化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2536-2545.DOI: 10.16085/j.issn.1000-6613.2022-1223
收稿日期:
2022-07-01
修回日期:
2022-08-31
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
张超
作者简介:
王雪(1998—),女,硕士研究生,研究方向为固废资源化。E-mail:xuewang_25@stu.pku.edu.cn。
基金资助:
WANG Xue(), XU Qiyong, ZHANG Chao()
Received:
2022-07-01
Revised:
2022-08-31
Online:
2023-05-10
Published:
2023-06-02
Contact:
ZHANG Chao
摘要:
通过水热炭化方法(HTC)制备纤维类生物质炭材料,是当前废弃生物质高值化处理的一种方式。生物质具有种类繁多、结构复杂的特点,在不同的水热条件下涉及水解、降解、聚合等复杂反应。制备的水热炭性质如形貌、孔结构、表面官能团分布等受原料物理化学结构和水热反应条件影响较大,而水热炭的性质直接影响水热炭的应用。木质素炭化需要较高的水热强度,生成的水热炭石墨化程度和稳定性更高,可应用于导电、耐高温材料等领域;纤维素、半纤维素相对于木质素炭化温度低,更易形成多孔结构,获得更高的比表面积。另外二者因富含羟基,制备的水热炭表面具有丰富的含氧官能团,有利于通过静电吸附、离子交换等过程实现污染物吸附,进一步应用于环境治理等领域。水热温度主要影响炭化程度和水热炭得率,而水热时间则对水热炭形貌具有更明显的作用。通过改性可以定向调控水热炭性能,扩大其应用领域范围。为明晰不同条件下水热炭的结构变化,本文综述了纤维类生物质的种类、原料组成及水热条件对水热炭结构的影响,深入分析了水热炭生成机理,探讨了生物炭改性方法,归纳了生物炭在不同领域的应用并展望了未来的发展方向和前景,为生物质基水热炭研究提供参考。
中图分类号:
王雪, 徐期勇, 张超. 木质纤维素类生物质水热炭化机理及水热炭应用进展[J]. 化工进展, 2023, 42(5): 2536-2545.
WANG Xue, XU Qiyong, ZHANG Chao. Hydrothermal carbonization of the lignocellulosic biomass and application of the hydro-char[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2536-2545.
类别 | 原料 | 纤维素质量分数/% | 半纤维素质量分数/% | 木质素质量分数/% | 应用 | 参考文献 |
---|---|---|---|---|---|---|
木材生物质 | 桉木 | 54 | 18 | 21 | CO2 捕集 | [ |
橡木 | 40.4 | 35.9 | 24 | 污水处理 | [ | |
松木 | 42~50 | 24~27 | 20 | 固体燃料 | [ | |
混合木屑 | 40~50 | 11~30 | 20~30 | 固体燃料 | [ | |
农林废弃物 | 黑麦秆 | 41.2 | 21.2 | 19 | 功能炭材料 | [ |
稻杆 | 29~35 | 23~26 | 17~19 | 功能炭材料 | [ | |
稻壳 | 28~36 | 12~30 | 15~20 | 固体燃料 | [ | |
燕麦壳 | 37 | 35 | 7 | 污水处理 | [ | |
玉米秸秆 | 33~42 | 32~36 | 6~16 | 污水处理 | [ | |
核桃壳 | 30 | 27 | 38 | 电极材料 | [ | |
毛竹 | 36 | 27 | 22 | 功能炭材料 | [ |
表1 不同生物质纤维原料组分及水热炭制备应用
类别 | 原料 | 纤维素质量分数/% | 半纤维素质量分数/% | 木质素质量分数/% | 应用 | 参考文献 |
---|---|---|---|---|---|---|
木材生物质 | 桉木 | 54 | 18 | 21 | CO2 捕集 | [ |
橡木 | 40.4 | 35.9 | 24 | 污水处理 | [ | |
松木 | 42~50 | 24~27 | 20 | 固体燃料 | [ | |
混合木屑 | 40~50 | 11~30 | 20~30 | 固体燃料 | [ | |
农林废弃物 | 黑麦秆 | 41.2 | 21.2 | 19 | 功能炭材料 | [ |
稻杆 | 29~35 | 23~26 | 17~19 | 功能炭材料 | [ | |
稻壳 | 28~36 | 12~30 | 15~20 | 固体燃料 | [ | |
燕麦壳 | 37 | 35 | 7 | 污水处理 | [ | |
玉米秸秆 | 33~42 | 32~36 | 6~16 | 污水处理 | [ | |
核桃壳 | 30 | 27 | 38 | 电极材料 | [ | |
毛竹 | 36 | 27 | 22 | 功能炭材料 | [ |
水热温度/℃ | 水热时间 | 原料 | 水热炭结构特性 | 参考文献 |
---|---|---|---|---|
160~220 | 24h | 纤维素 | 在较低的水热温度(160℃)下,纤维结构较为完整。当水热温度为220℃时,开始形成不均匀球形颗粒 | [ |
210~230 | 9h | 棕纤维素 | 棕纤维素水热炭结构复杂,其表面呈球形 | [ |
240 | 22h | 木质素 | 当水热温度达到240℃时,硫酸盐木质素的结构开始降解,生成的炭表面有较小的颗粒附着 | [ |
160~240 | 24h | 麦秆 | 当水热温度超过240℃时,纤维结构开始破坏,微球状水热炭开始生成。但部分生物质原始宏观结构仍然保留 | [ |
200~260 | 10min | 杉木 | 当水热温度高于240℃时,水热炭颜色发生了明显的变化。木质素结构几乎未被破坏 | [ |
200~260 | 6h | 玉米秸秆 | 随着水热温度的增加,水热炭脱羧反应更剧烈,表面的炭微球数量增加,形状更均一 | [ |
180~300 | 0~3h | 毛竹 | 当水热温度为180℃时,水热炭表面粗糙,纤维结构有降解倾向;当温度达到260℃时,颗粒状炭含量增加 | [ |
200 | 6~48h | 木片 | 水热6h后,在无定形炭表面有球形炭生成,但炭球尺寸分布不均匀,直径在1~5μm | [ |
240 | 30min~24h | 水葫芦 | 随着保温时间的延长,水热炭更趋向于生成微球状,当保温时间达到24h时,水热炭表面形貌呈现海绵状结构 | [ |
表2 水热温度和水热时间对水热炭结构的影响
水热温度/℃ | 水热时间 | 原料 | 水热炭结构特性 | 参考文献 |
---|---|---|---|---|
160~220 | 24h | 纤维素 | 在较低的水热温度(160℃)下,纤维结构较为完整。当水热温度为220℃时,开始形成不均匀球形颗粒 | [ |
210~230 | 9h | 棕纤维素 | 棕纤维素水热炭结构复杂,其表面呈球形 | [ |
240 | 22h | 木质素 | 当水热温度达到240℃时,硫酸盐木质素的结构开始降解,生成的炭表面有较小的颗粒附着 | [ |
160~240 | 24h | 麦秆 | 当水热温度超过240℃时,纤维结构开始破坏,微球状水热炭开始生成。但部分生物质原始宏观结构仍然保留 | [ |
200~260 | 10min | 杉木 | 当水热温度高于240℃时,水热炭颜色发生了明显的变化。木质素结构几乎未被破坏 | [ |
200~260 | 6h | 玉米秸秆 | 随着水热温度的增加,水热炭脱羧反应更剧烈,表面的炭微球数量增加,形状更均一 | [ |
180~300 | 0~3h | 毛竹 | 当水热温度为180℃时,水热炭表面粗糙,纤维结构有降解倾向;当温度达到260℃时,颗粒状炭含量增加 | [ |
200 | 6~48h | 木片 | 水热6h后,在无定形炭表面有球形炭生成,但炭球尺寸分布不均匀,直径在1~5μm | [ |
240 | 30min~24h | 水葫芦 | 随着保温时间的延长,水热炭更趋向于生成微球状,当保温时间达到24h时,水热炭表面形貌呈现海绵状结构 | [ |
改性方法 | 调控条件 | 实例 | 目的 | 参考文献 |
---|---|---|---|---|
化学试剂预处理 | 盐溶液浸渍 | 饱和KCl溶液浸渍 | 利用K+、Cl-等离子的刻蚀作用造孔,阻止碎片交联,形成骨架均一的片层结构 | [ |
水热添加剂 | 催化剂 | 硫酸 | 水热炭表面的微孔体积和比表面积均显著增加 | [ |
碳酸钾 | 微孔比表面积和表面含氧量增加 | |||
FeCl3盐溶液 | 铁在炭表面反应有助于形成炭颗粒,可作为吸附剂有效去除废水中的营养物质 | [ | ||
乳化剂 | 聚苯乙烯磺酸钠 | 制备尺寸小于100nm的炭微球 | [ | |
聚丙烯酸钠 | 提高水热炭的分散程度,形成均一稳定炭微球 | |||
水热后处理 | 活化剂活化 | KOH浸渍 | 制备的玉米秸秆炭材料吸附容量可达到30.15mg/g,可作为污水中重金属吸附剂 | [ |
热解活化 | 热解+KOH浸渍 | 低温水热条件下即可得到完整的微球状水热炭,其粒径分布在3~6μm | [ | |
蒸汽活化 | 蒸汽活化 磷酸浸渍 | 水热炭微孔结构、比表面积、吸附能力显著提升,可明显观察到微球状水热炭生成 | [ |
表3 水热炭常见改性方法
改性方法 | 调控条件 | 实例 | 目的 | 参考文献 |
---|---|---|---|---|
化学试剂预处理 | 盐溶液浸渍 | 饱和KCl溶液浸渍 | 利用K+、Cl-等离子的刻蚀作用造孔,阻止碎片交联,形成骨架均一的片层结构 | [ |
水热添加剂 | 催化剂 | 硫酸 | 水热炭表面的微孔体积和比表面积均显著增加 | [ |
碳酸钾 | 微孔比表面积和表面含氧量增加 | |||
FeCl3盐溶液 | 铁在炭表面反应有助于形成炭颗粒,可作为吸附剂有效去除废水中的营养物质 | [ | ||
乳化剂 | 聚苯乙烯磺酸钠 | 制备尺寸小于100nm的炭微球 | [ | |
聚丙烯酸钠 | 提高水热炭的分散程度,形成均一稳定炭微球 | |||
水热后处理 | 活化剂活化 | KOH浸渍 | 制备的玉米秸秆炭材料吸附容量可达到30.15mg/g,可作为污水中重金属吸附剂 | [ |
热解活化 | 热解+KOH浸渍 | 低温水热条件下即可得到完整的微球状水热炭,其粒径分布在3~6μm | [ | |
蒸汽活化 | 蒸汽活化 磷酸浸渍 | 水热炭微孔结构、比表面积、吸附能力显著提升,可明显观察到微球状水热炭生成 | [ |
1 | 鲍磊, 白永辉, 李凡. 生物质炭材料的制备及应用研究进展[J]. 化工新型材料, 2019, 47(7): 54-59. |
BAO Lei, BAI Yonghui, LI Fan. Research progress on preparation and application of biomass carbon material[J]. New Chemical Materials, 2019, 47(7): 54-59. | |
2 | WANG Yi, HU Yajie, HAO Xiang, et al. Hydrothermal synthesis and applications of advanced carbonaceous materials from biomass: A review[J]. Advanced Composites and Hybrid Materials, 2020, 3(3): 267-284. |
3 | 臧良震, 张彩虹. 中国林木生物质能源潜力测算及变化趋势[J]. 世界林业研究, 2019, 32(1): 75-79. |
ZANG Liangzhen, ZHANG Caihong. A study of the potential estimation and changing trends of woody biomass energy resources in China[J]. World Forestry Research, 2019, 32(1): 75-79. | |
4 | 董升飞, 黄星华, 杨晓奕. 纤维素类生物质水热法制备航油前驱物能耗分析[J]. 北京航空航天大学学报, 2022, 48:620-631. |
DONG Shengfei, HUANG Xinghua, YANG Xiaoyi. Energy consumption for production of jet fuel precursors from cellulosic biomass by hydrothermal method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48:620-631. | |
5 | 刑路阳, 白鑫刚, 武大鹏. 林业废弃物衍生炭材料在重金属吸附中的应用进展[J]. 造纸装备及材料, 2020, 49(3): 50. |
XING Luyang, BAI Xingang, WU Dapeng. Application progress of carbon materials derived from forestry waste in heavy metal adsorption [J]. Papermaking Equipment & Materials, 2020, 49(3): 50. | |
6 | 杜锐, 覃爱苗, 韦春, 等. 生物质炭材料的制备及电化学应用研究进展[J]. 材料导报, 2014, 28(5): 93-97. |
DU Rui, QIN Aimiao, WEI Chun, et al. Research progress of preparation of biomass carbon and its electrochemical application[J]. Materials Review, 2014, 28(5): 93-97. | |
7 | 李保强, 刘钧, 李瑞阳, 等. 生物质炭的制备及其在能源与环境领域中的应用[J]. 生物质化学工程, 2012, 46(1): 34-38. |
LI Baoqiang, LIU Jun, LI Ruiyang, et al. Biochars preparation and its applications in energy and environment field[J]. Biomass Chemical Engineering, 2012, 46(1): 34-38. | |
8 | 宋赛鹰. 生物基炭微球的水热法制备及其电化学性能研究[D]. 北京: 北京化工大学, 2019. |
SONG Saiying. Hydrothermal synthesis and electrochemical properties of bio-based carbon microspheres for lithium-ion batteries[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
9 | WANG Yiliang, ZHANG Mingchao, SHEN Xinyi, et al. Biomass-derived carbon materials: Controllable preparation and versatile applications[J]. Small, 2021, 17(40): e2008079. |
10 | BERGIUS F. Formation of anthracite[J]. Zeitschrift Fur Elektrochemie und Angewandte Physikalische Chemie, 1913, 19: 858-860. |
11 | 王超, 肖祥, 钟国彬, 等. 水热-炭化法制备菱角壳基硬炭及其储锂性能[J]. 储能科学与技术, 2020, 9(3): 818-825. |
WANG Chao, XIAO Xiang, ZHONG Guobin, et al. Water chestnut-based hard carbon prepared by hydrothermal-carbonization method as anode for lithium ion battery[J]. Energy Storage Science and Technology, 2020, 9(3): 818-825. | |
12 | WANG Tengfei, ZHAI Yunbo, ZHU Yun, et al. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties[J]. Renewable and Sustainable Energy Reviews, 2018, 90: 223-247. |
13 | SEVILLA M, MACIÁ-AGULLÓ J A, FUERTES A B. Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products[J]. Biomass and Bioenergy, 2011, 35(7): 3152-3159. |
14 | TAKAYA C A, FLETCHER L A, SINGH S, et al. Phosphate and ammonium sorption capacity of biochar and hydrochar from different wastes[J]. Chemosphere, 2016, 145: 518-527. |
15 | WILK Małgorzata, MAGDZIARZ Aneta, JAYARAMAN Kandasamy, et al. Hydrothermal carbonization characteristics of sewage sludge and lignocellulosic biomass. A comparative study[J]. Biomass and Bioenergy, 2019, 120: 166-175. |
16 | GUO Shuqing, DONG Xiangyuan, WU Tingting, et al. Influence of reaction conditions and feedstock on hydrochar properties[J]. Energy Conversion and Management, 2016, 123: 95-103. |
17 | FALCO Camillo, BACCILE N, TITIRICI M M. Morphological and structural differences between glucose, cellulose and lignocellulosic biomass derived hydrothermal carbons[J]. Green Chemistry, 2011, 13(11): 3273. |
18 | LIU Yuxue, YAO Shuai, WANG Yuying, et al. Bio- and hydrochars from rice straw and pig manure: Inter-comparison[J]. Bioresource Technology, 2017, 235: 332-337. |
19 | KALDERIS D, KOTTI M S, MÉNDEZ A, et al. Characterization of hydrochars produced by hydrothermal carbonization of rice husk[J]. Solid Earth, 2014, 5(1): 477-483. |
20 | AGHABABAEI A, AZARGOHAR R, DALAI A K, et al. Effective adsorption of carbamazepine from water by adsorbents developed from flax shives and oat hulls: Key factors and characterization[J]. Industrial Crops and Products, 2021, 170: 113721. |
21 | JIANG Huier, DENG Fang, LUO Yiping, et al. Hydrothermal carbonization of corn straw in biogas slurry[J]. Journal of Cleaner Production, 2022, 353: 131682. |
22 | FANG Tao, YU Xiaofei, ZHANG Xia, et al. A comparative investigation on lithium storage performance of carbon microsphere originated from agriculture bio-waste materials: Sunflower stalk and walnut shell[J]. Waste and Biomass Valorization, 2020, 11(12): 6981-6992. |
23 | 严伟. 毛竹水热功能炭材料的制备、 表征与性能研究[D]. 杭州: 浙江大学, 2018. |
YAN Wei. Preparation, characterization and properties of functional hydrochar materials derived from moso bamboo[D]. Hangzhou: Zhejiang University, 2018. | |
24 | KUMAR Sandeep, KOTHARI Urvi, KONG Lingzhao, et al. Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres[J]. Biomass and Bioenergy, 2011, 35(2): 956-968. |
25 | WANG Jianlong, WANG Shizong. Preparation, modification and environmental application of biochar: A review[J]. Journal of Cleaner Production, 2019, 227: 1002-1022. |
26 | ZHOU Nan, CHEN Honggang, XI Junting, et al. Biochars with excellent Pb(II) adsorption property produced from fresh and dehydrated banana peels via hydrothermal carbonization[J]. Bioresource Technology, 2017, 232: 204-210. |
27 | YANG Dapeng, LI Zibiao, LIU Minghuan, et al. Biomass-derived carbonaceous materials: Recent progress in synthetic approaches, advantages, and applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(5): 4564-4585. |
28 | 韦思业. 不同生物质原料和制备温度对生物炭物理化学特征的影响[D]. 广州: 中国科学院广州地球化学研究所,中国科学院大学, 2017. |
WEI Siye. Influence of biomass feedstocks and pyrolysis temperatures on physical and chemical properties of biochar[D]. Guangzhou: Guanzhou Institute of Geochemistry, Chinese Academy of Sciences, 2017. | |
29 | LIU Fangyan, GUO Minghui. Comparison of the characteristics of hydrothermal carbons derived from holocellulose and crude biomass[J]. Journal of Materials Science, 2015, 50(4): 1624-1631. |
30 | KANG Shimin, LI Xianglan, FAN Juan, et al. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, D-xylose, and wood meal[J]. Industrial & Engineering Chemistry Research, 2012, 51(26): 9023-9031. |
31 | LI Hui, WANG Siyuan, YUAN Xingzhong, et al. The effects of temperature and color value on hydrochars’ properties in hydrothermal carbonization[J]. Bioresource Technology, 2018, 249: 574-581. |
32 | 叶聪. 玉米秸秆水热炭制备及其与城市污泥混合燃烧特性研究[D]. 合肥: 合肥工业大学, 2020. |
YE Cong. Study on preparation of corn stalk hydrochar and its co-combustion characteristics with municipal sludge[D]. Hefei: Hefei University of Technology, 2020.. | |
33 | SIMSIR Hamza, ELTUGRAL Nurettin, KARAGOZ Selhan. Hydrothermal carbonization for the preparation of hydrochars from glucose, cellulose, chitin, chitosan and wood chips via low-temperature and their characterization[J]. Bioresource Technology, 2017, 246: 82-87. |
34 | GAO Ying, WANG Xianhua, WANG Jun, et al. Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth[J]. Energy, 2013, 58: 376-383. |
35 | 昝逸凡, 张彦飞, 赵新鹏, 等. 原生生物质水热炭化制备碳材料及其应用[J]. 辽宁石油化工大学学报, 2020, 40(4): 70-79. |
ZAN Yifan, ZHANG Yanfei, ZHAO Xinpeng, et al. Preparation and application of carbon materials from primary biomass by hydrothermal carbonization[J]. Journal of Liaoning Shihua University, 2020, 40(4): 70-79. | |
36 | BAG O, TEKIN K. Production and characterization of hydrothermal carbon from waste lignocellulosic biomass[J]. Journal of the Faculty of Engineering and Architecture of Gazi University, 2020, 35(2): 1063-1076. |
37 | SONG Mingxin, XIE Lijing, CHENG Jiayao, et al. Insights into the thermochemical evolution of maleic anhydride-initiated esterified starch to construct hard carbon microspheres for lithium-ion batteries[J]. Journal of Energy Chemistry, 2022, 66: 448-458. |
38 | WANG Tao, LIU Xiqing, MA Changchang, et al. A two step hydrothermal process to prepare carbon spheres from bamboo for construction of core-shell non-metallic photocatalysts[J]. New Journal of Chemistry, 2018, 42(8): 6515-6524. |
39 | PECCHI M, BARATIERI M, GOLDFARB J L, et al. Effect of solvent and feedstock selection on primary and secondary chars produced via hydrothermal carbonization of food wastes[J]. Bioresource Technology, 2022, 348: 126799. |
40 | NAKASON Kamonwat, PANYAPINYOPOL Bunyarit, KANOKKANTAPONG Vorapot, et al. Hydrothermal carbonization of unwanted biomass materials: Effect of process temperature and retention time on hydrochar and liquid fraction[J]. Journal of the Energy Institute, 2018, 91(5): 786-796. |
41 | 徐智, 郭朝晖, 韩自玉, 等. 芦竹水热炭的制备及重金属分离机制研究[J]. 环境工程, 2018, 36(8): 118-123. |
XU Zhi, GUO Zhaohui, HAN Ziyu, et al. Preparation of hydrothermal carbon and separation mechanism of heavy metals from giant reed[J]. Environmental Engineering, 2018, 36(8): 118-123. | |
42 | OVEREND R P, CHORNET E. Fractionation of lignocellulosics by steam-aqueous pretreatments[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1987, 321(1561): 523-536. |
43 | DÍAZ M J, CARA C, RUIZ E, et al. Hydrothermal pre-treatment of rapeseed straw[J]. Bioresource Technology, 2010, 101(7): 2428-2435. |
44 | CORREA C R, KRUSE A. Biobased functional carbon materials: Production, characterization, and applications—A review[J]. Materials, 2018, 11(9): E1568. |
45 | KAMBO H S, DUTTA A. Strength, storage, and combustion characteristics of densified lignocellulosic biomass produced via torrefaction and hydrothermal carbonization[J]. Applied Energy, 2014, 135: 182-191. |
46 | SEVILLA M, FUERTES A B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon, 2009, 47(9): 2281-2289. |
47 | SEEHRA M S, AKKINENI L P, YALAMANCHI M, et al. Structural characteristics of nanoparticles produced by hydrothermal pretreatment of cellulose and their applications for electrochemical hydrogen generation[J]. International Journal of Hydrogen Energy, 2012, 37(12): 9514-9523. |
48 | TOOR S S, ROSENDAHL L, RUDOLF A. Hydrothermal liquefaction of biomass: A review of subcritical water technologies[J]. Energy, 2011, 36(5): 2328-2342. |
49 | SASAKI Mitsuru, FANG Zhen, FUKUSHIMA Yoshiko, et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Industrial & Engineering Chemistry Research, 2000, 39(8): 2883-2890. |
50 | JIA Jiandong, WANG Ruikun, CHEN Hongwei, et al. Interaction mechanism between cellulose and hemicellulose during the hydrothermal carbonization of lignocellulosic biomass[J]. Energy Science & Engineering, 2022, 10(7): 2076-2087. |
51 | RYU J, SUH Y W, SUH D J, et al. Hydrothermal preparation of carbon microspheres from mono-saccharides and phenolic compounds[J]. Carbon, 2010, 48(7): 1990-1998. |
52 | ABDULLAH Rosnah, UEDA Kazuyoshi, SAKA Shiro. Hydrothermal decomposition of various crystalline celluloses as treated by semi-flow hot-compressed water[J]. Journal of Wood Science, 2014, 60(4): 278-286. |
53 | 李因亮. 改性木质素空心微球制备及成型机理初探[D]. 北京: 北京林业大学, 2017. |
LI Yinliang. Synthesis of modified lignin-based hollow microspheres and exploration of the forming mechanism[D]. Beijing: Beijing Forestry University, 2017. | |
54 | LIU Wujun, JIANG Hong, YU Hanqing. Thermochemical conversion of lignin to functional materials: A review and future directions[J]. Green Chemistry, 2015, 17(11): 4888-4907. |
55 | KRUSE Andrea, ZEVACO Thomas. Properties of hydrochar as function of feedstock, reaction conditions and post-treatment[J]. Energies, 2018, 11(3): 674. |
56 | MAO Haiyan, CHEN Xianwen, HUANG Runzhou, et al. Fast preparation of carbon spheres from enzymatic hydrolysis lignin: Effects of hydrothermal carbonization conditions[J]. Scientific Reports, 2018, 8: 9501. |
57 | DINJUS E, KRUSE A, TRÖGER N. Hydrothermal carbonization—1. Influence of lignin in lignocelluloses[J]. Chemical Engineering & Technology, 2011, 34(12): 2037-2043. |
58 | OUYANG Yi, SHI Huimin, FU Ruowen, et al. Highly monodisperse microporous polymeric and carbonaceous nanospheres with multifunctional properties[J]. Scientific Reports, 2013, 3: 1430. |
59 | SHAO Yi, XIA Qineng, DONG Lin, et al. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst [J]. Nature Communications, 2017, 8: 16104. |
60 | 徐远俊. 矿物对生物质炭化过程的影响研究[D]. 长春: 吉林大学, 2018. |
XU Yuanjun. Study on the influence of mineral on biomass in carbonization process[D]. Changchun: Jilin University, 2018. | |
61 | YU Junqin, XIA Weidong, AREEPRASERT Chinnathan, et al. Catalytic effects of inherent AAEM on char gasification: A mechanism study using in situ Raman[J]. Energy, 2022, 238: 122074. |
62 | 刘慧文. 水热炭化法制备生物质基活性炭及其CH4/N2吸附分离性能研究[D]. 太原: 太原理工大学, 2021. |
LIU Huiwen. Preparation of biomass based activated carbons by hydrothermal carbonization and its adsorption and separation performance of CH4/N2 [D]. Taiyuan: Taiyuan University of Technology, 2021. | |
63 | WANG Cunjing, WU Dapeng, WANG Hongju, et al. Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance[J]. Journal of Colloid and Interface Science, 2018, 523: 133-143. |
64 | LI Min, ZHANG Zhongsheng, LI Zhe, et al. Removal of nitrogen and phosphorus pollutants from water by FeCl3-impregnated biochar[J]. Ecological Engineering, 2020, 149: 105792. |
65 | 巩玉同. 生物质水热炭微球的可控合成表征及应用研究[D]. 杭州: 浙江大学, 2015. |
GONG Yutong. Synthsis, characterization and applications of carbon spheres based on hydrothermal carbonization process[D]. Hangzhou: Zhejiang University, 2015. | |
66 | KHUSHK S, ZHANG L, PIRZADA A M, et al. Cr( Ⅵ ) heavy metal adsorption from aqueous solution by KOH treated hydrochar derived from agricultural wastes[C]//5th International Conference on Energy, Environment and Sustainable Development (EESD-2018), AIP Conference Proceedings. Jamshoro, Pakistan. AIP Publishing, 2019: 02003. |
67 | WANG Yong, YANG Ru, LI Min, et al. Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications[J]. Industrial Crops and Products, 2015, 65: 216-226. |
68 | SONG Mingyuan, ZHOU Yuhao, REN Xue, et al. Biowaste-based porous carbon for supercapacitor: The influence of preparation processes on structure and performance[J]. Journal of Colloid and Interface Science, 2019, 535: 276-286. |
69 | 徐增华. 生物质水热炭基多孔炭的制备及其电化学性能研究[D]. 杭州: 浙江大学, 2021. |
XU Zenghua. Preparation and electrochemical performances of hydrochar-based porous carbons derived from biomass[D]. Hangzhou: Zhejiang University, 2021. | |
70 | 付依迪, 曾丹林, 王荣, 等. 氮掺杂碳微球的制备及应用研究进展[J]. 化工新型材料, 2022, 50(6): 1-6. |
FU Yidi, ZENG Danlin, WANG Rong, et al. Progress on preparation and application of N-doped carbon microsphere[J]. New Chemical Materials, 2022, 50(6): 1-6. | |
71 | KıZıLDUMAN B K, TURHAN Y, DOĞAN M. Mesoporous carbon spheres produced by hydrothermal carbonization from rice husk: Optimization, characterization and hydrogen storage[J]. Advanced Powder Technology, 2021, 32(11): 4222-4234. |
72 | TITIRICI M M, ANTONIETTI M, BACCILE N. Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses[J]. Green Chemistry, 2008, 10(11): 1204. |
73 | WANG Jingyu, CHEN Wenhao, YANG Dongjie, et al. Monodispersed lignin colloidal spheres with tailorable sizes for bio-photonic materials[J]. Small, 2022, 18(30): e2203561. |
[1] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[2] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
[3] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[4] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[5] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[6] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[7] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[8] | 吴锋振, 刘志炜, 谢文杰, 游雅婷, 赖柔琼, 陈燕丹, 林冠烽, 卢贝丽. 生物质基铁/氮共掺杂多孔炭的制备及其活化过一硫酸盐催化降解罗丹明B[J]. 化工进展, 2023, 42(6): 3292-3301. |
[9] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[10] | 李云闯, 谢方明, 席亚男, 万新月, 孙玉虎, 赵永峰, 李根, 刘宏海, 高雄厚, 刘洪涛. 高水热稳定性介孔分子筛的低成本合成研究进展[J]. 化工进展, 2023, 42(4): 1877-1884. |
[11] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[12] | 万茂华, 张小红, 安兴业, 龙垠荧, 刘利琴, 管敏, 程正柏, 曹海兵, 刘洪斌. MXene在生物质基储能纳米材料领域中的应用研究进展[J]. 化工进展, 2023, 42(4): 1944-1960. |
[13] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[14] | 邢献军, 罗甜, 卜玉蒸, 马培勇. H3PO4活化核桃壳制备活性炭及在Cr(Ⅵ)吸附中的应用[J]. 化工进展, 2023, 42(3): 1527-1539. |
[15] | 张晨光, 封硕, 邢玉烨, 沈伯雄, 苏立超. 柴油车用NH3-SCR铜基分子筛催化剂孤立态Cu2+研究进展[J]. 化工进展, 2023, 42(3): 1321-1331. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |