1 |
姚春雷, 全辉, 张忠清. 中、低温煤焦油加氢生产清洁燃料油技术[J]. 化工进展, 2013, 32(3): 501-507.
|
|
YAO Chunlei, QUAN Hui, ZHANG Zhongqing. Hydrogenation of medium and low temperature coal tars for production of clean fuel oil[J]. Chemical Industry and Engineering Progress, 2013, 32(3): 501-507.
|
2 |
YUAN Yang, LI Dong, ZHANG Linna, et al. Development, status, and prospects of coal tar hydrogenation technology[J]. Energy Technology, 2016, 4(11): 1338-1348.
|
3 |
XUE Fengfeng, LI Dong, GUO Yuting, et al. Technical progress and the prospect of low-rank coal pyrolysis in China[J]. Energy Technology, 2017, 5(11): 1897-1907.
|
4 |
LI Dong, CUI Wengang, ZHANG Xiangping, et al. Production of clean fuels by catalytic hydrotreating a low temperature coal tar distillate in a pilot-scale reactor[J]. Energy & Fuels, 2017, 31(10): 11495-11508.
|
5 |
XU Jian, YANG Yong, LI Yongwang. Recent development in converting coal to clean fuels in China[J]. Fuel, 2015, 152: 122-130.
|
6 |
YU Hang, LI Shuyuan, JIN Guangzhou. Catalytic hydrotreating of the diesel distillate from Fushun shale oil for the production of clean fuel[J]. Energy & Fuels, 2010, 24(8): 4419-4424.
|
7 |
CUI Wengang, LI Wenhong, GAO Rong, et al. Hydroprocessing of low-temperature coal tar for the production of clean fuel over fluorinated NiW/Al2O3–SiO2 catalyst[J]. Energy & Fuels, 2017, 31(4): 3768-3783.
|
8 |
DU Chongpeng, LI Dong, SHI Chao, et al. Study on the association driving force of low temperature coal tar asphaltenes[J]. Journal of Molecular Structure, 2022, 1254: 132361.
|
9 |
ZHU Yonghong, DU Chongpeng, ZHENG Huaan, et al. Molecular representation of coal-derived asphaltene based on high resolution mass spectrometry[J]. Arabian Journal of Chemistry, 2022, 15(1): 103531.
|
10 |
ZHU Yonghong, TIAN Feng, LIU Yaqing, et al. Comparison of the composition and structure for coal-derived and petroleum heavy subfraction by an improved separation method[J]. Fuel, 2021, 292: 120362.
|
11 |
BHASKAR M, VALAVARASU G, SAIRAM B, et al. Three-phase reactor model to simulate the performance of pilot-plant and industrial trickle-bed reactors sustaining hydrotreating reactions[J]. Industrial & Engineering Chemistry Research, 2004, 43(21): 6654-6669.
|
12 |
VAN HASSELT B W, LEBENS P J M, CALIS H P A, et al. A numerical comparison of alternative three-phase reactors with a conventional trickle-bed reactor. The advantages of countercurrent flow for hydrodesulfurization[J]. Chemical Engineering Science, 1999, 54(21): 4791-4799.
|
13 |
ANCHEYTA J, SPEIGHT J G. Hydroprocessing of heavy oils and residua[J]. Journal of the Energy Institute, 2007,3: 184-184.
|
14 |
ALVAREZ Anton, ANCHEYTA Jorge, MUÑOZ José A D. Comparison of quench systems in commercial fixed-bed hydroprocessing reactors[J]. Energy & Fuels, 2007, 21(2): 1133-1144.
|
15 |
JAIN Ekta, Madhusudan SAU, BUWA Vivek V. Eulerian simulations of liquid distribution generated by chimney and bubble cap distributors[J]. Chemical Engineering Journal, 2021, 421: 127799.
|
16 |
ALVAREZ Anton, ANCHEYTA Jorge. Effect of liquid quenching on hydroprocessing of heavy crude oils in a fixed-bed reactor system[J]. Industrial & Engineering Chemistry Research, 2009, 48(3): 1228-1236.
|
17 |
ALVAREZ Anton, Sergio RAMÍREZ, ANCHEYTA Jorge, et al. Key role of reactor internals in hydroprocessing of oil fractions[J]. Energy & Fuels, 2007, 21(3): 1731-1740.
|
18 |
MAITI R N, NIGAM K D P. Gas-liquid distributors for trickle-bed reactors: A review[J]. Industrial & Engineering Chemistry Research, 2007, 46(19): 6164-6182.
|
19 |
LLAMAS Juan-David, LESAGE François, WILD Gabriel. Influence of gas flow rate on liquid distribution in trickle-beds using perforated plates as liquid distributors[J]. Industrial & Engineering Chemistry Research, 2009, 48(1): 7-11.
|
20 |
TSOCHATZIDIS N A, KARABELAS A J, GIAKOUMAKIS D, et al. An investigation of liquid maldistribution in trickle beds[J]. Chemical Engineering Science, 2002, 57(17): 3543-3555.
|
21 |
DU Wei, ZHANG Jianzhou, LU Panpan, et al. Advanced understanding of local wetting behaviour in gas-liquid-solid packed beds using CFD with a volume of fluid (VOF) method[J]. Chemical Engineering Science, 2017, 170: 378-392.
|
22 |
SEDERMAN A J, GLADDEN L F. Magnetic resonance imaging as a quantitative probe of gas–liquid distribution and wetting efficiency in trickle-bed reactors[J]. Chemical Engineering Science, 2001, 56(8): 2615-2628.
|
23 |
Frédéric BAZER-BACHI, HAROUN Yacine, AUGIER Frédéric, et al. Experimental evaluation of distributor technologies for trickle-bed reactors[J]. Industrial & Engineering Chemistry Research, 2013, 52(32): 11189-11197.
|
24 |
RAMAJO Damian Enrique, MARQUEZ DAMIAN Santiago, Marcela RAVICULÉ, et al. Flow study and wetting efficiency of a perforated-plate tray distributor in a trickle bed reactor[J]. International Journal of Chemical Reactor Engineering, 2010, 8(1): 47-54.
|
25 |
MARCANDELLI C, LAMINE A S, BERNARD J R, et al. Liquid distribution in trickle-bed reactor[J]. Oil & Gas Science and Technology, 2000, 55(4): 407-415.
|
26 |
BAZMI M, HASHEMABADI S H, BAYAT M. CFD simulation and experimental study of liquid flow mal-distribution through the randomly trickle bed reactors[J]. International Communications in Heat and Mass Transfer, 2012, 39(5): 736-743.
|
27 |
LOPES Rodrigo J G, QUINTA-FERREIRA Rosa M. CFD modelling of multiphase flow distribution in trickle beds[J]. Chemical Engineering Journal, 2009, 147(2/3): 342-355.
|
28 |
HARTER Isabelle, BOYER Christophe, RAYNAL Ludovic, et al. Flow distribution studies applied to deep hydro-desulfurization[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5262-5267.
|
29 |
MARTÍNEZ M, PALLARES J, LÓPEZ J, et al. Numerical simulation of the liquid distribution in a trickle-bed reactor[J]. Chemical Engineering Science, 2012, 76: 49-57.
|
30 |
HEGGEMANN M, HIRSCHBERG S, SPIEGEL L, et al. CFD simulation and experimental validation of fluid flow in liquid distributors[J]. Chemical Engineering Research and Design, 2007, 85(1): 59-64.
|
31 |
SHENASTAGHI Fatemeh Keshavarz, ROSHDI Sepideh, KASIRI Norollah, et al. CFD simulation and experimental validation of bubble cap tray hydrodynamics[J]. Separation and Purification Technology, 2018, 192: 110-122.
|
32 |
李立毅. 固定床气液分配器的性能建模与优化[D]. 太原: 太原理工大学, 2021.
|
|
LI Liyi. Performance modeling and optimization of fixed-bed gas-liquid distributor[D]. Taiyuan: Taiyuan University of Technology, 2021.
|
33 |
莫晗旸, 雍玉梅, 张广积, 等. 文丘里卷吸型气液分配器液体分配性能的结构参数研究[J]. 化工学报, 2021, 72(12): 6241-6253.
|
|
MO Hanyang, YONG Yumei, ZHANG Guangji, et al. Study on the effects of structural parameters of bubble-cap distributor with Venturi downcomer on the liquid distribution performance[J]. CIESC Journal, 2021, 72(12): 6241-6253.
|
34 |
侯亚飞, 李伟, 柳士开, 等. 加氢反应器气液分配器数值模拟与结构优化[J]. 石油炼制与化工, 2018, 49(5): 97-102.
|
|
HOU Yafei, LI Wei, LIU Shikai, et al. Numerical simulation and structure optimization of distributor in hydrogenation reactor[J]. Petroleum Processing and Petrochemicals, 2018, 49(5): 97-102.
|
35 |
常天文, 杨景轩, 郝晓刚, 等. 气液分配器碎流板结构优化与数值模拟[J]. 天然气化工(C1化学与化工), 2021, 46(2): 93-97, 108.
|
|
CHANG Tianwen, YANG Jingxuan, HAO Xiaogang, et al. Structural optimization and numerical simulation of stream breaker structure of gas-liquid distributor[J]. Natural Gas Chemical Industry, 2021, 46(2): 93-97, 108.
|
36 |
DU Wei, LIU Wenming, XU Jian, et al. A novel modification of vapour-lift liquid distributor[J]. The Canadian Journal of Chemical Engineering, 2014, 92(1): 109-115.
|
37 |
KLENOV O P, NOSKOV A S. Influence of input conditions on the flow distribution in trickle bed reactors[J]. Chemical Engineering Journal, 2020, 382: 122806.
|