化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2272-2281.DOI: 10.16085/j.issn.1000-6613.2022-1268
袁守正1(), 陈啸1, 蒋鸣1, 余亚雄1, 周强1,2()
收稿日期:
2022-07-06
修回日期:
2022-08-19
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
周强
作者简介:
袁守正(1996—),男,博士研究生,研究方向为多相流反应工程。E-mail:434925754@qq.com。
基金资助:
YUAN Shouzheng1(), CHEN Xiao1, JIANG Ming1, YU Yaxiong1, ZHOU Qiang1,2()
Received:
2022-07-06
Revised:
2022-08-19
Online:
2023-05-10
Published:
2023-06-02
Contact:
ZHOU Qiang
摘要:
传统介尺度曳力模型的构建通常基于全周期域的细网格模拟数据集,未考虑壁面的影响,而真实流化床反应器系统中的壁面条件会影响壁面附近的非均匀结构,进而影响到壁面附近颗粒所受的曳力,因此研究壁面效应对介尺度曳力模型的影响很有必要。本文通过对拟二维全周期系统和不同床宽的周期下行床系统的介尺度曳力修正系数相对误差径向分布进行比较,探究了周期下行床中的介尺度曳力回归全周期系统曳力的现象,分析了曳力修正系数径向分布的影响因素。发现不同床宽下受壁面影响区域占整个床的比例改变较小,且曳力系数相对误差的值受该位置的固含率、固含率梯度、固相剪切率及粒化温度分布等因素影响,最后拟合了曳力系数相对误差关于径向位置的公式,并对过滤尺度对曳力系数相对误差的影响和一些变量关联曳力时是否已经隐性包含了壁面的影响进行了探讨。
中图分类号:
袁守正, 陈啸, 蒋鸣, 余亚雄, 周强. 气固下行床中壁面对介尺度曳力的影响规律[J]. 化工进展, 2023, 42(5): 2272-2281.
YUAN Shouzheng, CHEN Xiao, JIANG Ming, YU Yaxiong, ZHOU Qiang. The influence of the wall on the mesoscale drag force in a gas-solid downer[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2272-2281.
系统 | 算例名 | 计算域大小W×H | 颗粒数 |
---|---|---|---|
全周期系统 | case1 | 8cm×32cm | 2781434 |
周期下行床系统 | case2 | 2cm×8cm | 173842 |
case3 | 3cm×12cm | 391145 | |
case4 | 4cm×16cm | 695369 | |
case5 | 5cm×20cm | 1086513 |
表1 计算域尺寸及颗粒数
系统 | 算例名 | 计算域大小W×H | 颗粒数 |
---|---|---|---|
全周期系统 | case1 | 8cm×32cm | 2781434 |
周期下行床系统 | case2 | 2cm×8cm | 173842 |
case3 | 3cm×12cm | 391145 | |
case4 | 4cm×16cm | 695369 | |
case5 | 5cm×20cm | 1086513 |
模拟参数 | 数值 |
---|---|
颗粒粒径dp/μm | 75 |
颗粒密度ρs/kg·m-3 | 1500 |
气体密度ρg/kg·m-3 | 1.3 |
气体黏度μg/Pa·s | 1.8×10-5 |
网格尺寸Δ x ×Δ y ×Δ z / dp×dp×dp | 3×3×3 |
法向恢复系数en | 1 |
切向恢复系数et | 0 |
摩擦系数μ | 0 |
法向弹性系数kn/N·m-1 | 10 |
斯托克斯松弛时间 | 0.026 |
终端沉降速度 | 0.217 |
平均固体体积分数( | 0.05 |
曳力模型 | Wen & Yu[ |
表2 物性参数及数值设置
模拟参数 | 数值 |
---|---|
颗粒粒径dp/μm | 75 |
颗粒密度ρs/kg·m-3 | 1500 |
气体密度ρg/kg·m-3 | 1.3 |
气体黏度μg/Pa·s | 1.8×10-5 |
网格尺寸Δ x ×Δ y ×Δ z / dp×dp×dp | 3×3×3 |
法向恢复系数en | 1 |
切向恢复系数et | 0 |
摩擦系数μ | 0 |
法向弹性系数kn/N·m-1 | 10 |
斯托克斯松弛时间 | 0.026 |
终端沉降速度 | 0.217 |
平均固体体积分数( | 0.05 |
曳力模型 | Wen & Yu[ |
1 | 戴林, 房淑海, 李思维, 等. 干法重介质流化床煤炭颗粒受力特性与分选研究[J]. 洁净煤技术, 2021, 27(5): 17-24. |
DAI Lin, FANG Shuhai, LI Siwei, et al. Investigation on force characteristics and separation of coal in dry dense medium fluidized bed[J]. Clean Coal Technology, 2021, 27(5): 17-24. | |
2 | 田伟, 阎富生, 黄永红, 等. 石油焦流化床气化模拟研究[J]. 材料与冶金学报, 2017, 16(4): 256-260. |
TIAN Wei, YAN Fusheng, HUANG Yonghong, et al. Gasification simulation of petroleum coke in fluidized bed[J]. Journal of Materials and Metallurgy, 2017, 16(4): 256-260. | |
3 | 白勇, 司慧, 王霄, 等. 流化床生物质快速热解气组成及冷凝技术的研究进展[J]. 中国农业科技导报, 2017, 19(8): 77-83. |
BAI Yong, SI Hui, WANG Xiao, et al. Research progress on composition of fluidized bed biomass fast pyrolysis gas and its condensation technologies[J]. Journal of Agricultural Science and Technology, 2017, 19(8): 77-83. | |
4 | AGRAWAL Kapil, LOEZOS Peter N, SYAMLAL Madhava, et al. The role of meso-scale structures in rapid gas-solid flows[J]. Journal of Fluid Mechanics, 2001, 445: 151-185. |
5 | 李静海, 胡英, 袁权. 探索介尺度科学: 从新角度审视老问题[J]. 中国科学: 化学, 2014, 44(3): 277-281. |
LI Jinghai, HU Ying, YUAN Quan. Mesoscience: Exploring old problems from a new angle[J]. Scientia Sinica Chimica, 2014, 44(3): 277-281. | |
6 | 王海峰. 气固流态化的多尺度非平衡特性研究[D]. 北京: 中国科学院大学(中国科学院过程工程研究所), 2020. |
WANG Haifeng. Multiscale nonequilibrium features of gas-solid fluidization[D]. Beijing: Institute of Process Engineering, Chinese Academy of Sciences, 2020. | |
7 | LU Bona, WANG Wei, LI Jinghai. Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows[J]. Chemical Engineering Science, 2009, 64(15): 3437-3447. |
8 | YANG Ning, WANG Wei, GE Wei, et al. CFD simulation of concurrent-up gas-solid flow in circulating fluidized beds with structure-dependent drag coefficient[J]. Chemical Engineering Journal, 2003, 96(1/2/3): 71-80. |
9 | Rodney O FOX. Large-eddy-simulation tools for multiphase flows[J]. Annual Review of Fluid Mechanics, 2012, 44: 47-76. |
10 | SIMONIN O, DEUTSCH E, BOIVIN M. Large eddy simulation and second-moment closure model of particle fluctuating motion in two-phase turbulent shear flows[C]//DURST F, KASAGI N, LAUNDER BE, et al. Turbulent Shear Flows 9. Berlin, Heidelberg: Springer, 1995: 85-115. |
11 | IGCI Yesim, ANDREWS Arthur T, SUNDARESAN Sankaran, et al. Filtered two-fluid models for fluidized gas-particle suspensions[J]. AIChE Journal, 2008, 54(6): 1431-1448. |
12 | 蒋鸣, 周强. 气固流化床介尺度结构形成机制及过滤曳力模型研究进展[J]. 化工学报, 2022, 73(6): 2468-2485. |
JIANG Ming, ZHOU Qiang. Progress on mechanisms of mesoscale structures and mesoscale drag model in gas-solid fluidized beds[J]. CIESC Journal, 2022, 73(6): 2468-2485. | |
13 | 葛蔚, 刘新华, 任瑛, 等. 从多尺度到介尺度——复杂化工过程模拟的新挑战[J]. 化工学报, 2010, 61(7): 1613-1620. |
GE Wei, LIU Xinhua, REN Ying, et al. From multi-scale to meso-scale: New challenges for simulation of complex processes in chemical engineering[J]. CIESC Journal, 2010, 61(7): 1613-1620. | |
14 | ZHOU Xinyu, GAO Jinsen, XU Chunming, et al. Effect of wall boundary condition on CFD simulation of CFB risers[J]. Particuology, 2013, 11(5): 556-565. |
15 | CARLOS VARAS A E, PETERS E A J F, KUIPERS J A M. CFD-DEM simulations and experimental validation of clustering phenomena and riser hydrodynamics[J]. Chemical Engineering Science, 2017, 169: 246-258. |
16 | ZHOU Haosheng, FLAMANT G, GAUTHIER D, et al. Lagrangian approach for simulating the gas-particle flow structure in a circulating fluidized bed riser[J]. International Journal of Multiphase Flow, 2002, 28(11): 1801-1821. |
17 | CARLOS VARAS Álvaro E, PETERS E A J F, KUIPERS J A M. Computational fluid dynamics-discrete element method (CFD-DEM) study of mass-transfer mechanisms in riser flow[J]. Industrial & Engineering Chemistry Research, 2017, 56(19): 5558-5572. |
18 | MU L, BUIST K A, KUIPERS J A M, et al. CFD-DEM simulations of riser geometry effect and cluster phenomena[J]. Advanced Powder Technology, 2021, 32(9): 3234-3247. |
19 | ZHANG M H, CHU K W, WEI F, et al. A CFD-DEM study of the cluster behavior in riser and downer reactors[J]. Powder Technology, 2008, 184(2): 151-165. |
20 | ZHAO Yongzhi, DING Yulong, WU Changning, et al. Numerical simulation of hydrodynamics in downers using a CFD-DEM coupled approach[J]. Powder Technology, 2010, 199(1): 2-12. |
21 | KUANG Shibo, LI Ke, SHRESTHA Siddhartha, et al. Discrete particle simulation of heterogeneous gas-solid flows in riser and downer reactors[J]. Powder Technology, 2020, 375: 221-232. |
22 | IGCI Yesim, PANNALA Sreekanth, BENYAHIA Sofiane, et al. Validation studies on filtered model equations for gas-particle flows in risers[J]. Industrial & Engineering Chemistry Research, 2012, 51(4): 2094-2103. |
23 | IGCI Yesim, SUNDARESAN Sankaran. Verification of filtered two-fluid models for gas-particle flows in risers[J]. AIChE Journal, 2011, 57(10): 2691-2707. |
24 | OZEL A, FEDE P, SIMONIN O. Development of filtered Euler-Euler two-phase model for circulating fluidised bed: High resolution simulation, formulation and a priori analyses[J]. International Journal of Multiphase Flow, 2013, 55: 43-63. |
25 | ZHU Litao, XIE Le, XIAO Jie, et al. Filtered model for the cold-model gas-solid flow in a large-scale MTO fluidized bed reactor[J]. Chemical Engineering Science, 2016, 143: 369-383. |
26 | ZHU Litao, RASHID Taha Abbas Bin, LUO Zhenghong. Comprehensive validation analysis of sub-grid drag and wall corrections for coarse-grid two-fluid modeling[J]. Chemical Engineering Science, 2019, 196: 478-492. |
27 | TSUJI Y, KAWAGUCHI T, TANAKA T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1): 79-87. |
28 | JAJCEVIC Dalibor, SIEGMANN Eva, RADEKE Charles, et al. Large-scale CFD-DEM simulations of fluidized granular systems[J]. Chemical Engineering Science, 2013, 98: 298-310. |
29 | XU Ming, CHEN Feiguo, LIU Xinhua, et al. Discrete particle simulation of gas-solid two-phase flows with multi-scale CPU-GPU hybrid computation[J]. Chemical Engineering Journal, 2012, 207: 746-757. |
30 | GELDART D. The effect of particle size and size distribution on the behaviour of gas-fluidised beds[J]. Powder Technology, 1972, 6(4): 201-215. |
31 | FUSHIMI Chihiro, GUAN Guoqing, NAKAMURA Yu, et al. Hydrodynamic characteristics of a large-scale triple-bed combined circulating fluidized bed[J]. Powder Technology, 2011, 209(1/2/3): 1-8. |
32 | 李志强, 吴昌宁, 魏飞, 等. 高密度下行床-提升管耦合反应器内的气固流动行为[J]. 化工学报, 2005, 56(5): 816-822. |
LI Zhiqiang, WU Changning, WEI Fei, et al. High-density gas-solids flow in downer-riser coupled circulating fluidized bed[J]. CIESC Journal, 2005, 56(5): 816-822. | |
33 | CLARKE Daniel A, SEDERMAN Andrew J, GLADDEN Lynn F, et al. Investigation of void fraction schemes for use with CFD-DEM simulations of fluidized beds[J]. Industrial & Engineering Chemistry Research, 2018, 57(8): 3002-3013. |
34 | MICHAELIDES Efstathios E, CROWE Clayton T, SCHWARZKOPF John D. Multiphase flow handbook[M]. Beijing: CRC Press, 2016. |
35 | WEN C Y, YU Y H. Mechanics of fluidization[J]. Chemical Engineering Progress Symposium Series, 1966, 62: 100-111. |
36 | OZEL Ali, GU Yile, MILIOLI Christian C, et al. Towards filtered drag force model for non-cohesive and cohesive particle-gas flows[J]. Physics of Fluids, 2017, 29(10): 103308. |
37 | LI Dongbing, Madhumita B RAY, Ajay K RAY, et al. A comparative study on hydrodynamics of circulating fluidized bed riser and downer[J]. Powder Technology, 2013, 247: 235-259. |
38 | TANG Yali, PETERS E A J F, KUIPERS J A M. Direct numerical simulations of dynamic gas-solid suspensions[J]. AIChE Journal, 2016, 62(6): 1958-1969. |
39 | CHIALVO Sebastian, SUNDARESAN Sankaran. A modified kinetic theory for frictional granular flows in dense and dilute regimes[J]. Physics of Fluids, 2013, 25(7): 070603. |
40 | MCMILLAN Jennifer, SHAFFER Frank, GOPALAN Balaji, et al. Particle cluster dynamics during fluidization[J]. Chemical Engineering Science, 2013, 100: 39-51. |
41 | JIANG Ming, CHEN Xiao, ZHOU Qiang. A gas pressure gradient-dependent subgrid drift velocity model for drag prediction in fluidized gas-particle flows[J]. AIChE Journal, 2020, 66(4): e16884. |
[1] | 章凯, 金捍宇, 刘思宇, 王帅. 鼓泡流态化气泡间相互作用下相间传质过程的模拟[J]. 化工进展, 2023, 42(6): 2828-2835. |
[2] | 金涌, 程易, 白丁荣, 张晨曦, 魏飞. 中国流态化技术研发史略[J]. 化工进展, 2023, 42(6): 2761-2780. |
[3] | 尹少武, 张朝, 康鹏, 韩嘉维, 王立. 硅粉氮化输送床内气固反应过程数值模拟[J]. 化工进展, 2022, 41(5): 2256-2267. |
[4] | 吕小林, 熊远南, 汪永威, 周晓湘, 向勇林. 基于结构曳力的吸收塔内部气液流动模拟[J]. 化工进展, 2020, 39(S1): 50-54. |
[5] | 彭威, 刘艳升, 韩胜贤, 黄炳庆. 影响FCC再生立管输送催化剂影响因素的分析[J]. 化工进展, 2020, 39(8): 2947-2953. |
[6] | 刘洪斌,张进,肖慧娜,谢超. 固相颗粒在旋流场形成过程中的运动分析[J]. 化工进展, 2019, 38(03): 1236-1243. |
[7] | 张晨曦, 蔡达理, 贾瞾, 崔宇, 王垚, 罗国华, 骞伟中, 魏飞. 流化床中气固均匀分布的失稳现象[J]. 化工进展, 2019, 38(01): 155-170. |
[8] | 屠功毅, 宗弘元, 钟思青, 徐俊, 周靖, 辛忠. 流化床内粉煤气固流动特性的实验研究[J]. 化工进展, 2017, 36(S1): 180-186. |
[9] | 王大鹏, 于晓晨, 齐丽薇, 于才渊, 王喜忠. 基于新型内热式移动-流化床干燥器的褐煤干燥过程[J]. 化工进展, 2017, 36(S1): 87-91. |
[10] | 王玲, 郑燕萍, 程榕, 杨阿三, 孙勤, 张许力. FeCl2·4H2O晶体流态化煅烧过程实验研究[J]. 化工进展, 2017, 36(09): 3189-3194. |
[11] | 陈巨辉, 殷维杰, 王帅, 于广滨, 胡汀, 林枫. 气泡修正多尺度曳力模型的鼓泡流化床生物质气化分析[J]. 化工进展, 2017, 36(04): 1224-1230. |
[12] | 李绪宾, 刘会娥, 陈爽, 王玉斌, 穆国庆, 刘进玲. 工业废盐的流态化行为[J]. 化工进展, 2017, 36(01): 81-90. |
[13] | 闫岩, 卢旭晨, 王体壮, 张志敏. 利用老卤生产高纯氧化镁技术研究进展[J]. 化工进展, 2016, 35(10): 3251-3257. |
[14] | 张攀, 段继海, 王伟文, 陈光辉, 李建隆. 基于充分混合、均匀分布准则的化工过程强化:青岛科技大学的实践[J]. 化工进展, 2016, 35(10): 3016-3021. |
[15] | 王勇, 杨启容, 吴荣华, 陈霄. 污水换热器流态化在线防、除垢实验[J]. 化工进展, 2015, 34(12): 4398-4402. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |