| [1] |
庞纪峰, 郑明远, 姜宇, 等. 乙二醇生产和精制技术研究进展[J]. 化工进展, 2013, 32(9): 2006-2014.
|
|
PANG Jifeng, ZHENG Mingyuan, JIANG Yu, et al. Progress in ethylene glycol production and purification[J]. Chemical Industry and Engineering Progress, 2013, 32(9): 2006-2014.
|
| [2] |
沈江, 陈俊士, 洪纯芬. 苯乙烯生产现状和发展趋势[J]. 现代化工, 2011, 31(11): 9-11.
|
|
SHEN Jiang, CHEN Junshi, HONG Chunfen. Status and development trends of styrene production[J]. Modern Chemical Industry, 2011, 31(11): 9-11.
|
| [3] |
王红霞. 氯乙烯技术现状及进展[J]. 石油化工, 2002, 31(6): 483-487.
|
|
WANG Hongxia. Present status and progress in the manufacturing technology of vinyl chloride[J]. Petrochemical Technology, 2002, 31(6): 483-487.
|
| [4] |
王俐. 醋酸生产技术进展[J]. 石油化工, 2005, 34(8): 797-801.
|
|
WANG Li. Progress in production technology of acetic acid[J]. Petrochemical Technology, 2005, 34(8): 797-801.
|
| [5] |
FRIEBE Lars, NUYKEN Oskar, OBRECHT Werner. Neodymium-based Ziegler/Natta catalysts and their application in diene polymerization[M]//Neodymium Based Ziegler Catalysts-Fundamental Chemistry. Berlin: Springer, 2006: 1-154.
|
| [6] |
KIOUPIS Loukas I, MAGINN Edward J. Molecular simulation of poly-α-olefin synthetic lubricants: Impact of molecular architecture on performance properties[J]. The Journal of Physical Chemistry B, 1999, 103(49): 10781-10790.
|
| [7] |
南海明, 文尧顺, 吴秀章, 等. 甲醇制烯烃技术最新进展[J]. 现代化工, 2014, 34(7): 41-46.
|
|
Haiming NAN, WEN Yaoshun, WU Xiuzhang, et al. Recent development of methanol to olefins technology[J]. Modern Chemical Industry, 2014, 34(7): 41-46.
|
| [8] |
吴秀章. 煤制低碳烯烃工业示范工程最新进展[J]. 化工进展, 2014, 33(4): 787-794.
|
|
WU Xiuzhang. Latest progress of coal to light olefins industrial demonstration project[J]. Chemical Industry and Engineering Progress, 2014, 33(4): 787-794.
|
| [9] |
MORSCHBACKER Antonio. Bio-ethanol based ethylene[J]. Polymer Reviews, 2009, 49(2): 79-84.
|
| [10] |
王华, 刘中民. 甲烷直接转化研究进展[J]. 化学进展, 2004, 16(4): 593-602.
|
|
WANG Hua, LIU Zhongmin. Progress in direct conversion of methane[J]. Progress in Chemistry, 2004, 16(4): 593-602.
|
| [11] |
LUNSFORD Jack H. Catalytic conversion of methane to more useful chemicals and fuels: A challenge for the 21st century[J]. Catalysis Today, 2000, 63(2/3/4): 165-174.
|
| [12] |
朱杰, 崔宇, 陈元君, 等. 甲醇制烯烃过程研究进展[J]. 化工学报, 2010, 61(7): 1674-1684.
|
|
ZHU Jie, CUI Yu, CHEN Yuanjun, et al. Recent researches on process from methanol to olefins[J]. CIESC Journal, 2010, 61(7): 1674-1684.
|
| [13] |
王连勇, 蔡九菊, 冯杰, 等. 煤代油技术研究进展[J]. 中国冶金, 2005, 15(8): 45-48.
|
|
WANG Lianyong, CAI Jiuju, FENG Jie, et al. Progress on coal replacing oil technology research[J]. China Metallurgy, 2005, 15(8): 45-48.
|
| [14] |
CHANG Clarence D. Methanol conversion to light olefins[J]. Catalysis Reviews, 1984, 26(3/4): 323-345.
|
| [15] |
Michael STÖCKER. Methanol-to-hydrocarbons: Catalytic materials and their behavior 1[J]. Microporous and Mesoporous Materials, 1999, 29(1/2): 3-48.
|
| [16] |
GOGATE Makarand R. Methanol-to-olefins process technology: Current status and future prospects[J]. Petroleum Science and Technology, 2019, 37(5): 559-565.
|
| [17] |
ROTHAEMEL M, H-D HOLTMANN. Methanol to propylene MTP-Lurgi’s way[J]. Erdöl Erdgas Kohle, 2002(5):234-237.
|
| [18] |
刘中民, 齐越. 甲醇制取低碳烯烃(DMTO)技术的研究开发及工业性试验[J]. 中国科学院院刊, 2006, 21(5): 406-408.
|
|
LIU Zhongmin, QI Yue. Process research, development and demonstration of dimethylether or methanol to olefin (DMTO) technology[J]. Bulletin of Chinese Academy of Sciences, 2006, 21(5): 406-408.
|
| [19] |
王垚, 魏飞, 钱震, 等. 流化床催化裂解生产丙烯的方法及反应器: CN1962573[P]. 2007-05-16.
|
|
WANG Yao, WEI Fei, QIAN Zhen, et al. Fluidized-bed catalytic cracking process and reactor system for high-yield propylene production: CN1962573[P]. 2007-05-16.
|
| [20] |
James F HAW, SONG Weiguo, MARCUS David M, et al. The mechanism of methanol to hydrocarbon catalysis[J]. Accounts of Chemical Research, 2003, 36(5): 317-326.
|
| [21] |
ZHANG Wenna, CHU Yueying, WEI Yingxu, et al. Influences of the confinement effect and acid strength of zeolite on the mechanisms of methanol-to-olefins conversion over H-ZSM-5: A theoretical study of alkenes-based cycle[J]. Microporous and Mesoporous Materials, 2016, 231: 216-229.
|
| [22] |
DAHL Ivar M, KOLBOE Stein. On the reaction mechanism for propene formation in the MTO reaction over SAPO-34[J]. Catalysis Letters, 1993, 20(3): 329-336.
|
| [23] |
DAHL Ivar M, KOLBOE Stein. On the reaction mechanism for hydrocarbon formation from methanol over SAPO-34[J]. Journal of Catalysis, 1996, 161(1): 304-309.
|
| [24] |
PARK Tae-Yun, FROMENT Gilbert F. Kinetic modeling of the methanol to olefins process. 1. Model formulation[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4172-4186.
|
| [25] |
PARK Tae-Yun, FROMENT Gilbert F. Kinetic modeling of the methanol to olefins process. 2. Experimental results, model discrimination, and parameter estimation[J]. Industrial & Engineering Chemistry Research, 2001, 40(20): 4187-4196.
|
| [26] |
CHEN N Y, REAGAN W J. Evidence of autocatalysis in methanol to hydrocarbon reactions over zeolite catalysts[J]. Journal of Catalysis, 1979, 59(1): 123-129.
|
| [27] |
CHANG Clarence D. A kinetic model for methanol conversion to hydrocarbons[J]. Chemical Engineering Science, 1980, 35 (3): 619-622.
|
| [28] |
SCHOENFELDER Hendrik, HINDERER Juergen, WERTHER Joachim, et al. Methanol to olefins—Prediction of the performance of a circulating fluidized-bed reactor on the basis of kinetic experiments in a fixed-bed reactor[J]. Chemical Engineering Science, 1994, 49(24): 5377-5390.
|
| [29] |
SEDRAN U, MAHAY A, DE LASA H I. Modelling methanol conversion to hydrocarbons: Alternative kinetic models[J]. The Chemical Engineering Journal, 1990, 45(1): 33-42.
|
| [30] |
Rene BOS A N, TROMP Peter J J, AKSE Henk N. Conversion of methanol to lower olefins. kinetic modeling, reactor simulation, and selection[J]. Industrial & Engineering Chemistry Research, 1995, 34(11): 3808-3816.
|
| [31] |
史权, 张霖宙, 赵锁奇, 等. 炼化分子管理技术: 概念与理论基础[J]. 石油科学通报, 2016, 1(2): 270-278.
|
|
SHI Quan, ZHANG Linzhou, ZHAO Suoqi, et al. Molecular management for petroleum refining: Concepts and fundamentals[J]. Petroleum Science Bulletin, 2016, 1(2): 270-278.
|
| [32] |
CHEN Zhengyu, WANG Gang, ZHAO Suoqi, et al. Prediction of molecular distribution and temperature profile of FCC process through molecular-level kinetic modeling[J]. Chemical Engineering Science, 2022, 264: 118189.
|
| [33] |
CHEN D, GRØNVOLD A, MOLJORD K, et al. Methanol conversion to light olefins over SAPO-34: Reaction network and deactivation kinetics[J]. Industrial & Engineering Chemistry Research, 2007, 46(12): 4116-4123.
|
| [34] |
LEE Min-Kyung, KIM Jinsu, Jun-Hyung RYU, et al. Modeling of reaction and deactivation kinetics in methanol-to-olefins reaction on SAPO-34[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13227-13238.
|
| [35] |
ALWAHABI Saeed M, FROMENT Gilbert F. Single event kinetic modeling of the methanol-to-olefins process on SAPO-34[J]. Industrial & Engineering Chemistry Research, 2004, 43(17): 5098-5111.
|
| [36] |
胡浩. 甲醇制烯烃(MTO)催化反应工程的研究[D]. 上海: 华东理工大学, 2010.
|
|
HU Hao. Research of catalytic reaction engineering for methanol-to-olefin process[D]. Shanghai: East China University of Science and Technology, 2010.
|