化工进展 ›› 2023, Vol. 42 ›› Issue (6): 2963-2974.DOI: 10.16085/j.issn.1000-6613.2022-1524
收稿日期:
2022-08-17
修回日期:
2022-11-27
出版日期:
2023-06-25
发布日期:
2023-06-29
通讯作者:
殷成阳
作者简介:
殷成阳(1981—),男,博士,副教授,硕士生导师,研究方向为环境催化。E-mail:ycy2006cc@126.com。
基金资助:
YIN Chengyang(), HOU Ming, YANG Shuang, MAO Di, LIU Junyan
Received:
2022-08-17
Revised:
2022-11-27
Online:
2023-06-25
Published:
2023-06-29
Contact:
YIN Chengyang
摘要:
氨选择性催化还原技术(NH3-SCR)是消除氮氧化物最有效的技术之一,高效稳定的催化剂是NH3-SCR技术的核心。其中Cu基分子筛催化剂特别是Cu-SSZ-13分子筛催化剂受到了广泛的关注与研究,但仍存在着高温活性不好、氮气选择性不够理想和抗硫性能不足等问题。为了进一步提高Cu-SSZ-13分子筛催化剂的脱硝性能,可采用添加过渡金属的方法来改性Cu-SSZ-13分子筛催化剂。本文对过渡金属改性的Cu-SSZ-13分子筛催化剂的研究进展进行了系统的梳理,重点对Fe改性Cu-SSZ-13分子筛催化剂的几种制备方法进行了归纳,分别对离子交换法、浸渍法和一步水热合成法进行了介绍,对几种常见的不同过渡金属(Fe、Mn、Nb、Co、Ni、Ti、Zn)改性的Cu-SSZ-13分子筛催化剂脱硝性能的差别和原因进行了分析和讨论。最后对过渡金属改性的Cu-SSZ-13分子筛脱硝催化剂的研究重点和发展前景进行了展望,指出过渡金属在Cu-SSZ-13分子筛中的具体存在形式、落位情况、协同作用机制等方面的研究有待进一步深入开展。
中图分类号:
殷成阳, 侯铭, 杨爽, 毛迪, 刘俊言. 过渡金属改性Cu-SSZ-13分子筛脱硝催化剂研究进展[J]. 化工进展, 2023, 42(6): 2963-2974.
YIN Chengyang, HOU Ming, YANG Shuang, MAO Di, LIU Junyan. Research progress in transition metals modified Cu-SSZ-13 zeolite denitration catalysts[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 2963-2974.
催化剂名称 | 制备方法 | 优点 | 缺点 | 铁含量 | 活性窗口/℃ | 抗性 | NO x 转化率/% | 文献 |
---|---|---|---|---|---|---|---|---|
Cu,Fe/SSZ-13 | 离子 交换法 | 很好地将Fe物种引入催化剂体系 | 存在固液分离及洗涤等烦琐步骤 | 0.51%(质量分数) | 225~625 | — | >90 | [ |
CuFe-SSZ-13 | 0.357% | 150~650 | — | >98 | [ | |||
Fe1.32/Cu-SSZ-13 | Fe/Cu为1.32 | 175~550 | — | >85 | [ | |||
Ce0.017-Fe0.017/Cu-SSZ-13 | 0.017mol/L Fe3+ | 200~500 | 抗水硫 | >98 | [ | |||
Fe/Cu-SSZ-13(IE) | 5.5% | 175~500 | — | >90 | [ | |||
Fe-Cu-SSZ-13 | 0.089% | 225~625 | 抗水 | >90 | [ | |||
Fe/Cu-SSZ-13 | 浸渍法 | 不需要洗涤,用水量最少 | 引入的Fe物种的落位和分散难控制 | 1% | 250~500 | 抗硫 | >90 | [ |
Fe-Cu/SSZ-13-N-1% | 1.0% | 160~530 | 抗水 | >90 | [ | |||
Fe0.63/Cu1.50-SSZ-13 | 一步法 | 制备过程相对简单 | 引入的Cu、Fe比例难于控制 | 0.63% | 160~580 | 抗硫 | >90 | [ |
Fe0.5Cu4.8-SSZ-13 | 0.5% | 200~550 | 抗水硫 | >90 | [ | |||
FeCu-SSZ-13 | Fe/Cu为0.2 | 200~600 | — | >90 | [ |
表1 Fe改性Cu-SSZ-13分子筛催化剂
催化剂名称 | 制备方法 | 优点 | 缺点 | 铁含量 | 活性窗口/℃ | 抗性 | NO x 转化率/% | 文献 |
---|---|---|---|---|---|---|---|---|
Cu,Fe/SSZ-13 | 离子 交换法 | 很好地将Fe物种引入催化剂体系 | 存在固液分离及洗涤等烦琐步骤 | 0.51%(质量分数) | 225~625 | — | >90 | [ |
CuFe-SSZ-13 | 0.357% | 150~650 | — | >98 | [ | |||
Fe1.32/Cu-SSZ-13 | Fe/Cu为1.32 | 175~550 | — | >85 | [ | |||
Ce0.017-Fe0.017/Cu-SSZ-13 | 0.017mol/L Fe3+ | 200~500 | 抗水硫 | >98 | [ | |||
Fe/Cu-SSZ-13(IE) | 5.5% | 175~500 | — | >90 | [ | |||
Fe-Cu-SSZ-13 | 0.089% | 225~625 | 抗水 | >90 | [ | |||
Fe/Cu-SSZ-13 | 浸渍法 | 不需要洗涤,用水量最少 | 引入的Fe物种的落位和分散难控制 | 1% | 250~500 | 抗硫 | >90 | [ |
Fe-Cu/SSZ-13-N-1% | 1.0% | 160~530 | 抗水 | >90 | [ | |||
Fe0.63/Cu1.50-SSZ-13 | 一步法 | 制备过程相对简单 | 引入的Cu、Fe比例难于控制 | 0.63% | 160~580 | 抗硫 | >90 | [ |
