化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1440-1452.DOI: 10.16085/j.issn.1000-6613.2021-2228
收稿日期:
2021-11-01
修回日期:
2022-01-17
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
余皓
作者简介:
刘鸿益(1997—),男,硕士研究生,研究方向为能源催化。E-mail:基金资助:
LIU Hongyi(), YANG Guangxing, YU Hao()
Received:
2021-11-01
Revised:
2022-01-17
Online:
2022-03-23
Published:
2022-03-28
Contact:
YU Hao
摘要:
电磁感应加热技术作为一种通过吸收电磁能直接转换为热能的非直接接触式加热技术,热量直接在磁性材料上迅速感应产生,无需加热整个反应器,改善了能量传递效率和高散热现象。因此,电磁感应加热为高温化学过程供了独特的解决方案,以克服使用传统加热方法时带来的加热/冷却速率缓慢、加热不均匀、低能效等问题。本文首先简述了电磁感应加热技术的加热机制以及相关的测量方法,重点介绍了电磁感应加热过程中能量效率的评估,进而总结了采用电磁感应加热技术用于高温催化反应的研究进展。最后,提出了对未来电磁感应加热技术应用于工业化过程的展望。
中图分类号:
刘鸿益, 杨光星, 余皓. 电磁感应加热用于可持续催化技术的研究进展[J]. 化工进展, 2022, 41(3): 1440-1452.
LIU Hongyi, YANG Guangxing, YU Hao. Recent advances of electromagnetic induction heating for sustainable catalytic technology[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1440-1452.
1 | IPCC. TAR climate change 2001: synthesis report[R]. https://www.ipcc.ch/report/ar3/syr/. |
2 | IPCC. Climate change 2021: the physical science basis[R]. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/. |
3 | LUCÍA O, MAUSSION P, DEDE E J, et al. Induction heating technology and its applications: past developments, current technology, and future challenges[J]. IEEE Transactions on Industrial Electronics, 2014, 61(5): 2509-2520. |
4 | HEDAYATNASAB Z, ABNISA F, DAUD W M A W. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application[J]. Materials & Design, 2017, 123: 174-196. |
5 | LECLERCQ J, GIRAUD F, BIANCHI D, et al. Novel inductively-heated catalytic system for fast VOCs abatement, application to IPA in air[J]. Applied Catalysis B: Environmental, 2014, 146: 131-137. |
6 | CEYLAN S, FRIESE C, LAMMEL C, et al. Inductive heating for organic synthesis by using functionalized magnetic nanoparticles inside microreactors[J]. Angewandte Chemie International Edition, 2008, 47(46): 8950-8953. |
7 | DEATSCH A E, EVANS B A. Heating efficiency in magnetic nanoparticle hyperthermia[J]. Journal of Magnetism and Magnetic Materials, 2014, 354: 163-172. |
8 | RUTA S, CHANTRELL R, HOVORKA O. Unified model of hyperthermia via hysteresis heating in systems of interacting magnetic nanoparticles[J]. Scientific Reports, 2015, 5: 9090. |
9 | APPINO C, BOTTAUSCIO O, DE LA BARRIERE O, et al. Computation of eddy current losses in soft magnetic composites[J]. IEEE Transactions on Magnetics, 2012, 48(11): 3470-3473. |
10 | SUTO M, HIROTA Y, MAMIYA H, et al. Heat dissipation mechanism of magnetite nanoparticles in magnetic fluid hyperthermia[J]. Journal of Magnetism and Magnetic Materials, 2009, 321(10): 1493-1496. |
11 | HERGT R, DUTZ S, RÖDER M. Effects of size distribution on hysteresis losses of magnetic nanoparticles for hyperthermia[J]. Journal of Physics Condensed Matter: an Institute of Physics Journal, 2008, 20(38): 385214. |
12 | DUTZ S, HERGT R, MÜRBE J, et al. Hysteresis losses of magnetic nanoparticle powders in the single domain size range[J]. Journal of Magnetism and Magnetic Materials, 2007, 308(2): 305-312. |
13 | FREY N A, PENG Sheng, CHENG Kai, et al. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage[J]. Chemical Society Reviews, 2009, 38(9): 2532-2542. |
14 | LU Anhui, SALABAS E L, SCHÜTH F. Magnetic nanoparticles: synthesis, protection, functionalization, and application[J]. Angewandte Chemie International Edition, 2007, 46(8): 1222-1244. |
15 | MORNET S, VASSEUR S, GRASSET F, et al. Magnetic nanoparticle design for medical applications[J]. Progress in Solid State Chemistry, 2006, 34(2/3/4): 237-247. |
16 | KIRSCHNING A, KUPRACZ L, HARTWIG J. New synthetic opportunities in miniaturized flow reactors with inductive heating[J]. Chemistry Letters, 2012, 41(6): 562-570. |
17 | JORDAN A, WUST P, SCHOLZ R, et al. Cellular uptake of magnetic fluid particles and their effects on human adenocarcinoma cells exposed to AC magnetic fields in vitro [J]. International Journal of Hyperthermia, 1996, 12(6): 705-722. |
18 | BAKOGLIDIS K D, SIMEONIDIS K, SAKELLARI D, et al. Size-dependent mechanisms in AC magnetic hyperthermia response of iron-oxide nanoparticles[J]. IEEE Transactions on Magnetics, 2012, 48(4): 1320-1323. |
19 | ROSENSWEIG R E. Heating magnetic fluid with alternating magnetic field[J]. Journal of Magnetism and Magnetic Materials, 2002, 252: 370-374. |
20 | BORDET A, LACROIX L M, FAZZINI P F, et al. Magnetically induced continuous CO2 hydrogenation using composite iron carbide nanoparticles of exceptionally high heating power[J]. Angewandte Chemie International Edition, 2016, 55(51): 15894-15898. |
21 | ASENSIO J M, MIGUEL A B, FAZZINI P F, et al. Hydrodeoxygenation using magnetic induction: high-temperature heterogeneous catalysis in solution[J]. Angewandte Chemie International Edition, 2019, 58(33): 11306-11310. |
22 | GROMMÉ C S, WRIGHT T L, PECK D L. Magnetic properties and oxidation of iron-titanium oxide minerals in Alae and Makaopuhi Lava Lakes, Hawaii[J]. Journal of Geophysical Research Atmospheres, 1969, 74(22): 5277-5293. |
23 | DE LA PRESA P, LUENGO Y, MULTIGNER M, et al. Study of heating efficiency as a function of concentration, size, and applied field in γ-Fe2O3 nanoparticles[J]. The Journal of Physical Chemistry C, 2012, 116(48): 25602-25610. |
24 | LIU Xiaoli, ZHANG Yifan, WANG Yanyun, et al. Comprehensive understanding of magnetic hyperthermia for improving antitumor therapeutic efficacy[J]. Theranostics, 2020, 10(8): 3793-3815. |
25 | GARAIO E, SANDRE O, COLLANTES J M, et al. Specific absorption rate dependence on temperature in magnetic field hyperthermia measured by dynamic hysteresis losses (ac magnetometry)[J]. Nanotechnology, 2015, 26(1): 015704. |
26 | ALMIND M R, VENDELBO S B, HANSEN M F, et al. Improving performance of induction-heated steam methane reforming[J]. Catalysis Today, 2020, 342: 13-20. |
27 | POLSHETTIWAR V, LUQUE R, FIHRI A, et al. Magnetically recoverable nanocatalysts[J]. Chemical Reviews, 2011, 111(5): 3036-3075. |
28 | WEGNER J, CEYLAN S, FRIESE C, et al. Inductively heated oxides inside microreactors-facile oxidations under flow conditions[J]. European Journal of Organic Chemistry, 2010(23): 4372-4375. |
29 | KIRSCHNING A, CEYLAN S, KLANDE T, et al. Chemical synthesis with inductively heated copper flow reactors[J]. Synlett, 2010, 2010(13): 2009-2013. |
30 | CEYLAN S, COUTABLE L, WEGNER J, et al. Inductive heating with magnetic materials inside flow reactors[J]. Chemistry-A European Journal, 2011, 17(6): 1884-1893. |
31 | KUPRACZ L, HARTWIG J, WEGNER J, et al. Multistep flow synthesis of vinyl azides and their use in the copper-catalyzed Huisgen-type cycloaddition under inductive-heating conditions[J]. Beilstein Journal of Organic Chemistry, 2011, 7: 1441-1448. |
32 | CHAUDHURI S R, HARTWIG J, KUPRACZ L, et al. Oxidations of allylic and benzylic alcohols under inductively-heated flow conditions with gold-doped superparamagnetic nanostructured particles as catalyst and oxygen as oxidant[J]. Advanced Synthesis & Catalysis, 2014, 356(17): 3530-3538. |
33 | HOULDING T K, TCHABANENKO K, RAHMAN M T, et al. Direct amide formation using radiofrequency heating[J]. Organic & Biomolecular Chemistry, 2013, 11(25): 4171-4177. |
34 | LIU Yawen, CHERKASOV N, GAO Pengzhao, et al. The enhancement of direct amide synthesis reaction rate over TiO2@SiO2@NiFe2O4 magnetic catalysts in the continuous flow under radiofrequency heating[J]. Journal of Catalysis, 2017, 355: 120-130. |
35 | LIU Yawen, GAO Pengzhao, CHERKASOV N, et al. Direct amide synthesis over core-shell TiO2@NiFe2O4 catalysts in a continuous flow radiofrequency-heated reactor[J]. RSC Advances, 2016, 6(103): 100997-101007. |
36 | MUSTIELES MARIN I, DE MASI D, LACROIX L M, et al. Hydrodeoxygenation and hydrogenolysis of biomass-based materials using FeNi catalysts and magnetic induction[J]. Green Chemistry, 2021, 23(5): 2025-2036. |
37 | TSAI W T, LEE M K, CHANG Y M. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor[J]. Journal of Analytical and Applied Pyrolysis, 2006, 76(1/2): 230-237. |
38 | TSAI W T, LEE M K, CHANG Y M. Fast pyrolysis of rice husk: product yields and compositions[J]. Bioresource Technology, 2007, 98(1): 22-28. |
39 | TSAI W T, CHANG J H, HSIEN K J, et al. Production of pyrolytic liquids from industrial sewage sludges in an induction-heating reactor[J]. Bioresource Technology, 2009, 100(1): 406-412. |
40 | LEE M K, TSAI W T, TSAI Y L, et al. Pyrolysis of Napier grass in an induction-heating reactor[J]. Journal of Analytical and Applied Pyrolysis, 2010, 88(2): 110-116. |
41 | MULEY P D, HENKEL C, ABDOLLAHI K K, et al. Pyrolysis and catalytic upgrading of pinewood sawdust using an induction heating reactor[J]. Energy & Fuels, 2015, 29(11): 7375-7385. |
42 | MULEY P D, HENKEL C, ABDOLLAHI K K, et al. A critical comparison of pyrolysis of cellulose, lignin, and pine sawdust using an induction heating reactor[J]. Energy Conversion and Management, 2016, 117: 273-280. |
43 | HENKEL C, MULEY P D, ABDOLLAHI K K, et al. Pyrolysis of energy cane bagasse and invasive Chinese tallow tree (Triadica sebifera L.) biomass in an inductively heated reactor[J]. Energy Conversion and Management, 2016, 109: 175-183. |
44 | ABU-LABAN M, MULEY P D, HAYES D J, et al. Ex-situ up-conversion of biomass pyrolysis bio-oil vapors using Pt/Al2O3 nanostructured catalyst synergistically heated with steel balls via induction[J]. Catalysis Today, 2017, 291: 3-12. |
45 | DANIEL D J, ELLISON C R, BURSAVICH J, et al. An evaluative comparison of lignocellulosic pyrolysis products derived from various parts of Populus deltoides trees and Panicum virgatum grass in an inductively heated reactor[J]. Energy Conversion and Management, 2018, 171: 710-720. |
46 | PÉREZ-CAMACHO M N, ABU-DAHRIEH J, ROONEY D, et al. Biogas reforming using renewable wind energy and induction heating[J]. Catalysis Today, 2015, 242: 129-138. |
47 | MORTENSEN P M, ENGBÆK J S, VENDELBO S B, et al. Direct hysteresis heating of catalytically active Ni-Co nanoparticles as steam reforming catalyst[J]. Industrial & Engineering Chemistry Research, 2017, 56(47): 14006-14013. |
48 | VINUM M G, ALMIND M R, ENGBAEK J S, et al. Dual-function cobalt-nickel nanoparticles tailored for high-temperature induction-heated steam methane reforming[J]. Angewandte Chemie International Edition, 2018, 57(33): 10569-10573. |
49 | SANNA A, HALL M R, MAROTO-VALER M. Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials[J]. Energy & Environmental Science, 2012, 5(7): 7781. |
50 | GRASA G S, ABANADES J C. CO2 capture capacity of CaO in long series of carbonation/calcination cycles[J]. Industrial & Engineering Chemistry Research, 2006, 45(26): 8846-8851. |
51 | SOTENKO M, FERNÁNDEZ J, HU G N, et al. Performance of novel CaO-based sorbents in high temperature CO2 capture under RF heating[J]. Chemical Engineering and Processing: Process Intensification, 2017, 122: 487-492. |
52 | FERNÁNDEZ J, SOTENKO M, DEREVSCHIKOV V, et al. A radiofrequency heated reactor system for post-combustion carbon capture[J]. Chemical Engineering and Processing: Process Intensification, 2016, 108: 17-26. |
53 | MEFFRE A, MEHDAOUI B, CONNORD V, et al. Complex nano-objects displaying both magnetic and catalytic properties: a proof of concept for magnetically induced heterogeneous catalysis[J]. Nano Letters, 2015, 15(5): 3241-3248. |
54 | KALE S S, ASENSIO J M, ESTRADER M, et al. Iron carbide or iron carbide/cobalt nanoparticles for magnetically-induced CO2 hydrogenation over Ni/SiRAlO x catalysts[J]. Catalysis Science & Technology, 2019, 9(10): 2601-2607. |
55 | DE MASI D, ASENSIO J M, FAZZINI P F, et al. Engineering iron-nickel nanoparticles for magnetically induced CO2 methanation in continuous flow[J]. Angewandte Chemie International Edition, 2020, 59(15): 6187-6191. |
56 | MARTÍNEZ-PRIETO L M, MARBAIX J, ASENSIO J M, et al. Ultrastable magnetic nanoparticles encapsulated in carbon for magnetically induced catalysis[J]. ACS Applied Nano Materials, 2020, 3(7): 7076-7087. |
57 | MARBAIX J, KERROUX P, MONTASTRUC L, et al. CO2 methanation activated by magnetic heating: life cycle assessment and perspectives for successful renewable energy storage[J]. The International Journal of Life Cycle Assessment, 2020, 25(4): 733-743. |
58 | AASBERG-PETERSEN K, HANSEN J H BAK, CHRISTENSEN T S, et al. Technologies for large-scale gas conversion[J]. Applied Catalysis A: General, 2001, 221(1/2): 379-387. |
59 | KONNOV A A, ZHU Jianning, BROMLY J H, et al. Noncatalytic partial oxidation of methane into syngas over a wide temperature range[J]. Combustion Science and Technology, 2004, 176(7): 1093-1116. |
60 | RASMUSSEN C L, JAKOBSEN J G, GLARBORG P. Experimental measurements and kinetic modeling of CH4/O2 and CH4/C2H6/O2 conversion at high pressure[J]. International Journal of Chemical Kinetics, 2008, 40(12): 778-807. |
61 | ZHOU Xinwen, CHEN Caixia, WANG Fuchen. Multi-dimensional modeling of non-catalytic partial oxidation of natural gas in a high pressure reformer[J]. International Journal of Hydrogen Energy, 2010, 35(4): 1620-1629. |
62 | LI C E, BURKE N, GERDES K, et al. The undiluted, non-catalytic partial oxidation of methane in a flow tube reactor-An experimental study using indirect induction heating[J]. Fuel, 2013, 109: 409-416. |
63 | LI C E, KUAN B, LEE W J, et al. The non-catalytic partial oxidation of methane in a flow tube reactor using indirect induction heating-An experimental and kinetic modelling study[J]. Chemical Engineering Science, 2018, 187: 189-199. |
64 | NIETHER C, FAURE S, BORDET A, et al. Improved water electrolysis using magnetic heating of FeC-Ni core-shell nanoparticles[J]. Nature Energy, 2018, 3(6): 476-483. |
65 | GALLO-CORDOVA A, CASTRO J J, WINKLER E L, et al. Improving degradation of real wastewaters with self-heating magnetic nanocatalysts[J]. Journal of Cleaner Production, 2021, 308: 127385. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[3] | 谢志伟, 吴张永, 朱启晨, 蒋佳骏, 梁天祥, 刘振阳. 植物油基Ni0.5Zn0.5Fe2O4磁流体的黏度特性及磁黏特性[J]. 化工进展, 2023, 42(7): 3623-3633. |
[4] | 董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065. |
[5] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[6] | 侯殿保, 贺茂勇, 陈育刚, 杨海云, 李海民. 资源优化配置与循环经济在钾资源开发利用中的应用[J]. 化工进展, 2023, 42(6): 3197-3208. |
[7] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[8] | 李雪, 王艳君, 王玉超, 陶胜洋. 仿生表面用于雾水收集的最新研究进展[J]. 化工进展, 2023, 42(5): 2486-2503. |
[9] | 郭文杰, 翟玉玲, 陈文哲, 申鑫, 邢明. Al2O3-CuO/水混合纳米流体对流传热性能及热经济性分析[J]. 化工进展, 2023, 42(5): 2315-2324. |
[10] | 宋超, 叶学民, 李春曦. 纳米颗粒与表面活性剂的自组装行为对硅油-水界面性质影响的分子动力学[J]. 化工进展, 2022, 41(S1): 366-375. |
[11] | 胡文德, 王仰东, 王传明. 合成气直接催化转化制低碳烯烃研究进展[J]. 化工进展, 2022, 41(9): 4754-4766. |
[12] | 蒋华义, 胡娟, 齐红媛, 游琰真, 王玉龙, 武哲. 磁性纳米粒子类型和质量浓度对微波热解含油污泥的影响[J]. 化工进展, 2022, 41(7): 3908-3914. |
[13] | 何美莹, 岳学杰, 张涛, 邱凤仙. 红外辐射调控原理及其在热管理应用中的材料研究进展[J]. 化工进展, 2022, 41(7): 3719-3730. |
[14] | 李娟娟, 张天永, 李祥高. 电泳显示用高质量铁锰黑纳米分散系的构建[J]. 化工进展, 2022, 41(6): 3178-3185. |
[15] | 孙娜娜, 孙会娜, 沈莉莎, 苏瑞宇, 赵超. 磁性纳米颗粒-微波辐射对稠油O/W乳状液的协同破乳[J]. 化工进展, 2022, 41(6): 3127-3137. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |