1 |
韩超灵, 邹琳江, 严大炜, 等.太阳能吸收式与吸附式制冷技术的比较与发展[J]. 节能, 2015, 34(2): 4-7.
|
|
HAN Chaoling, ZOU Linjiang, YAN Dawei, et al. Comparison and development of absorption and adsorption type of solar refrigeration technique[J]. Energy Conservation, 2015, 34(2): 4-7.
|
2 |
SINGH S, DHINGRA S. Thermal performance of a vapour adsorption refrigeration system: an overview[J]. Journal of Physics: Conference Series, 2019, 1240(1): 012024.
|
3 |
ALAHMER A, AJIB S, WANG X L. Comprehensive strategies for performance improvement of adsorption air conditioning systems: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 99: 138-158.
|
4 |
YUAN Z X, LI Y X, DU C X. Experimental system of solar adsorption refrigeration with concentrated collector[J]. Journal of Visualized Experiments, 2017(128): 55925.
|
5 |
MOHAMMED R H, MESALHY O, ELSAYED M L, et al. Performance enhancement of adsorption beds with silica-gel particles packed in aluminum foams[J]. International Journal of Refrigeration, 2019, 104: 201-212.
|
6 |
LI Y X, WANG L, YUAN Z X, et al. Enhancement of heat transfer in adsorption bed of vacuum-tube with fins[J]. Applied Thermal Engineering, 2019,153: 291-298.
|
7 |
WANG Y F, LI M, JI X, et al. Experimental study of the effect of enhanced mass transfer on the performance improvement of a solar-driven adsorption refrigeration system[J]. Applied Energy, 2018, 224: 417-425.
|
8 |
HADJ AMMAR M A, BENHAOUA B, BOURAS F. Thermodynamic analysis and performance of an adsorption refrigeration system driven by solar collector[J]. Applied Thermal Engineering, 2017, 112: 1289-1296.
|
9 |
LOUAJARI M, MIMET A, OUAMMI A. Study of the effect of finned tube adsorber on the performance of solar driven adsorption cooling machine using activated carbon-ammonia pair[J]. Applied Energy, 2011, 88(3): 690-698.
|
10 |
FRAZZICA A, PALOMBA V, DAWOUD B, et al. Design, realization and testing of an adsorption refrigerator based on activated carbon/ethanol working pair[J]. Applied Energy, 2016, 174: 15-24.
|
11 |
SOLOVYEVA M V, GORDEEVA L G, KRIEGER T A, et al. MOF-801 as a promising material for adsorption cooling: equilibrium and dynamics of water adsorption[J]. Energy Conversion and Management, 2018, 174: 356-363.
|
12 |
Wei Benjamin Teo HOW, ANUTOSH Chakraborty. Aluminium based zeolites and MOFs for adsorption cooling[J]. Transactions of the Japan Society of Refrigerating and Air Conditioning Engineers, 2019, 35(4): 377-382.
|
13 |
LIU Z B, ZHAO B H, HUANG Y, et al. Cooling capacity test for MIL-101(Cr)/CaCl2 for adsorption refrigeration system[J]. Molecules, 2020, 25(17): 3975.
|
14 |
DU S W, LI X H, YUAN Z X, et al. Performance of solar adsorption refrigeration in system of SAPO-34 and ZSM-5 zeolite[J]. Solar Energy, 2016, 138: 98-104.
|
15 |
PAN Q W, PENG J J, WANG H B, et al. Experimental investigation of an adsorption air-conditioner using silica gel-water working pair[J]. Solar Energy, 2019, 185: 64-71.
|
16 |
LIU Y M, YUAN Z X, WEN X, et al. Evaluation on performance of solar adsorption cooling of silica gel and SAPO-34 zeolite[J]. Applied Thermal Engineering, 2021, 182: 116019.
|
17 |
ZHANG X L, WANG F F, LEI X D, et al. Influential factors and optimization analysis of adsorption refrigeration system performance[J]. AIP Advances, 2020, 10(10): 105315.
|
18 |
NIAZMAND H, TALEBIAN H, MAHDAVIKHAH M. Effects of particle diameter on performance improvement of adsorption systems[J]. Applied Thermal Engineering, 2013, 59(1/2): 243-252.
|
19 |
HUANG H Y, HE Z H, YUAN H R, et al. Effect of adsorbent diameter on the performance of adsorption refrigeration[J]. Chinese Journal of Chemical Engineering, 2014, 22(5): 602-606.
|
20 |
陈思宇, 程远达, 高敏, 等. 固体吸附式制冷系统中吸附剂粒径及吸附床总孔隙率对吸附床传热性能的影响研究[J]. 可再生能源, 2019, 37(1): 151-158.
|
|
CHEN Siyu, CHENG Yuanda, GAO Min, et al. The effects of particle diameter and total porosity on thermal performance of solid adsorption cooling system[J]. Renewable Energy Resources, 2019, 37(1): 151-158.
|