Fe0.5Cu4.8-SSZ-13 | 0.5% | 200~550 | 抗水硫 | >90 | [ | |||
FeCu-SSZ-13 | Fe/Cu为0.2 | 200~600 | — | >90 | [ |
不同过渡金属改性 | 过渡金属改性的作用 | 优点 |
---|---|---|
Fe改性Cu-SSZ-13 | Fe物种与Cu物种具有协同作用,提高催化剂的氧化还原能力 | NH3-SCR反应的高温活性好,抗硫性能好 |
Mn改性Cu-SSZ-13 | 催化剂酸位点数量增加,Mn和Cu之间相互作用提高催化剂的氧化还原能力 | NH3-SCR反应的低温活性好 |
Nb改性Cu-SSZ-13 | Nb的引入增加了Cu活性物种数量,提高催化剂的氧化还原能力,增强催化剂酸位点 | 拓宽活性温度窗口范围 |
Co改性Cu-SSZ-13 | Co的引入起占位作用,诱导Cu离子位于具有更高低温活性的1Al位,还可阻止SSZ-13脱铝 | NH3-SCR反应的低温活性好,水热稳定性高 |
Ni改性Cu-SSZ-13 | Ni的引入可以抑制氧化铜形成 | 提高NH3-SCR反应的高温活性,进一步拓宽反应的活性温度窗口 |
Ti改性Cu-SSZ-13 | Ti的引入可以保护高温水热过程中分子筛的骨架结构 | 具有优异的水热稳定性 |
Zn改性Cu-SSZ-13 | Zn的引入有利于Cu物种更好的分散,起到稳定骨架的作用,防止Cu物种发生迁移 | 拓宽了NH3-SCR反应活性温度窗口,水热稳定性高 |
表2 不同过渡金属改性的作用和优点
不同过渡金属改性 | 过渡金属改性的作用 | 优点 |
---|---|---|
Fe改性Cu-SSZ-13 | Fe物种与Cu物种具有协同作用,提高催化剂的氧化还原能力 | NH3-SCR反应的高温活性好,抗硫性能好 |
Mn改性Cu-SSZ-13 | 催化剂酸位点数量增加,Mn和Cu之间相互作用提高催化剂的氧化还原能力 | NH3-SCR反应的低温活性好 |
Nb改性Cu-SSZ-13 | Nb的引入增加了Cu活性物种数量,提高催化剂的氧化还原能力,增强催化剂酸位点 | 拓宽活性温度窗口范围 |
Co改性Cu-SSZ-13 | Co的引入起占位作用,诱导Cu离子位于具有更高低温活性的1Al位,还可阻止SSZ-13脱铝 | NH3-SCR反应的低温活性好,水热稳定性高 |
Ni改性Cu-SSZ-13 | Ni的引入可以抑制氧化铜形成 | 提高NH3-SCR反应的高温活性,进一步拓宽反应的活性温度窗口 |
Ti改性Cu-SSZ-13 | Ti的引入可以保护高温水热过程中分子筛的骨架结构 | 具有优异的水热稳定性 |
Zn改性Cu-SSZ-13 | Zn的引入有利于Cu物种更好的分散,起到稳定骨架的作用,防止Cu物种发生迁移 | 拓宽了NH3-SCR反应活性温度窗口,水热稳定性高 |
1 | WANG Di, JANGJOU Yasser, LIU Yong, et al. A comparison of hydrothermal aging effects on NH3-SCR of NO over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Applied Catalysis B: Environmental, 2015, 165: 438-445. |
2 | 郑伟, 陈佳玲, 郭立, 等. 金属负载型分子筛催化剂在NH3-SCR反应中水热稳定性的研究进展[J]. 燃料化学学报, 2020, 48(10): 1193-1207. |
ZHENG Wei, CHEN Jialing, GUO Li, et al. Research progress of hydrothermal stability of metal-based zeolite catalysts in NH3-SCR reaction[J]. Journal of Fuel Chemistry and Technology, 2020, 48(10): 1193-1207. | |
3 | SHAN Yulong, DU Jinpeng, ZHANG Yan, et al. Selective catalytic reduction of NO x with NH3: Opportunities and challenges of Cu-based small-pore zeolites[J]. National Science Review, 2021, 8(10): nwab010. |
4 | CHEN Chuanmin, CAO Yue, LIU Songtao, et al. Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J]. Chinese Journal of Catalysis, 2018, 39(8): 1347-1365. |
5 | HAN Lupeng, CAI Sixiang, GAO Min, et al. Selective catalytic reduction of NO x with NH3 by using novel catalysts: State of the art and future prospects[J]. Chemical Reviews, 2019, 119(19): 10916-10976. |
6 | 王修文, 李露露, 孙敬方, 等. 我国氮氧化物排放控制及脱硝催化剂研究进展[J]. 工业催化, 2019, 27(2): 1-23. |
WANG Xiuwen, LI Lulu, SUN Jingfang, et al. Analysis of NO x emission and control in China and research progress in denitration catalysts[J]. Industrial Catalysis, 2019, 27(2): 1-23. | |
7 | JIANG Han, GUAN Bin, PENG Xuesong, et al. Influence of synthesis method on catalytic properties and hydrothermal stability of Cu/SSZ-13 for NH3-SCR reaction[J]. Chemical Engineering Journal, 2020, 379: 122358. |
8 | YONG Xin, ZHANG Cuijuan, WEI Miao, et al. Promotion of the performance of Cu-SSZ-13 for selective catalytic reduction of NO x by ammonia in the presence of SO2 during high temperature hydrothermal aging[J]. Journal of Catalysis, 2021, 394: 228-235. |
9 | GAO Feng, KWAK Jahun, SZANYI Janos, et al. Current understanding of Cu-exchanged chabazite molecular sieves for use as commercial diesel engine DeNO x catalysts[J]. Topics in Catalysis, 2013, 56(15): 1441-1459. |
10 | XIE Lijuan, LIU Fudong, REN Limin, et al. Excellent performance of one-pot synthesized Cu-SSZ-13 catalyst for the selective catalytic reduction of NO x with NH3 [J]. Environmental Science & Technology, 2014, 48(1): 566-572. |
11 | MOHAN S, DINESHA P, KUMAR S. NO x reduction behaviour in copper zeolite catalysts for ammonia SCR systems: a review[J]. Chemical Engineering Journal, 2020, 384: 123253. |
12 | GAO Feng, János SZANYI. On the hydrothermal stability of Cu/SSZ-13 SCR catalysts[J]. Applied Catalysis A: General, 2018, 560: 185-194. |
13 | FAN Chi, CHEN Zhen, PANG Lei, et al. The influence of Si/Al ratio on the catalytic property and hydrothermal stability of Cu-SSZ-13 catalysts for NH3-SCR[J]. Applied Catalysis A: General, 2018, 550: 256-265. |
14 | WANG A, WANG Y, WALTER E D, et al. NH3-SCR on Cu, Fe and Cu+Fe exchanged beta and SSZ-13 catalysts: Hydrothermal aging and propylene poisoning effects[J]. Catalysis Today, 2019, 320: 91-99. |
15 | DOAN Tuan, Phong DAM, NGUYEN Khang, et al. Copper-iron bimetal ion-exchanged SAPO-34 for NH3-SCR of NO x [J]. Catalysts, 2020, 10(3): 321. |
16 | YANG Xiaofan, WU Zili, Melanie MOSES-DEBUSK, et al. Heterometal incorporation in metal-exchanged zeolites enables low-temperature catalytic activity of NO x reduction[J]. The Journal of Physical Chemistry C, 2012, 116(44): 23322-23331. |
17 | ZHANG Ranran, LI Yonghong, ZHEN Tieli. Ammonia selective catalytic reduction of NO over Fe/Cu-SSZ-13[J]. RSC Advances, 2014, 4(94): 52130-52139. |
18 | LIU Xiaojiao, LI Yonghong, ZHANG Ranran. Ammonia selective catalytic reduction of NO over Ce-Fe/Cu-SSZ-13 catalysts[J]. RSC Advances, 2015, 5(104): 85453-85459. |
19 | 赵文雅, 李永红, 刘小娇, 等. Fe改性Cu-SSZ-13的方法对催化剂NH3-SCR脱硝性能的影响[J]. 化工进展, 2016, 35(12): 3898-3906. |
ZHAO Wenya, LI Yonghong, LIU Xiaojiao, et al. Effect of preparation methods on de-NO x performance of Fe/Cu-SSZ-13 catalyst for NH3-SCR[J]. Chemical Industry and Engineering Progress, 2016, 35(12): 3898-3906. | |
20 | ZHANG Tao, LI Jianmei, LIU Jian, et al. High activity and wide temperature window of Fe-Cu-SSZ-13 in the selective catalytic reduction of NO with ammonia[J]. AIChE Journal, 2015, 61(11): 3825-3837. |
21 | WANG Xiaoying, SUN Yimin, HAN Fengyun, et al. Effect of Fe addition on the structure and SCR reactivity of one-pot synthesized Cu-SSZ-13[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107888. |
22 | WANG Yijiao, XIE Lijuan, LIU Fudonget al. Effect of preparation methods on the performance of CuFe-SSZ-13 catalysts for selective catalytic reduction of NO x with NH3 [J]. Journal of Environmental Sciences, 2019, 81(7): 195-204. |
23 | WANG Yiyan, WAN Jie, CHEN Jiawei, et al. New insight into the doping effect of transition metals (Fe, Ti, Mn, and Ce) on the structure and catalytic performance of Cu-SSZ-13 zeolite catalysts for the NH3-SCR reaction[J]. Industrial & Engineering Chemistry Research, 2022, 61(41): 15066-15075. |
24 | YIN Chengyang, CHENG Peifu, LI Xiang, et al. Selective catalytic reduction of nitric oxide with ammonia over high-activity Fe/SSZ-13 and Fe/one-pot-synthesized Cu-SSZ-13 catalysts[J]. Catalysis Science & Technology, 2016, 6(20): 7561-7568. |
25 | 李淑珍, 赵小鸽, 张长明, 等. Fe改性原位Cu/SSZ-13催化剂柴油车尾气脱硝性能研究[J]. 环境科学学报, 2020, 40(1): 119-127. |
LI Shuzhen, ZHAO Xiaoge, ZHANG Changming, et al. Study on denitration performance from diesel vehicle exhaust gas over the Fe modified In-situ Cu/SSZ-13 catalyst[J]. Acta Scientiae Circumstantiae, 2020, 40(1):119-127. | |
26 | WAN Jie, CHEN Jiawei, ZHAO Ru, et al. One-pot synthesis of Fe/Cu-SSZ-13 catalyst and its highly efficient performance for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Journal of Environmental Sciences, 2021, 100: 306-316. |
27 | YUE Yuanyuan, LIU Ben, QIN Peng, et al. One-pot synthesis of FeCu-SSZ-13 zeolite with superior performance in selective catalytic reduction of NO by NH3 from natural aluminosilicates[J]. Chemical Engineering Journal, 2020, 398: 125515. |
28 | MING Yangfan, LI Gang. One-pot synthesis of FeCu-SSZ-13 using Cu-TEPA as the template by adding iron complexes[J]. Catalysis Science & Technology, 2021, 11(22): 7467-7474. |
29 | CHEN Mengyang, WEI Yingzhen, HAN Jinfeng, et al. Enhancing catalytic performance of Cu-SSZ-13 for the NH3-SCR reaction via in situ introduction of Fe3+ with diatomite[J]. Materials Chemistry Frontiers, 2021, 5(21): 7787-7795. |
30 | MESILOV Vitaly, XIAO Yang, DAHLIN Sandra, et al. First-principles calculations of condition-dependent Cu/Fe speciation in sulfur-poisoned Cu- and Fe-SSZ-13 catalysts[J]. The Journal of Physical Chemistry C, 2021, 125(8): 4632-4645. |
31 | LIU Qingling, FU Zhenchao, MA Lei, et al. MnO x -CeO2 supported on Cu-SSZ-13: a novel SCR catalyst in a wide temperature range[J]. Applied Catalysis A: General, 2017, 547: 146-154. |
32 | SONG Chaoming, ZHANG Lihong, LI Zhenguo, et al. Co-exchange of Mn: a simple method to improve both the hydrothermal stability and activity of Cu-SSZ-13 NH3-SCR catalysts[J]. Catalysts, 2019, 9(5): 455. |
33 | DU Jinpeng, WANG Jingyi, SHI Xiaoyan, et al. Promoting effect of Mn on in situ synthesized Cu-SSZ-13 for NH3-SCR[J]. Catalysts, 2020, 10(12): 1375. |
34 | WANG Zhiheng, XU Xi, ZHU Yvxiao, et al. One-pot synthesis of hierarchical MnCu-SSZ-13 catalyst with excellent NH3-SCR activity at low temperatures[J]. Microporous and Mesoporous Materials, 2022, 333: 111720. |
35 | WEI Yingzhen, CHEN Mengyang, REN Xiaoyu, et al. One-pot three-dimensional printing robust self-supporting MnO x /Cu-SSZ-13 zeolite monolithic catalysts for NH3-SCR[J]. CCS Chemistry, 2022, 4(5): 1708-1719. |
36 | ZHAO Huawang, LI Huisheng, LI Xianghui, et al. The promotion effect of Fe to Cu-SAPO-34 for selective catalytic reduction of NO x with NH3 [J]. Catalysis Today, 2017, 297: 84-91. |
37 | ZHANG Dong, YANG Ralph T. NH3-SCR of NO over one-pot Cu-SAPO-34 catalyst: performance enhancement by doping Fe and MnCe and insight into N2O formation[J]. Applied Catalysis A: General, 2017, 543: 247-256. |
38 | XIE Lijun, LIU Chang, DENG Yun, et al. Promotion effect of Fe species on SO2 resistance of Cu-SSZ-13 catalysts for NO x reduction by NH3 [J]. Industrial & Engineering Chemistry Research, 2022, 61(25): 8698-8707. |
39 | WU Ganxue, LIU Siyi, CHEN Zhiqiang, et al. Promotion effect of alkaline leaching on the catalytic performance over Cu/Fe-SSZ-13 catalyst for selective catalytic reduction of NO x with NH3 [J]. Journal of the Taiwan Institute of Chemical Engineers, 2022, 134: 104355. |
40 | KUMAR M S, ALPHIN M S. Influence of Fe-Cu-SSZ-13 and hybrid Fe-Cu-SSZ-13 zeolite catalyst in ammonia-selective catalytic reduction (NH3-SCR) of NO x [J]. Reaction Kinetics, Mechanisms and Catalysis, 2022, 135(5): 2551-2563. |
41 | ZHAO Shuang, HUANG Liming, JIANG Boqiong, et al. Stability of Cu-Mn bimetal catalysts based on different zeolites for NO x removal from diesel engine exhaust[J]. Chinese Journal of Catalysis, 2018, 39(4): 800-809. |
42 | ZHANG Minhua, CAO Haibo, CHEN Yifei, et al. Role of Mn: Promotion of fast-SCR for Cu-SAPO-34 in low-temperature selective catalytic reduction with ammonia[J]. Catalysis Surveys from Asia, 2019, 23(3): 245-255. |
43 | JIANG Boqiong, ZHAO Shuang, WANG Yaolin, et al. Plasma-enhanced low temperature NH3-SCR of NO x over a Cu-Mn/SAPO-34 catalyst under oxygen-rich conditions[J]. Applied Catalysis B: Environmental, 2021, 286: 119886. |
44 | ZHANG Shoute, PANG Lei, CHEN Zhen, et al. Cu/SSZ-13 and Cu/SAPO-34 catalysts for deNO x in diesel exhaust: Current status, challenges, and future perspectives[J]. Applied Catalysis A: General, 2020, 607: 117855. |
45 | GAO Feng. Fe-exchanged small-pore zeolites as ammonia selective catalytic reduction (NH3-SCR) catalysts[J]. Catalysts, 2020, 10(11): 1324. |
46 | WANG Xiaofeng, XU Yang, ZHAO Zhe, et al. Recent progress of metal-exchanged zeolites for selective catalytic reduction of NO x with NH3 in diesel exhaust[J]. Fuel, 2021, 305: 121482. |
47 | CHEN Jialing, HUANG Wei, BAO Sizhuoet al. A review on the characterization of metal active sites over Cu-based and Fe-based zeolites for NH3-SCR[J]. RSC Advances, 2022, 12(43): 27746-27765. |
48 | MAGDALENA Jabłonska. Recent progress in the selective catalytic reduction of NO x with NH3 on Cu-SAPO-34 catalysts[J]. Molecular Catalysis, 2022, 518: 112111. |
49 | LIU Jinzhou, TANG Xuejiao, XING Cheng, et al. Niobium modification for improving the high-temperature performance of Cu-SSZ-13 in selective catalytic reduction of NO by NH3 [J]. Journal of Solid State Chemistry, 2021, 296: 122028. |
50 | WANG Jingang, LIU Jinzhou, TANG Xuejiao, et al. The promotion effect of niobium on the low-temperature activity of Al-rich Cu-SSZ-13 for selective catalytic reduction of NO x with NH3 [J]. Chemical Engineering Journal, 2021, 418: 129433. |
51 | LEE H, SONG I, JEON S W, et al. Control of the Cu ion species in Cu-SSZ-13 via the introduction of Co2+ co-cations to improve the NH3-SCR activity[J]. Catalysis Science & Technology, 2021, 11(14): 4838-4848. |
52 | CHEN Mengyang, SUN Qiming, YANG Xiangguang, et al. A dual-template method for the synthesis of bimetallic CuNi/SSZ-13 zeolite catalysts for NH3-SCR reaction[J]. Inorganic Chemistry Communications, 2019, 105: 203-207. |
53 | WANG Linxia, CHEN Haijun, WANG Weichao. N-H bond activation in ammonia by TM-SSZ-13 (Fe, Co, Ni and Cu) zeolites: a first-principles calculation[J]. Physical Chemistry Chemical Physics, 2019, 21(3): 1506-1513. |
54 | 刘梦梦, 张国佩, 常丽萍, 等. 钛掺杂原位制备Cu-SSZ-13及其脱硝性能的研究[J]. 现代化工, 2019, 39(11): 89-94. |
LIU Mengmeng, ZHANG Guopei, CHANG Liping, et al. Study on denitrification performance of titanium doped Cu-SSZ-13 prepared by in-situ method[J]. Modern Chemical Industry, 2019, 39(11): 89-94. | |
55 | XU Ruinian, WANG Ziyang, LIU Ning, et al. Understanding Zn functions on hydrothermal stability in a one-pot-synthesized Cu&Zn-SSZ-13 catalyst for NH3 selective catalytic reduction[J]. ACS Catalysis, 2020, 10(11): 6197-6212. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[6] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[7] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[8] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[9] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[10] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[11] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[12] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[13] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[14] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[15] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |