化工进展, 2021, 40(2): 1058-1068. |
[13] | 仉利, 姚宗路, 赵立欣, 李志合, 易维明, 付鹏, 袁超. 生物质热解制备高品质生物油研究进展[J]. 化工进展, 2021, 40(1): 139-150. |
[14] | 王亭亭, 赵智强, 张耀斌. 碱预处理耦合零价铁强化含油污泥厌氧消化[J]. 化工进展, 2021, 40(1): 534-541. |
[15] | 陆佳, 刘伟, 王欣, 苏小红, 范超. 玉米秸秆衍生碳基固体酸的制备及其催化纤维素水解糖化[J]. 化工进展, 2020, 39(9): 3635-3642. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |