1 |
IM S, BANERJEE K. Full chip thermal analysis of planar (2-D) and vertically integrated (3-D) high performance ICs[C]// Electron Devices Meeting, 2000.
|
2 |
CONG J, WEI J, ZHANG Y. A thermal-driven floorplanning algorithm for 3D ICs[C]// International Conference on Computer Aided Design, 2004.
|
3 |
SOHEL MURSHED S M, NIETO DE CASTRO C A. A critical review of traditional and emerging techniques and fluids for electronics cooling[J]. Renewable and Sustainable Energy Reviews, 2017, 78: 821-833.
|
4 |
TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129.
|
5 |
ZHAI Y L, XIA G D, LI Z H. A novel flow arrangement of staggered flow in double-layered microchannel heat sinks for microelectronic cooling[J]. International Communications in Heat and Mass Transfer, 2016, 79: 98-104.
|
6 |
MA D D, XIA G D, WANG J, et al. An experimental study on hydrothermal performance of microchannel heat sinks with 4-ports and offset zigzag channels[J]. Energy Conversion and Management, 2017, 152: 157-165.
|
7 |
HUANG P N, DONG G P, ZHONG X N, et al. Numerical investigation of the fluid flow and heat transfer characteristics of tree-shaped microchannel heat sink with variable cross-section[J]. Chemical Engineering & Processing: Process Intensification, 2020, 147: 107769.
|
8 |
王晗, 袁礼, 王超, 等. 周期性分流微通道的结构设计及散热性能[J]. 物理学报, 2021, 70(10): 200-211.
|
|
WANG Han, YUAN Li, WANG Chao, et al. Structure and thermal properties of periodic split-flow microchannels[J]. Acta Physica Sinica, 2021, 70(10): 200-211.
|
9 |
陈然, 唐晟. 基于金字塔形扰动结构的双层梯形微通道热沉传热性能模拟[J]. 化工进展, 2020, 39(S2): 19-25.
|
|
CHEN Ran, TANG Sheng. Heat transfer performance simulation of double-layer trapezoidal microchannel heat sink based on pyramidal turbulence structure[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 19-25.
|
10 |
陈卓, 潘振海, 吴慧英. 自由摆动方柱强化微流体通道内传热传质[J]. 化工进展, 2019, 38(9): 3979-3987.
|
|
CHEN Zhuo, PAN Zhenhai, WU Huiying. Heat and mass transfer enhancement in a microchannel with freely rotating cylinder[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 3979-3987.
|
11 |
BHANDARI P, PRAJAPATI Y K. Thermal performance of open microchannel heat sink with variable pin fin height[J]. International Journal of Thermal Sciences, 2021, 159: 106609.
|
12 |
KUMAR K, KUMAR P. Effect of groove depth on hydrothermal characteristics of the rectangular microchannel heat sink[J]. International Journal of Thermal Sciences, 2021, 161: 106730.
|
13 |
BEJAN A. Entropy generation minimization[M]. New York: CRC Press, 1996.
|
14 |
JAPAR W M A A, SIDIK N A C, MAT S. A comprehensive study on heat transfer enhancement in microchannel heat sink with secondary channel[J]. International Communications in Heat and Mass Transfer, 2018, 99: 62-81.
|
15 |
DATTA A, SHARMA V, SANYAL D, et al. A conjugate heat transfer analysis of performance for rectangular microchannel with trapezoidal cavities and ribs[J]. International Journal of Thermal Sciences, 2019, 138: 425-446.
|
16 |
贾玉婷, 夏国栋, 马丹丹, 等. 水滴型凹穴微通道流动与传热的熵产分析[J]. 机械工程学报, 2017, 53(4): 141-148.
|
|
JIA Yuting, XIA Guodong, MA Dandan, et al. Entropy generation analysis of flow and heat transfer in microchannel with droplet reentrant cavities[J]. Journal of Mechanical Engineering, 2017, 53(4): 141-148.
|
17 |
LI M, LAI A C K. Thermodynamic optimization of ground heat exchangers with single U-tube by entropy generation minimization method[J]. Energy Conversion and Management, 2013, 65: 133-139.
|
18 |
ALI A Y M, ABO-ZAHHAD E M, ELQADY H I, et al. Thermal analysis of high concentrator photovoltaic module using convergent-divergent microchannel heat sink design[J]. Applied Thermal Engineering, 2021, 183: 116201.
|
19 |
邱云龙, 胡文杰,吴昌聚, 等. 嵌入式微通道传热特性及局部热点尺度效应[J]. 浙江大学学报(工学版), 2021, 55(4): 1-10.
|
|
QIU Yunlong, HU Wenjie, WU Changju, et al. Heat transfer performance and scale effect of hot spots in embedded microchannel cooling system[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(4): 1-10.
|
20 |
WEBB R L. Performance evaluation criteria for use of enhanced heat transfer surfaces in heat exchanger design[J]. International Journal of Heat and Mass Transfer, 1981, 24: 715-726.
|
21 |
SRIVASTAVA P, PATEL R I, DEWAN A. A study on thermal characteristics of double-layered microchannel heat sink: effects of bifurcation and flow configuration[J]. International Journal of Thermal Sciences, 2021, 162: 106791.
|
22 |
ZHU Q F, XIA H X, CHEN J J. Fluid flow and heat transfer characteristics of microchannel heat sinks with different groove shapes[J]. International Journal of Thermal Sciences, 2021, 161: 106721.
|
23 |
DEY P, SAHA S K. Fluid flow and heat transfer in microchannel with porous bio-inspired roughness[J]. International Journal of Thermal Sciences, 2021, 161: 106729.
|
24 |
LI Y F, XIA G D, MA D D, et al. Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs[J]. International Journal of Heat and Mass Transfer, 2016, 98: 17-28.
|
25 |
LI Y F, XIA G D, JIA Y T, et al. Effect of geometric configuration on the laminar flow and heat transfer in microchannel heat sinks with cavities and fins[J]. Numerical Heat Transfer, Part A: Applications, 2017, 71(5): 528-546.
|
26 |
李艺凡, 夏国栋, 马丹丹, 等. 复杂微通道内对流传热的场协同及熵产[J]. 航空动力学报, 2019, 34(7): 1471-1482.
|
|
LI Yifan, XIA Guodong, MA Dandan, et al. Field synergy and entropy generation of convective heat transfer in microchannels with complex structure[J]. Journal of Aerospace Power, 2019, 34(7): 1471-1482.
|
27 |
LI Y F, WANG Z P, YANG J L, et al. Thermal and hydraulic characteristics of microchannel heat sinks with cavities and fins based on field synergy and thermodynamic analysis[J]. Applied Thermal Engineering, 2020, 175: 115348.
|
28 |
STEINKE M E, KANDLIKAR S G. Single-phase liquid friction factors in microchannels[J]. International Journal of Thermal Sciences, 2006, 45: 1073-1083.
|
29 |
CHAI L, XIA G D, WANG H S. Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls (Ⅲ): performance evaluation[J]. International Journal of Heat and Mass Transfer, 2016, 97: 1091-1101.
|