化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4538-4549.DOI: 10.16085/j.issn.1000-6613.2022-1872
罗成1(), 范晓勇2, 朱永红1, 田丰1, 崔楼伟3, 杜崇鹏1, 王飞利1, 李冬1(
), 郑化安1(
)
收稿日期:
2022-10-09
修回日期:
2022-11-23
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
李冬,郑化安
作者简介:
罗成(1998—),男,硕士研究生,研究方向为煤焦油加氢反应器内构件数值模拟。E-mail:664265091@qq.com。
基金资助:
LUO Cheng1(), FAN Xiaoyong2, ZHU Yonghong1, TIAN Feng1, CUI Louwei3, DU Chongpeng1, WANG Feili1, LI Dong1(
), ZHENG Hua’an1(
)
Received:
2022-10-09
Revised:
2022-11-23
Online:
2023-09-15
Published:
2023-09-28
Contact:
LI Dong, ZHENG Hua’an
摘要:
中低温煤焦油(LTCT)是一种高密度、高黏度的重质油品,加氢处理是对其清洁化利用的重要手段,其过程主要在滴流床反应器(TBR)内完成。气液分配器作为TBR中的重要部件,影响着反应器中催化剂床层的表现。本文建立了基于Euler-Euler方法的计算流体力学(CFD)模型,并根据已报道的文献冷模实验结果完成模型验证,对LTCT和氢气在4种分配器(泡罩型、多孔烟囱型、齿缝烟囱型和气提管型)中的流动进行了模拟,对比分析了分配器液相的分布、流动行为以及进出口压降;并且引入液体分布不均匀度(Mf)概念,对4种分配器的气液分配效果进行了定量评价。结果表明,LTCT通过泡罩型分配器后的液相覆盖范围最广;泡罩型分配器在y=-200mm截面处Mf为0.13,分配效果最好,且气液两相流集中现象不严重。
中图分类号:
罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549.
LUO Cheng, FAN Xiaoyong, ZHU Yonghong, TIAN Feng, CUI Louwei, DU Chongpeng, WANG Feili, LI Dong, ZHENG Hua’an. CFD simulation of liquid distribution in different distributors in medium-low temperature coal tar hydrogenation reactor[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4538-4549.
参数 | 数值 | ||||
---|---|---|---|---|---|
实验1 | 实验2 | 实验3 | 实验4 | 实验5 | |
空气(气相)流量/m3·h-1 | 3.0 | 5.0 | 7.0 | 9.0 | 11.0 |
水(液相)流量/m3·h-1 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
入口温度/K | 298 | ||||
操作压力/MPa | 0.101 | ||||
气相密度/kg·m-3 | 1.30×10-3 | ||||
气相黏度/mPa·s | 17.9×10-3 | ||||
液体密度/kg·m-3 | 998 | ||||
液相黏度/mPa·s | 2.98 | ||||
表面张力系数/N·m-1 | 7.2×10-2 | ||||
重力加速度/m·s-2 | 9.81 |
表1 水空体系冷模验证模拟设置参数表
参数 | 数值 | ||||
---|---|---|---|---|---|
实验1 | 实验2 | 实验3 | 实验4 | 实验5 | |
空气(气相)流量/m3·h-1 | 3.0 | 5.0 | 7.0 | 9.0 | 11.0 |
水(液相)流量/m3·h-1 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
入口温度/K | 298 | ||||
操作压力/MPa | 0.101 | ||||
气相密度/kg·m-3 | 1.30×10-3 | ||||
气相黏度/mPa·s | 17.9×10-3 | ||||
液体密度/kg·m-3 | 998 | ||||
液相黏度/mPa·s | 2.98 | ||||
表面张力系数/N·m-1 | 7.2×10-2 | ||||
重力加速度/m·s-2 | 9.81 |
水(液相)流量 /m3·h-1 | 空气(气相)流量 /m3·h-1 | 进出口压降/Pa | 相对误差 /% | |
---|---|---|---|---|
实验值[ | 模拟值 | |||
3.0 | 0.35 | 654 | 623 | 4.7 |
5.0 | 0.35 | 667 | 637 | 4.4 |
7.0 | 0.35 | 683 | 652 | 4.9 |
9.0 | 0.35 | 769 | 735 | 4.4 |
11.0 | 0.35 | 856 | 824 | 3.7 |
表2 冷模实验和模拟进出口压降对比
水(液相)流量 /m3·h-1 | 空气(气相)流量 /m3·h-1 | 进出口压降/Pa | 相对误差 /% | |
---|---|---|---|---|
实验值[ | 模拟值 | |||
3.0 | 0.35 | 654 | 623 | 4.7 |
5.0 | 0.35 | 667 | 637 | 4.4 |
7.0 | 0.35 | 683 | 652 | 4.9 |
9.0 | 0.35 | 769 | 735 | 4.4 |
11.0 | 0.35 | 856 | 824 | 3.7 |
参数 | 数值 |
---|---|
氢气(气相)流量/m3·h-1 | 41.5 |
LTCT(液相)流量/m3·h-1 | 2.90 |
入口温度/K | 503 |
操作压力/MPa | 14.0 |
气相密度/kg·m-3 | 6.29 |
气相黏度/mPa·s | 1.27×10-2 |
液体密度/kg·m-3 | 993 |
液相黏度/mPa·s | 62.7 |
表面张力系数/N·m-1 | 3.20×10-2 |
重力加速度/m·s-2 | 9.81 |
表3 LTCT氢气体系模拟设置参数表
参数 | 数值 |
---|---|
氢气(气相)流量/m3·h-1 | 41.5 |
LTCT(液相)流量/m3·h-1 | 2.90 |
入口温度/K | 503 |
操作压力/MPa | 14.0 |
气相密度/kg·m-3 | 6.29 |
气相黏度/mPa·s | 1.27×10-2 |
液体密度/kg·m-3 | 993 |
液相黏度/mPa·s | 62.7 |
表面张力系数/N·m-1 | 3.20×10-2 |
重力加速度/m·s-2 | 9.81 |
1 | 姚春雷, 全辉, 张忠清. 中、低温煤焦油加氢生产清洁燃料油技术[J]. 化工进展, 2013, 32(3): 501-507. |
YAO Chunlei, QUAN Hui, ZHANG Zhongqing. Hydrogenation of medium and low temperature coal tars for production of clean fuel oil[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 501-507. | |
2 | YUAN Yang, LI Dong, ZHANG Linna, et al. Development, status, and prospects of coal tar hydrogenation technology[J]. Energy Technology, 2016, 4(11): 1338-1348. |
3 | XUE Fengfeng, LI Dong, GUO Yuting, et al. Technical progress and the prospect of low-rank coal pyrolysis in China[J]. Energy Technology, 2017, 5(11): 1897-1907. |
4 | LI Dong, CUI Wengang, ZHANG Xiangping, et al. Production of clean fuels by catalytic hydrotreating a low temperature coal tar distillate in a pilot-scale reactor[J]. Energy & Fuels, 2017, 31(10): 11495-11508. |
5 | XU Jian, YANG Yong, LI Yongwang. Recent development in converting coal to clean fuels in China[J]. Fuel, 2015, 152: 122-130. |
6 | YU Hang, LI Shuyuan, JIN Guangzhou. Catalytic hydrotreating of the diesel distillate from Fushun shale oil for the production of clean fuel[J]. Energy & Fuels, 2010, 24(8): 4419-4424. |
7 | CUI Wengang, LI Wenhong, GAO Rong, et al. Hydroprocessing of low-temperature coal tar for the production of clean fuel over fluorinated NiW/Al2O3–SiO2 catalyst[J]. Energy & Fuels, 2017, 31(4): 3768-3783. |
8 | DU Chongpeng, LI Dong, SHI Chao, et al. Study on the association driving force of low temperature coal tar asphaltenes[J]. Journal of Molecular Structure, 2022, 1254: 132361. |
9 | ZHU Yonghong, DU Chongpeng, ZHENG Huaan, et al. Molecular representation of coal-derived asphaltene based on high resolution mass spectrometry[J]. Arabian Journal of Chemistry, 2022, 15(1): 103531. |
10 | ZHU Yonghong, TIAN Feng, LIU Yaqing, et al. Comparison of the composition and structure for coal-derived and petroleum heavy subfraction by an improved separation method[J]. Fuel, 2021, 292: 120362. |
11 | BHASKAR M, VALAVARASU G, SAIRAM B, et al. Three-phase reactor model to simulate the performance of pilot-plant and industrial trickle-bed reactors sustaining hydrotreating reactions[J]. Industrial & Engineering Chemistry Research, 2004, 43(21): 6654-6669. |
12 | VAN HASSELT B W, LEBENS P J M, CALIS H P A, et al. A numerical comparison of alternative three-phase reactors with a conventional trickle-bed reactor. The advantages of countercurrent flow for hydrodesulfurization[J]. Chemical Engineering Science, 1999, 54(21): 4791-4799. |
13 | ANCHEYTA J, SPEIGHT J G. Hydroprocessing of heavy oils and residua[J]. Journal of the Energy Institute, 2007,3: 184-184. |
14 | ALVAREZ Anton, ANCHEYTA Jorge, MUÑOZ José A D. Comparison of quench systems in commercial fixed-bed hydroprocessing reactors[J]. Energy & Fuels, 2007, 21(2): 1133-1144. |
15 | JAIN Ekta, Madhusudan SAU, BUWA Vivek V. Eulerian simulations of liquid distribution generated by chimney and bubble cap distributors[J]. Chemical Engineering Journal, 2021, 421: 127799. |
16 | ALVAREZ Anton, ANCHEYTA Jorge. Effect of liquid quenching on hydroprocessing of heavy crude oils in a fixed-bed reactor system[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1228-1236. |
17 | ALVAREZ Anton, Sergio RAMÍREZ, ANCHEYTA Jorge, et al. Key role of reactor internals in hydroprocessing of oil fractions[J]. Energy & Fuels, 2007, 21(3): 1731-1740. |
18 | MAITI R N, NIGAM K D P. Gas-liquid distributors for trickle-bed reactors: A review[J]. Industrial & Engineering Chemistry Research, 2007, 46(19): 6164-6182. |
19 | LLAMAS Juan-David, LESAGE François, WILD Gabriel. Influence of gas flow rate on liquid distribution in trickle-beds using perforated plates as liquid distributors[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 7-11. |
20 | TSOCHATZIDIS N A, KARABELAS A J, GIAKOUMAKIS D, et al. An investigation of liquid maldistribution in trickle beds[J]. Chemical Engineering Science, 2002, 57(17): 3543-3555. |
21 | DU Wei, ZHANG Jianzhou, LU Panpan, et al. Advanced understanding of local wetting behaviour in gas-liquid-solid packed beds using CFD with a volume of fluid (VOF) method[J]. Chemical Engineering Science, 2017, 170: 378-392. |
22 | SEDERMAN A J, GLADDEN L F. Magnetic resonance imaging as a quantitative probe of gas–liquid distribution and wetting efficiency in trickle-bed reactors[J]. Chemical Engineering Science, 2001, 56(8): 2615-2628. |
23 | Frédéric BAZER-BACHI, HAROUN Yacine, AUGIER Frédéric, et al. Experimental evaluation of distributor technologies for trickle-bed reactors[J]. Industrial & Engineering Chemistry Research, 2013, 52(32): 11189-11197. |
24 | RAMAJO Damian Enrique, MARQUEZ DAMIAN Santiago, Marcela RAVICULÉ, et al. Flow study and wetting efficiency of a perforated-plate tray distributor in a trickle bed reactor[J]. International Journal of Chemical Reactor Engineering, 2010, 8(1): 47-54. |
25 | MARCANDELLI C, LAMINE A S, BERNARD J R, et al. Liquid distribution in trickle-bed reactor[J]. Oil & Gas Science and Technology, 2000, 55(4): 407-415. |
26 | BAZMI M, HASHEMABADI S H, BAYAT M. CFD simulation and experimental study of liquid flow mal-distribution through the randomly trickle bed reactors[J]. International Communications in Heat and Mass Transfer, 2012, 39(5): 736-743. |
27 | LOPES Rodrigo J G, QUINTA-FERREIRA Rosa M. CFD modelling of multiphase flow distribution in trickle beds[J]. Chemical Engineering Journal, 2009, 147(2/3): 342-355. |
28 | HARTER Isabelle, BOYER Christophe, RAYNAL Ludovic, et al. Flow distribution studies applied to deep hydro-desulfurization[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5262-5267. |
29 | MARTÍNEZ M, PALLARES J, LÓPEZ J, et al. Numerical simulation of the liquid distribution in a trickle-bed reactor[J]. Chemical Engineering Science, 2012, 76: 49-57. |
30 | HEGGEMANN M, HIRSCHBERG S, SPIEGEL L, et al. CFD simulation and experimental validation of fluid flow in liquid distributors[J]. Chemical Engineering Research and Design, 2007, 85(1): 59-64. |
31 | SHENASTAGHI Fatemeh Keshavarz, ROSHDI Sepideh, KASIRI Norollah, et al. CFD simulation and experimental validation of bubble cap tray hydrodynamics[J]. Separation and Purification Technology, 2018, 192: 110-122. |
32 | 李立毅. 固定床气液分配器的性能建模与优化[D]. 太原: 太原理工大学, 2021. |
LI Liyi. Performance modeling and optimization of fixed-bed gas-liquid distributor[D]. Taiyuan: Taiyuan University of Technology, 2021. | |
33 | 莫晗旸, 雍玉梅, 张广积, 等. 文丘里卷吸型气液分配器液体分配性能的结构参数研究[J]. 化工学报, 2021, 72(12): 6241-6253. |
MO Hanyang, YONG Yumei, ZHANG Guangji, et al. Study on the effects of structural parameters of bubble-cap distributor with Venturi downcomer on the liquid distribution performance[J]. CIESC Journal, 2021, 72(12): 6241-6253. | |
34 | 侯亚飞, 李伟, 柳士开, 等. 加氢反应器气液分配器数值模拟与结构优化[J]. 石油炼制与化工, 2018, 49(5): 97-102. |
HOU Yafei, LI Wei, LIU Shikai, et al. Numerical simulation and structure optimization of distributor in hydrogenation reactor[J]. Petroleum Processing and Petrochemicals, 2018, 49(5): 97-102. | |
35 | 常天文, 杨景轩, 郝晓刚, 等. 气液分配器碎流板结构优化与数值模拟[J]. 天然气化工(C1化学与化工), 2021, 46(2): 93-97, 108. |
CHANG Tianwen, YANG Jingxuan, HAO Xiaogang, et al. Structural optimization and numerical simulation of stream breaker structure of gas-liquid distributor[J]. Natural Gas Chemical Industry, 2021, 46(2): 93-97, 108. | |
36 | DU Wei, LIU Wenming, XU Jian, et al. A novel modification of vapour-lift liquid distributor[J]. The Canadian Journal of Chemical Engineering, 2014, 92(1): 109-115. |
37 | KLENOV O P, NOSKOV A S. Influence of input conditions on the flow distribution in trickle bed reactors[J]. Chemical Engineering Journal, 2020, 382: 122806. |
[1] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[2] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[3] | 张瑞杰, 刘志林, 王俊文, 张玮, 韩德求, 李婷, 邹雄. 水冷式复叠制冷系统的在线动态模拟与优化[J]. 化工进展, 2023, 42(S1): 124-132. |
[4] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[5] | 孙继鹏, 韩靖, 唐杨超, 闫汉博, 张杰瑶, 肖苹, 吴峰. 硫黄湿法成型过程数值模拟与操作参数优化[J]. 化工进展, 2023, 42(S1): 189-196. |
[6] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[7] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[8] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[9] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[10] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[11] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[12] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[13] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[14] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
[15] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 561
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 215
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |