化工进展 ›› 2025, Vol. 44 ›› Issue (6): 3288-3304.DOI: 10.16085/j.issn.1000-6613.2024-2070
• 特约评述 • 上一篇
收稿日期:2024-12-19
修回日期:2025-04-07
出版日期:2025-06-25
发布日期:2025-07-08
通讯作者:
王彧斐
作者简介:杨森(1998—),男,博士研究生,研究方向为绿氨供应链优化。E-mail:2023310239@student.cup.edu.cn。
基金资助:
YANG Sen(
), XUE Zijie, WANG Yufei(
), ZHAO Liang, XU Chunming
Received:2024-12-19
Revised:2025-04-07
Online:2025-06-25
Published:2025-07-08
Contact:
WANG Yufei
摘要:
利用可再生能源电解水为合成氨、甲醇等化学品提供“绿氢”是化工低碳化转型的关键举措之一。绿氢供给的间歇性与化工系统的连续性形成矛盾,对绿氢化工的发展提出了新的挑战。过程系统工程集成了多种工具,如计算流体力学、流程模拟、优化和控制等,这些工具在传统化学工业的研究与应用中已被广泛采用。在绿氢化工领域,这些工具同样展现出其优化系统运行、提升效率和经济性的巨大潜力。当前,大量研究工作已经证实了过程系统工程方法论在应对绿氢化工的新挑战和运行特性等方面的有效性。因此,本文从过程系统工程的角度,对绿氢化工的研究进展进行梳理。本文首先概述绿氢化工的电解制氢工段的技术现状;然后梳理不同的绿氢下游工艺路线;接着从过程系统工程的角度梳理当前绿氢化工中应用的各项工具和特点;随后,梳理在人工智能发展的背景下,过程系统工程在绿氢化工中的发展和应用;最后,展望推动绿氢化工的过程系统工程技术的发展方向,提出人工智能对相关技术进步和改造的促进方向。
中图分类号:
杨森, 薛姿杰, 王彧斐, 赵亮, 徐春明. 基于绿氢的化工低碳转型与研究现状[J]. 化工进展, 2025, 44(6): 3288-3304.
YANG Sen, XUE Zijie, WANG Yufei, ZHAO Liang, XU Chunming. Low carbon transformation and research status of chemical industry based on green hydrogen[J]. Chemical Industry and Engineering Progress, 2025, 44(6): 3288-3304.
| 指标 | 碱性电解 | 质子交换膜电解 | 固体氧化物电解 | 阴离子交换膜电解 |
|---|---|---|---|---|
电流密度 电压范围 操作温度 气压 负荷范围 氢气纯度 能量转化效率 装置寿命 装置成本 | 0.2~0.8A/cm² 1.4~3V 70~90℃ <30bar 15%~100% 99.9%~99.9998% 47~66kWh/Kg 60000h USD270/kW | 1~2A/cm² 1.4~2.5V 50~80℃ <30bar 5%~120% 99.9%~99.9999% 47~66kWh/Kg 50000~80000h USD400/kW | 0.3~1A/cm² 1.0~1.5V 700~850℃ 1bar 30%~125% 99.9% 35~50kWh/Kg <20000h >USD2000/kW | 0.2~2A/cm² 1.4~2.0V 40~60℃ <35bar 5%~100% 99.9%~99.999% 51.5~66kWh/Kg >5000h Unknown |
表1 电解槽技术指标[22]
| 指标 | 碱性电解 | 质子交换膜电解 | 固体氧化物电解 | 阴离子交换膜电解 |
|---|---|---|---|---|
电流密度 电压范围 操作温度 气压 负荷范围 氢气纯度 能量转化效率 装置寿命 装置成本 | 0.2~0.8A/cm² 1.4~3V 70~90℃ <30bar 15%~100% 99.9%~99.9998% 47~66kWh/Kg 60000h USD270/kW | 1~2A/cm² 1.4~2.5V 50~80℃ <30bar 5%~120% 99.9%~99.9999% 47~66kWh/Kg 50000~80000h USD400/kW | 0.3~1A/cm² 1.0~1.5V 700~850℃ 1bar 30%~125% 99.9% 35~50kWh/Kg <20000h >USD2000/kW | 0.2~2A/cm² 1.4~2.0V 40~60℃ <35bar 5%~100% 99.9%~99.999% 51.5~66kWh/Kg >5000h Unknown |
| 原料路线 | 原料消耗 | 碳排放(tCO2/tNH3) |
|---|---|---|
| 煤 | (1.4~1.5t原料煤)+(1.1~1.2t动力煤) | 3.0~3.2 |
| 天然气 | 1050~1150m3 | 1.6~1.8 |
| 绿氢 | 10000~10560kWh | <0.1 |
表2 不同原料制氨的碳排放情况[38-39]
| 原料路线 | 原料消耗 | 碳排放(tCO2/tNH3) |
|---|---|---|
| 煤 | (1.4~1.5t原料煤)+(1.1~1.2t动力煤) | 3.0~3.2 |
| 天然气 | 1050~1150m3 | 1.6~1.8 |
| 绿氢 | 10000~10560kWh | <0.1 |
| 原料路线 | 原料消耗 | 碳排放(tCO2/tCH3OH) |
|---|---|---|
| 煤 | 1.57t原料煤 | 2.75 |
| 天然气 | 1050m3 | 0.89 |
| 绿氢 | 2146m3 | -1.38 |
表3 不同原料制甲醇的碳排放情况[13]
| 原料路线 | 原料消耗 | 碳排放(tCO2/tCH3OH) |
|---|---|---|
| 煤 | 1.57t原料煤 | 2.75 |
| 天然气 | 1050m3 | 0.89 |
| 绿氢 | 2146m3 | -1.38 |
| [1] | 武强, 涂坤, 曾一凡. “双碳” 目标愿景下我国能源战略形势若干问题思考[J]. 科学通报, 2023, 68(15): 1884-1898. |
| WU Qiang, TU Kun, ZENG Yifan. Research on China’s energy strategic situation under the carbon peaking and carbon neutrality goals[J]. Chinese Science Bulletin, 2023, 68(15): 1884-1898. | |
| [2] | 中华人民共和国生态环境部. 中国应对气候变化的政策与行动2024年度报告[R]. 北京: 中华人民共和国生态环境部, 2024. |
| Ministry of Ecology and Environment of the People’s Republic of China. China’s Policies and Actions to Address Climate Change 2024 Annual Report[R]. Beijing: Ministry of Ecology and Environment of the People’s Republic of China, 2024. | |
| [3] | 白静. 全面进入绿色低碳轨道 加快实现美丽中国目标 《中共中央国务院关于加快经济社会发展全面绿色转型的意见》印发[J]. 中国科技产业, 2024(10): 20-23. |
| BAI Jing. Enter the green and low-carbon track in an all-round way and accelerate the realization of the goal of beautiful China. The Opinions of the State Council, the Central Committee of the Communist Party of China on Accelerating the All-round Green Transformation of Economic and Social Development was issued[J]. Science & Technology Industry of China, 2024(10): 20-23. | |
| [4] | 张香平, 海彬. 基于智慧能源系统的低碳化工过程[J]. 中国科学基金, 2023, 37(2): 238-245. |
| ZHANG Xiangping, Bin HAI. Low-carbon chemical processes based on smart energy systems[J]. Bulletin of National Natural Science Foundation of China, 2023, 37(2): 238-245. | |
| [5] | 中华人民共和国国家发展和改革委员会, 国家能源局. 国家发展改革委、国家能源局联合印发《氢能产业发展中长期规划(2021-2035年)》[EB/OL]. (2022-03-23) [2022-07-19]. . |
| National Development and Reform Commission of the People’s Republic of China, National Energy Administration. The National Development and Reform Commission and the National Energy Administration jointly issued the “Medium - and Long Term Plan for the Development of Hydrogen Energy Industry (2021-2035)” [EB/OL]. (2022-03-23) [2022-07-19]. . | |
| [6] | 蒲田, 胡建清, 周红军, 等. 炼化工业碳减排路径与电化工/电供能技术发展综述[J]. 石油科学通报, 2023, 8(4): 445-460. |
| PU Tian, HU Jianqing, ZHOU Hongjun, et al. Low-carbon pathways and electrochemical/electrification technologies development in the refining-chemical industry: A review[J]. Petroleum Science Bulletin, 2023, 8(4): 445-460. | |
| [13] | 付楚芮, 李景乐. 我国绿色甲醇产业现状与发展展望[J]. 煤质技术, 2024, 39(5): 27-36. |
| FU Churui, LI Jingle. Green methanol industry status and development outlook[J]. Coal Quality Technology, 2024, 39(5): 27-36. | |
| [14] | 孙晖, 孟祥海, 魏景海, 等. 绿电制氢生产氨的新场景与实践[J]. 化工进展, 2023, 42(2): 1098-1102. |
| SUN Hui, MENG Xianghai, WEI Jinghai, et al. New scene for ammonia synthesis by green hydrogen[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 1098-1102. | |
| [15] | DAOUTIDIS Prodromos, LEE Jay H, RANGARAJAN Srinivas, et al. Machine learning in process systems engineering: Challenges and opportunities[J]. Computers & Chemical Engineering, 2024, 181: 108523. |
| [16] | FALLAH VOSTAKOLA Mohsen, SALAMATINIA Babak, AMINI HORRI Bahman. A review on recent progress in the integrated green hydrogen production processes[J]. Energies, 2022, 15(3): 1209. |
| [17] | CHATENET Marian, POLLET Bruno G, DEKEL Dario R, et al. Water electrolysis: From textbook knowledge to the latest scientific strategies and industrial developments[J]. Chemical Society Reviews, 2022, 51(11): 4583-4762. |
| [18] | ZAINAL Bidattul Syirat, Pin Jern KER, MOHAMED Hassan, et al. Recent advancement and assessment of green hydrogen production technologies[J]. Renewable and Sustainable Energy Reviews, 2024, 189: 113941. |
| [19] | 葛书强, 杨中桂, 白洁, 等. 可再生能源制氢技术及其主要设备发展现状及展望[J]. 太原理工大学学报, 2024, 55(5): 759-787. |
| GE Shuqiang, YANG Zhonggui, BAI Jie, et al. Development status and prospect of hydrogen production technology by renewable energy and its main equipment[J]. Journal of Taiyuan University of Technology, 2024, 55(5): 759-787. | |
| [20] | OZCAN Hasan, EL-EMAM Rami S, AMINI HORRI Bahman. Thermochemical looping technologies for clean hydrogen production—Current status and recent advances[J]. Journal of Cleaner Production, 2023, 382: 135295. |
| [21] | SEBBAHI Seddiq, ASSILA Abdelmajid, ALAOUI BELGHITI Amine, et al. A comprehensive review of recent advances in alkaline water electrolysis for hydrogen production[J]. International Journal of Hydrogen Energy, 2024, 82: 583-599. |
| [22] | IRENA. Green hydrogen cost reduction: scaling up electrolysers to meet the 1.5℃ climate goal[R]. Abu Dhabi: International Renewable Energy Agency, 2020. |
| [23] | EMAM Abdelrahman S, HAMDAN Mohammad O, ABU-NABAH Bassam A, et al. A review on recent trends, challenges, and innovations in alkaline water electrolysis[J]. International Journal of Hydrogen Energy, 2024, 64: 599-625. |
| [24] | Shiyu BIN, CHEN Zeyi, ZHU Yanxi, et al. High-pressure proton exchange membrane water electrolysis: Current status and challenges in hydrogen production[J]. International Journal of Hydrogen Energy, 2024, 67: 390-405. |
| [25] | 赵涔凯, 邹杰鑫, 王旻, 等. 基于阴离子交换膜电解水的离聚物研究进展[J]. 材料导报, 2024, 38(8): 28-38. |
| ZHAO Cenkai, ZOU Jiexin, WANG Min, et al. Research progress of ionomers for anion exchange membrane water electrolysis[J]. Materials Reports, 2024, 38(8): 28-38. | |
| [26] | XU Yuhao, CAI Shanshan, CHI Bo, et al. Technological limitations and recent developments in a solid oxide electrolyzer cell: A review[J]. International Journal of Hydrogen Energy, 2024, 50: 548-591. |
| [27] | 李洋洋, 邓欣涛, 古俊杰, 等. 碱性水电解制氢系统建模综述及展望[J]. 汽车工程, 2022, 44(4): 567-582. |
| LI Yangyang, DENG Xintao, GU Junjie, et al. Comprehensive review and prospect of the modeling of alkaline water electrolysis system for hydrogen production[J]. Automotive Engineering, 2022, 44(4): 567-582. | |
| [28] | 周颖, 周红军, 徐春明. 氢能的思考及发展路径判断和实践[J]. 化工进展, 2022, 41(8): 4587-4592. |
| ZHOU Ying, ZHOU Hongjun, XU Chunming. Exploration of the development path for the hydrogen energy[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4587-4592. | |
| [29] | LIU Dr Anmin, YANG Yanan, REN Dr Xuefeng, et al. Current progress of electrocatalysts for ammonia synthesis through electrochemical nitrogen reduction under ambient conditions[J]. ChemSusChem, 2020, 13(15): 3766-3788. |
| [30] | GOMEZ Jamie R, GARZON Fernando. Preliminary economics for green ammonia synthesis via lithium mediated pathway[J]. International Journal of Energy Research, 2021, 45(9): 13461-13470. |
| [31] | CHENG Ming, XIAO Chong, XIE Yi. Photocatalytic nitrogen fixation: The role of defects in photocatalysts[J]. Journal of Materials Chemistry A, 2019, 7(34): 19616-19633. |
| [32] | GORBANEV Yury, VERVLOESSEM Elise, NIKIFOROV Anton, et al. Nitrogen fixation with water vapor by nonequilibrium plasma: Toward sustainable ammonia production[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(7): 2996-3004. |
| [33] | GÁLVEZ M E, FREI A, HALMANN M, et al. Ammonia production via a two-step Al2O3/AlN thermochemical cycle. 2. kinetic analysis[J]. Industrial & Engineering Chemistry Research, 2007, 46(7): 2047-2053. |
| [34] | 陈科宇, 徐金鑫, 吴桂波, 等. 绿氨产业现状及发展展望[J]. 化工进展, 2024, 43(5): 2544-2553. |
| CHEN Keyu, XU Jinxin, WU Guibo, et al. Current situation and development prospect of green ammonia industry[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2544-2553. | |
| [35] | 大安市人民政府. 大安风光制绿氢合成氨一体化项目[EB/OL]. (2024-12-23) [2025-02-16]. . |
| Da’an Municipal People’s Government. Da’an wind solar green hydrogen synthesis ammonia integration project[EB/OL]. (2024-12-23) [2025-02-16]. . | |
| [36] | 内蒙古自治区人民政府. “零碳产业”风正劲——在新能源领域“再造一个工业内蒙古”系列报道之三[EB/OL]. (2024-12-11) [2025-02-15]. . |
| The People’s Government of Inner Mongolia Autonomous Region. Zero carbon industry is thriving—Report Series 3 on “Creating an Industrial Inner Mongolia” in the field of new energy[EB/OL]. (2024-12-11) [2025-02-15]. . | |
| [37] | MOEVE. Cepsa and Yara Clean Ammonia seal an alliance to connect southern and northern Europe with green hydrogen, in the presence of the kings of Spain and the Netherlands[EB/OL]. (2023-06-14) [2025-02-17]. . |
| [38] | 宋小芳. 基于活性氧化铝负载催化剂的等离子体催化合成氨研究[D]. 杭州: 浙江工业大学, 2016. |
| SONG Xiaofang. Study on plasma catalytic synthesis of ammonia based on activated alumina supported catalyst[D]. Hangzhou: Zhejiang University of Technology, 2016. | |
| [39] | 王薇, 马曼, 曹越. 固碳、储氢、航运燃料、掺混发电:绿氨行业概览与展望[EB/OL]. (2022-12-22) [2023-5-17]. . |
| WANG Wei, MA Man, CHAO Yue. Carbon sequestration, hydrogen storage, shipping fuels, and blended power generation: Overview and prospects of the green ammonia industry[EB/OL]. (2022-12-22) [2023-5-17]. . | |
| [40] | BORA Neelam, KUMAR SINGH Akhilesh, Priti PAL, et al. Green ammonia production: Process technologies and challenges[J]. Fuel, 2024, 369: 131808. |
| [41] | INSTITUTE IRENA AND METHANOL. Innovation Outlook: Renewable Methanol[R]. Abu Dhabi: International Renewable Energy Agency, 2021. |
| [42] | DIETERICH Vincent, BUTTLER Alexander, HANEL Andreas, et al. Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch-fuels: A review[J]. Energy & Environmental Science, 2020, 13(10): 3207-3252. |
| [43] | RIVAROLO M, BELLOTTI D, MAGISTRI L, et al. Feasibility study of methanol production from different renewable sources and thermo-economic analysis[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2105-2116. |
| [44] | 新能网. 金风科技兴安盟风电耦合制50万吨绿色甲醇项目开工[EB/OL]. (2024-04-20) [2025-02-17]. . |
| New Energy Network. Goldwind Technology Xing’an League wind power coupling production 500000 tons green methanol project starts construction[EB/OL]. (2024-04-20) [2025-02-17]. . | |
| [45] | OFFSHORE-ENERGY. World’s 1st large-scale e-methanol project to fuel Maersk’s boxships[EB/OL]. (2022-03-02) [2025-02-18]. . |
| [46] | SCHAAF Tanja, Jochen GRÜNIG, SCHUSTER Markus Roman, et al. Methanation of CO2-storage of renewable energy in a gas distribution system[J]. Energy, Sustainability and Society, 2014, 4(1): 2. |
| [47] | FAISAL Shah, GAO Ciwei. A comprehensive review of integrated energy systems considering power-to-gas technology[J]. Energies, 2024, 17(18): 4551. |
| [48] | KANG Ligai, WANG Jinzhu, YUAN Xiaoxue, et al. Research on energy management of integrated energy system coupled with organic Rankine cycle and power to gas[J]. Energy Conversion and Management, 2023, 287: 117117. |
| [49] | Jupiter 1000. Welcome to the Jupiter 1000 project First industrial power-to-gas demonstrator in France[EB/OL]. (2022-05-15) [2025-02-19]. . |
| [50] | Voima Pohjolan. Sizeable investment in the production of green hydrogen and renewable finnish gas planned for the Kaanaa district of Pori[EB/OL]. (2022-05-04) [2025-02-15]. . |
| [51] | LITHEKO Andrew, OBOIRIEN Bilainu, PATEL Bilal. Life cycle assessment of power-to-gas (PtG) technology—Evaluation of system configurations of renewable hydrogen and methane production[J]. Sustainable Energy Technologies and Assessments, 2023, 60: 103527. |
| [52] | SCHULZ Hans. Short history and present trends of Fischer–Tropsch synthesis[J]. Applied Catalysis A: General, 1999, 186(1/2): 3-12. |
| [53] | Energy Center KIT. Carbon-neutral fuels from air and green power[EB/OL]. (2019-08-19) [2025-02-19]. . |
| [54] | Group Pörner. e-crude: climate-neutral crude oil substitute from CO 2, water and eco-power[EB/OL]. (2018-07-06) [2025-02-16]. . |
| [55] | SCHMIDT Patrick, BATTEIGER Valentin, ROTH Arne, et al. Power-to-liquids as renewable fuel option for aviation: A review[J]. Chemie Ingenieur Technik, 2018, 90(1/2): 127-140. |
| [56] | M M Faruque HASAN, ZANTYE Manali S, KAZI Monzure-Khoda. Challenges and opportunities in carbon capture, utilization and storage: A process systems engineering perspective[J]. Computers & Chemical Engineering, 2022, 166: 107925. |
| [57] | HUANG Renxing, KANG Lixia, LIU Yongzhong. Renewable synthetic methanol system design based on modular production lines[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112379. |
| [58] | Norbert MODLIŃSKI, SZCZEPANEK Krzysztof, Daniel NABAGŁO, et al. Mathematical procedure for predicting tube metal temperature in the second stage reheater of the operating flexibly steam boiler[J]. Applied Thermal Engineering, 2019, 146: 854-865. |
| [59] | YOO Chue-San, DIXON Anthony G. Modelling and simulation of a mixed-flow reactor for ammonia and methanol synthesis[J]. Chemical Engineering Science, 1988, 43(10): 2859-2865. |
| [60] | NIKZAD Amin, IRANSHAHI Davood, RANJBARAN Mohammad. Comparative evaluation of spherical radial flow reactor, spherical axial flow reactor, and tubular reactor in ammonia production by using CFD simulation[J]. Fuel, 2023, 350: 128772. |
| [61] | KHADEMI Mohammad Hasan, RAHIMPOUR Mohammad Reza, JAHANMIRI Abdolhossein. Start-up and dynamic analysis of a novel thermally coupled reactor for the simultaneous production of methanol and benzene[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 12092-12102. |
| [62] | MANENTI Flavio, CIERI Silvia, RESTELLI Marco, et al. Dynamic modeling of the methanol synthesis fixed-bed reactor[J]. Computers & Chemical Engineering, 2013, 48: 325-334. |
| [63] | ZHANG Xiaomeng, LI Guidong, ZHOU Zhengtao, et al. How to achieve flexible green ammonia production: Insights via three-dimensional computational fluid dynamics simulation[J]. Industrial & Engineering Chemistry Research, 2024, 63(28): 12547-12560. |
| [64] | KYRIMIS Stylianos, RAJA Robert, ARMSTRONG Lindsay-Marie. Enhancing the methanol yield of industrial-scale fixed bed reactors using computational fluid dynamics models[J]. Fuel, 2024, 368: 131511. |
| [65] | TEIMOURI Zahra, ABATZOGLOU Nicolas, DALAI Ajay K. Computational fluid dynamics simulation of fischer-tropsch synthesis coupled with a novel reaction kinetics using trimetallic catalyst over a biomass-based support[J]. Energy Conversion and Management, 2023, 296: 117659. |
| [66] | MIRVAKILI A, EKSIRI Z, BINIAZ P, et al. Two-dimensional mathematical modeling of an industrial ammonia synthesis reactor with CFD analysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 121: 1-19. |
| [67] | JAMSHIDI Shaghayegh, SEDAGHAT Mohammad Hadi, AMINI Ali, et al. CFD simulation and sensitivity analysis of an industrial packed bed methanol synthesis reactor[J]. Chemical Engineering and Processing - Process Intensification, 2023, 183: 109244. |
| [68] | ROSBO Joachim Weel, RITSCHEL Tobias K S, Steen HØRSHOLT, et al. Flexible operation, optimisation and stabilising control of a quench cooled ammonia reactor for power-to-ammonia[J]. Computers & Chemical Engineering, 2023, 176: 108316. |
| [69] | KONG Baiwen, ZHANG Qi, DAOUTIDIS Prodromos. Nonlinear model predictive control of flexible ammonia production[J]. Control Engineering Practice, 2024, 148: 105946. |
| [70] | GAO Xin, UNIVERSITY Xi’an Jiaotong, KONG Xinshan, et al. Analysis of dynamic characteristics of reconfigurable modular reactor systems for renewable methanol synthesis[J]. Industrial & Engineering Chemistry Research, 2024, 63(43): 18479-18496. |
| [71] | IZBASSAROV Daulet, Judit NYÁRI, LAITINEN Alpo, et al. A three-dimensional conjugate heat transfer model for methanol synthesis in a modular millireactor[J]. Chemical Engineering Science, 2022, 258: 117765. |
| [72] | CINTI Giovanni, FRATTINI Domenico, JANNELLI Elio, et al. Coupling Solid Oxide Electrolyser (SOE) and ammonia production plant[J]. Applied Energy, 2017, 192: 466-476. |
| [73] | FRATTINI D, CINTI G, BIDINI G, et al. A system approach in energy evaluation of different renewable energies sources integration in ammonia production plants[J]. Renewable Energy, 2016, 99: 472-482. |
| [74] | TALLAKSEN Joel, BAUER Fredric, HULTEBERG Christian, et al. Nitrogen fertilizers manufactured using wind power: Greenhouse gas and energy balance of community-scale ammonia production[J]. Journal of Cleaner Production, 2015, 107: 626-635. |
| [75] | MOIOLI Emanuele, SCHILDHAUER Tilman. Eco-techno-economic analysis of methanol production from biogas and power-to-X[J]. Industrial & Engineering Chemistry Research, 2022, 61(21): 7335-7348. |
| [76] | VÁZQUEZ Francisco Vidal, KOPONEN Joonas, RUUSKANEN Vesa, et al. Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept[J]. Journal of CO2 Utilization, 2018, 28: 235-246. |
| [77] | ADELUNG Sandra, DIETRICH Ralph-Uwe. Impact of the reverse water-gas shift operating conditions on the power-to-liquid fuel production cost[J]. Fuel, 2022, 317: 123440. |
| [78] | MARCHESE Marco, GIGLIO Emanuele, SANTARELLI Massimo, et al. Energy performance of power-to-liquid applications integrating biogas upgrading, reverse water gas shift, solid oxide electrolysis and Fischer-Tropsch technologies[J]. Energy Conversion and Management: X, 2020, 6: 100041. |
| [79] | DOS SANTOS Rafael Oliveira, DE SOUSA SANTOS Lizandro, PRATA Diego Martinez. Simulation and optimization of a methanol synthesis process from different biogas sources[J]. Journal of Cleaner Production, 2018, 186: 821-830. |
| [80] | BAENA-MORENO Francisco M, Laura PASTOR-PÉREZ, WANG Qiang, et al. Bio-methane and bio-methanol co-production from biogas: A profitability analysis to explore new sustainable chemical processes[J]. Journal of Cleaner Production, 2020, 265: 121909. |
| [81] | BIERNACKI Piotr, Tobias RÖTHER, PAUL Wilfried, et al. Environmental impact of the excess electricity conversion into methanol[J]. Journal of Cleaner Production, 2018, 191: 87-98. |
| [82] | BORGOGNA A, SALLADINI A, SPADACINI L, et al. Methanol production from refuse derived fuel: Influence of feedstock composition on process yield through gasification analysis[J]. Journal of Cleaner Production, 2019, 235: 1080-1089. |
| [83] | SOUSA Joana, WAIBLINGER Wendelin, FRIEDRICH Kaspar Andreas. Techno-economic study of an electrolysis-based green ammonia production plant[J]. Industrial & Engineering Chemistry Research, 2022, 61(39): 14515-14530. |
| [84] | 薛姿杰, 吴艳, 崔子元, 等. 基于经济性分析的长周期绿氨合成模型:考虑网电碳排放因子连续变化的影响[J/OL]. 化工进展: 1-17[2025-04-21]. . |
| XUE Zijie, WU Yan, CUI Ziyuan, et al. Long cycle green ammonia synthesis model based oneconomic analysis: considering the impact of continuouschanges in grid carbon emission factors[J/OL]. Chemical Industry and Engineering Progress: 1-17[2025-04-21]. . | |
| [85] | LEE Boreum, LEE Hyunjun, Dongjun LIM, et al. Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible?[J]. Applied Energy, 2020, 279: 115827. |
| [86] | SU Chenqing, WEI Haoran, WANG Zhanao, et al. Economic accounting and high-tech strategy for sustainable production: A case study of methanol production from CO2 hydrogenation[J]. International Journal of Hydrogen Energy, 2022, 47(62): 25929-25944. |
| [87] | YOUSAF Muhammad, MAHMOOD Asif, ELKAMEL Ali, et al. Techno-economic analysis of integrated hydrogen and methanol production process by CO2 hydrogenation[J]. International Journal of Greenhouse Gas Control, 2022, 115: 103615. |
| [88] | GU Yu, WANG Danfeng, CHEN Qianqian, et al. Techno-economic analysis of green methanol plant with optimal design of renewable hydrogen production: A case study in China[J]. International Journal of Hydrogen Energy, 2022, 47(8): 5085-5100. |
| [89] | DIETRICH Ralph-Uwe, ALBRECHT Friedemann G, MAIER Simon, et al. Cost calculations for three different approaches of biofuel production using biomass, electricity and CO2 [J]. Biomass and Bioenergy, 2018, 111: 165-173. |
| [90] | MARCHESE Marco, BUFFO Giulio, SANTARELLI Massimo, et al. CO2 from direct air capture as carbon feedstock for Fischer-Tropsch chemicals and fuels: Energy and economic analysis[J]. Journal of CO2 Utilization, 2021, 46: 101487. |
| [91] | NYHOLM Fredrik, TOPPINEN Sami, Henrik SAXÉN. Holistic evaluation method for concept-level study of power-to-liquids technologies for e-kerosene production[J]. Industrial & Engineering Chemistry Research, 2024, 63(46): 20264-20286. |
| [92] | ZHANG Hanfei, WANG Ligang, VAN HERLE Jan, et al. Techno-economic comparison of green ammonia production processes[J]. Applied Energy, 2020, 259: 114135. |
| [93] | NAMI Hossein, HENDRIKSEN Peter Vang, FRANDSEN Henrik Lund. Green ammonia production using current and emerging electrolysis technologies[J]. Renewable and Sustainable Energy Reviews, 2024, 199: 114517. |
| [94] | 李贵贤, 曹阿波, 孟文亮, 等. 耦合固体氧化物电解槽的CO2制甲醇过程设计与评价研究[J]. 化工学报, 2023, 74(7): 2999-3009. |
| LI Guixian, CAO Abo, MENG Wenliang, et al. Process design and evaluation of CO2 to methanol coupled with SOEC[J]. CIESC Journal, 2023, 74(7): 2999-3009. | |
| [95] | ZHOU Huairong, CAO Abo, MENG Wenliang, et al. Process integration and analysis of coupling solid oxide electrolysis cell (SOEC) and CO2 to methanol[J]. Energy, 2024, 307: 132652. |
| [96] | ISHAQ H, DINCER I. Dynamic analysis of a new solar-wind energy-based cascaded system for hydrogen to ammonia[J]. International Journal of Hydrogen Energy, 2020, 45(38): 18895-18911. |
| [97] | ISHAQ H, DINCER I. Dynamic modelling of a solar hydrogen system for power and ammonia production[J]. International Journal of Hydrogen Energy, 2021, 46(27): 13985-14004. |
| [98] | WEN Du, AZIZ Muhammad. Flexible operation strategy of an integrated renewable multi-generation system for electricity, hydrogen, ammonia, and heating[J]. Energy Conversion and Management, 2022, 253: 115166. |
| [99] | VERLEYSEN Kevin, PARENTE Alessandro, CONTINO Francesco. How sensitive is a dynamic ammonia synthesis process? Global sensitivity analysis of a dynamic Haber-Bosch process (for flexible seasonal energy storage)[J]. Energy, 2021, 232: 121016. |
| [100] | WEN Limei, HUANG Chao, DAI Zhongde, et al. Dynamic simulation and optimization for load regulation strategies of the green ammonia synthesis process[J]. Industrial & Engineering Chemistry Research, 2024, 63(45): 19662-19675. |
| [101] | RINALDI Riccardo, VISCONTI Carlo Giorgio. Flexible operations of a multi-tubular reactor for methanol synthesis from biogas exploiting green hydrogen[J]. Chemical Engineering Science, 2023, 272: 118611. |
| [102] | CUI Xiaoti, KÆR Søren Knudsen, NIELSEN Mads Pagh. Energy analysis and surrogate modeling for the green methanol production under dynamic operating conditions[J]. Fuel, 2022, 307: 121924. |
| [103] | ROBINSON Patrick J, LUYBEN William L. Plantwide control of a hybrid integrated gasification combined cycle/methanol plant[J]. Industrial & Engineering Chemistry Research, 2011, 50(8): 4579-4594. |
| [104] | Tibor SVITNIČ, SUNDMACHER Kai. Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach[J]. Applied Energy, 2022, 326: 120017. |
| [105] | NGUYEN Viet Hung, LAARI Arto, KOIRANEN Tuomas. The effect of green hydrogen feed rate variations on e-methanol synthesis by dynamic simulation[J]. Chemical Engineering Research and Design, 2024, 212: 293-306. |
| [106] | RADATZ Heiko, ELISCHEWSKI Johannes Martin, HEITMANN Matthias, et al. Design of equipment modules for flexibility[J]. Chemical Engineering Science, 2017, 168: 271-288. |
| [107] | LIN Bosong, WIESNER Theodore, MALMALI Mahdi. Performance of a small-scale Haber process: A techno-economic analysis[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(41): 15517-15531. |
| [108] | Fuel Cells Works. World’s First Successful Ammonia Synthesis Using Renewable Energy-Based Hydrogen and Power Generation[EB/OL]. (2018-10-22) [2022-10-21]. . |
| [7] | 邱一苇, 吉旭, 朱文聪, 等. 面向新能源规模化消纳的绿氢化工技术研究现状与关键支撑技术展望[J]. 中国电机工程学报, 2023, 43(18): 6934-6955. |
| QIU Yiwei, JI Xu, ZHU Wencong, et al. Research status of green hydrogen-based chemical engineering technology and prospect of key supporting technologies for large-scale utilization of new energies[J]. Proceedings of the CSEE, 2023, 43(18): 6934-6955. | |
| [8] | 中国氢能源及燃料电池产业创新战略联盟. 中国氢能源及燃料电池产业白皮书2020[R]. 北京: 人民日报出版社, 2021. |
| China Hydrogen Energy and Fuel Cell Industry Innovation Strategic Alliance. White Paper on China’s Hydrogen Energy and Fuel Cell Industry 2020[R]. Beijing:The People’s Daily Publishing House, 2021. | |
| [9] | IEA. Global hydrogen Review 2021[EB/OL]. (2021-10-01) [2022-07-18]. . |
| [10] | 吉旭, 周步祥, 贺革, 等. 大规模可再生能源电解水制氢合成氨关键技术与应用研究进展[J]. 工程科学与技术, 2022, 54(5): 1-11. |
| JI Xu, ZHOU Buxiang, HE Ge, et al. Research review of the key technology and application of large-scale water electrolysis powered by renewable energy to hydrogen and ammonia production[J]. Advanced Engineering Sciences, 2022, 54(5): 1-11. | |
| [11] | 李婷, 刘玮, 王喆, 等. 开启绿色氢能新时代之匙:中国2030年“可再生氢100”发展路线图[R]. 北京: 落基山研究所, 中国氢能联盟研究院, 2022. |
| LI Ting, LIU Wei, WANG Zhe, et al. The key to opening a new era of green hydrogen energy: China’s 2030 “renewable hydrogen 100” development roadmap[R]. Beijing: Rocky Mountain Research Institute, China Hydrogen Alliance Research Institute, 2022. | |
| [12] | 曾悦, 王月, 张学瑞, 等. 可再生能源合成绿氨研究进展及氢-氨储运经济性分析[J]. 化工进展, 2024, 43(1): 376-389. |
| ZENG Yue, WANG Yue, ZHANG Xuerui, et al. Research progress of green ammonia synthesis from renewable energy and economic analysis of hydrogen-ammonia storage and transportation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 376-389. | |
| [109] | KOSCHWITZ Pascal, BELLOTTI Daria, SANZ Miguel Cámara, et al. Dynamic parameter simulations for a novel small-scale power-to-ammonia concept[J]. Processes, 2023, 11(3): 680. |
| [110] | WEN Du, LIU Shicheng, NING Zhiyuan, et al. Techno-economic evaluation of hydrogen and ammonia as energy carriers in a multi-generation system[J]. Energy Conversion and Management, 2023, 277: 116670. |
| [111] | PALYS Matthew J, KUZNETSOV Anatoliy, TALLAKSEN Joel, et al. A novel system for ammonia-based sustainable energy and agriculture: Concept and design optimization[J]. Chemical Engineering and Processing - Process Intensification, 2019, 140: 11-21. |
| [112] | ZHAO Fei, LI Yalou, ZHOU Xiaoxin, et al. Co-optimization of decarbonized operation of coal-fired power plants and seasonal storage based on green ammonia co-firing[J]. Applied Energy, 2023, 341: 121140. |
| [113] | 刘康祥, 周家辉, 徐钢, 等. 面向高比例可再生能源消纳的光储氢醇一体化系统规划与调度[J]. 动力工程学报, 2023, 43(11): 1477-1486. |
| LIU Kangxiang, ZHOU Jiahui, XU Gang, et al. Planning and scheduling of integrated system of light hydrogen storage and methanol for high proportion of renewable energy consumption[J]. Journal of Chinese Society of Power Engineering, 2023, 43(11): 1477-1486. | |
| [114] | 张润之, 周家辉, 梁士兴, 等. 离网式风光氢醇一体化系统容量配置运行调度优化及经济性分析[J]. 热力发电, 2024, 53(2): 48-58. |
| ZHANG Runzhi, ZHOU Jiahui, LIANG Shixing, et al. Capacity configuration-operation scheduling optimization and economic analysis of the off grid wind and solar hydrogen alcohol integrated system[J]. Thermal Power Generation, 2024, 53(2): 48-58. | |
| [115] | WANG Changlong, WALSH Stuart D C, LONGDEN Thomas, et al. Optimising renewable generation configurations of off-grid green ammonia production systems considering Haber-Bosch flexibility[J]. Energy Conversion and Management, 2023, 280: 116790. |
| [116] | VERLEYSEN Kevin, PARENTE Alessandro, CONTINO Francesco. How does a resilient, flexible ammonia process look? Robust design optimization of a Haber-Bosch process with optimal dynamic control powered by wind[J]. Proceedings of the Combustion Institute, 2023, 39(4): 5511-5520. |
| [117] | FAHR Steffen, SCHIEDECK Matthias, SCHWARZHUBER Josef, et al. Design and thermodynamic analysis of a large-scale ammonia reactor for increased load flexibility[J]. Chemical Engineering Journal, 2023, 471: 144612. |
| [118] | MA Jiaze, REBARCHIK Michael, BHANDARI Saurabh, et al. Exploiting electricity market dynamics using flexible electrolysis units for retrofitting methanol synthesis[J]. Energy & Environmental Science, 2023, 16(5): 2346-2357. |
| [119] | WU Yan, ZHAO Tingting, TANG Shuo, et al. Research on design and multi-frequency scheduling optimization method for flexible green ammonia system[J]. Energy Conversion and Management, 2024, 300: 117976. |
| [120] | ZHOU Jiahui, ZHANG Ziyue, ZHANG Runzhi, et al. Optimal capacity and multi-stable flexible operation strategy of green ammonia systems: Adapting to fluctuations in renewable energy[J]. Energy Conversion and Management, 2024, 314: 118720. |
| [121] | Mariano MARTÍN, GROSSMANN Ignacio E. Optimal integration of a self sustained algae based facility with solar and/or wind energy[J]. Journal of Cleaner Production, 2017, 145: 336-347. |
| [122] | Mariano MARTÍN. Methodology for solar and wind energy chemical storage facilities design under uncertainty: Methanol production from CO2 and hydrogen[J]. Computers & Chemical Engineering, 2016, 92: 43-54. |
| [123] | ZHENG Yi, YOU Shi, LI Ximei, et al. Data-driven robust optimization for optimal scheduling of power to methanol[J]. Energy Conversion and Management, 2022, 256: 115338. |
| [124] | ALLMAN Andrew, DAOUTIDIS Prodromos, TIFFANY Douglas, et al. A framework for ammonia supply chain optimization incorporating conventional and renewable generation[J]. AIChE Journal, 2017, 63(10): 4390-4402. |
| [125] | MITRAI Ilias, PALYS Matthew J, DAOUTIDIS Prodromos. A two-stage stochastic programming approach for the design of renewable ammonia supply chain networks[J]. Processes, 2024, 12(2): 325. |
| [126] | LI Jiarong, LIN Jin, HEUSER Philipp-Matthias, et al. Co-planning of regional wind resources-based ammonia industry and the electric network: A case study of Inner Mongolia[J]. IEEE Transactions on Power Systems, 2022, 37(1): 65-80. |
| [127] | XU Weibin, LI Yang, XIANG Benlin, et al. Multi-period supply chain design and optimization for modular methanol production driven by renewable energy[J]. Energy Conversion and Management, 2024, 319: 118868. |
| [128] | LIU Haiquan, ZHOU Suyang, GU Wei, et al. Coordinated planning model for multi-regional ammonia industries leveraging hydrogen supply chain and power grid integration: A case study of Shandong[J]. Applied Energy, 2025, 377: 124456. |
| [129] | CHEEMA Izzat Iqbal, KREWER Ulrike. Operating envelope of Haber-Bosch process design for power-to-ammonia[J]. RSC Advances, 2018, 8(61): 34926-34936. |
| [130] | DENG Wu, HUANG Chao, LI Xiayang, et al. Dynamic simulation analysis and optimization of green ammonia production process under transition state[J]. Processes, 2022, 10(10): 2143. |
| [131] | Tobias KEßLER, KIENLE Achim. Robust design and operation of a multistage reactor for methanol synthesis from renewable resources[J]. Processes, 2023, 11(10): 2928. |
| [132] | SUN Zhixin, ZHANG Yuanchao, HUANG Hongji, et al. Modeling and simulation of dynamic characteristics of a green ammonia synthesis system[J]. Energy Conversion and Management, 2024, 300: 117893. |
| [133] | WANG Ganzhou, MITSOS Alexander, MARQUARDT Wolfgang. Renewable production of ammonia and nitric acid[J]. AIChE Journal, 2020, 66(6): e16947. |
| [134] | Tobias KEßLER, PLATE Christoph, BEHRENS Jessica, et al. Two degrees of freedom control of a multistage power-to-methanol reactor[J]. Computers & Chemical Engineering, 2025, 192: 108893. |
| [135] | HU Annan, CHENG Jun, LV Hongkun, et al. Rotation control method for improving the electrocatalytic reduction of CO2 to methanol under wind power fluctuations[J]. Industrial & Engineering Chemistry Research, 2024, 63(10): 4273-4282. |
| [136] | CHEN Scarlett, WU Zhe, RINCON David, et al. Machine learning-based distributed model predictive control of nonlinear processes[J]. AIChE Journal, 2020, 66(11): e17013. |
| [137] | WU Zhe, TRAN Anh, RINCON David, et al. Machine learning-based predictive control of nonlinear processes. Part Ⅰ: Theory[J]. AIChE Journal, 2019, 65(11): e16729. |
| [138] | WU Zhe, ALNAJDI Aisha, GU Quanquan, et al. Machine-learning-based predictive control of nonlinear processes with uncertainty[C]//2022 American Control Conference (ACC). June 8-10, 2022, Atlanta, GA, USA. IEEE, 2022: 2810-2816. |
| [139] | WAJEH Mohammad EL, GRANDERATH Marcel, MITSOS Alexander, et al. Distributed economic nonlinear model predictive control for flexible electrified biodiesel Production─Part Ⅱ: Sequential and iterative architectures with computational delay compensation[J]. Industrial & Engineering Chemistry Research, 2024, 63(42): 18013-18026. |
| [140] | WAJEH Mohammad EL, GRANDERATH Marcel, MITSOS Alexander, et al. Distributed economic nonlinear model predictive control for flexible electrified biodiesel Production─Part Ⅰ: Sequential architectures[J]. Industrial & Engineering Chemistry Research, 2024, 63(42): 17997-18012. |
| [141] | LIU Zijian, TIAN Wende, CUI Zhe, et al. An intelligent quantitative risk assessment method for ammonia synthesis process[J]. Chemical Engineering Journal, 2021, 420: 129893. |
| [142] | SCHWEIDTMANN Artur M, ESCHE Erik, FISCHER Asja, et al. Machine learning in chemical engineering: A perspective[J]. Chemie Ingenieur Technik, 2021, 93(12): 2029-2039. |
| [143] | PISTIKOPOULOS E N, Ana BARBOSA-POVOA, LEE Jay H, et al. Process systems engineering—The generation next?[J]. Computers & Chemical Engineering, 2021, 147: 107252. |
| [144] | LI Yuanzheng, DING Yizhou, HE Shangyang, et al. Artificial intelligence-based methods for renewable power system operation[J]. Nature Reviews Electrical Engineering, 2024, 1: 163-179. |
| [145] | SHOJAEI Seyed Mohammad, AGHAMOLAEI Reihaneh, GHAANI Mohammad Reza. Recent advancements in applying machine learning in power-to-X processes: A literature review[J]. Sustainability, 2024, 16(21): 9555. |
| [146] | NGUYEN Vo DAT, CHANG JaeHun, HONG Suk-Hoon, et al. Performance and ANN-based optimization of an advanced process for wet CO2-to-Methanol using a catalytic fluidized bed reactor integrated with separators[J]. Fuel, 2023, 343: 128045. |
| [147] | MOHAMMAD NEZHAD Pouria, ARJOMAND Alireza, PANAHI Mehdi. Design and optimization of a reactive divided-wall column for production of fischer-tropsch fuel: Unit operation for mini-scale power-to-liquid energy storage plants[J]. Journal of Energy Storage, 2024, 84: 110736. |
| [148] | PARK Jingyu, GBADAGO Dela Quarme, MORI Shinsuke, et al. Renewable ammonia synthesis via experiments and optimization using periodic operation and machine learning integrated approaches[J]. Energy Conversion and Management, 2025, 324: 119286. |
| [149] | Tibor SVITNIČ, SUNDMACHER Kai. Identifying standard and simple designs of power-to-methanol processes: The costs of complexity reduction[J]. Energy Conversion and Management, 2024, 307: 118325. |
| [150] | Dat-Nguyen VO, QI Meng, LEE Changha, et al. Advanced integration strategies and machine learning-based superstructure optimization for power-to-methanol[J]. Applied Energy, 2025, 378: 124731. |
| [151] | DENG Zhihua, ZHANG Lan, MIAO Bin, et al. A novel combination of machine learning and intelligent optimization algorithm for modeling and optimization of green ammonia synthesis[J]. Energy Conversion and Management, 2024, 311: 118429. |
| [152] | ZHONG Like, CUI Xiaoti, YAO Erren, et al. Optimal design and off-design performance improvement for power-to-methane system integrating solid oxide electrolysis cell with methanation reactor[J]. Fuel, 2024, 356: 129314. |
| [153] | TRIANTAFYLLOU Niki, PAPATHANASIOU Maria M. Deep learning enhanced mixed integer optimization: Learning to reduce model dimensionality[J]. Computers & Chemical Engineering, 2024, 187: 108725. |
| [154] | Cory ALLEN R, ISERI Funda, Doga DEMIRHAN C, et al. Improvements for decomposition based methods utilized in the development of multi-scale energy systems[J]. Computers & Chemical Engineering, 2023, 170: 108135. |
| [155] | ZARPELLON Giulia, Jason JO, LODI Andrea, et al. Parameterizing branch-and-bound search trees to learn branching policies[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(5): 3931-3939. |
| [156] | YILMAZ Kaan, Neil YORKE-SMITH. A study of learning search approximation in mixed integer branch and bound: Node selection in SCIP[J]. Ai, 2021, 2(2): 150-178. |
| [157] | KIM Jeongdong, QI Meng, PARK Jinwoo, et al. Revealing the impact of renewable uncertainty on grid-assisted power-to-X: A data-driven reliability-based design optimization approach[J]. Applied Energy, 2023, 339: 121015. |
| [158] | XIONG Kang, HU Weihao, CAO Di, et al. Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach[J]. Renewable Energy, 2023, 214: 216-232. |
| [159] | FAN Wei, JU Liwei, TAN Zhongfu, et al. Two-stage distributionally robust optimization model of integrated energy system group considering energy sharing and carbon transfer[J]. Applied Energy, 2023, 331: 120426. |
| [160] | GAO Hongjun, LIU Zhenyu, LIU Youbo, et al. A data-driven distributionally robust operational model for urban integrated energy systems[J]. CSEE Journal of Power and Energy Systems, 2022, 8(3): 789-800. |
| [161] | RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations[J]. Journal of Computational Physics, 2019, 378: 686-707. |
| [162] | CHEN Yuntian, LUO Yingtao, LIU Qiang, et al. Symbolic genetic algorithm for discovering open-form partial differential equations (SGA-PDE)[J]. Physical Review Research, 2022, 4(2): 023174. |
| [163] | CHEN Yuntian, HUANG Dou, ZHANG Dongxiao, et al. Theory-guided hard constraint projection (HCP): A knowledge-based data-driven scientific machine learning method[J]. Journal of Computational Physics, 2021, 445: 110624. |
| [1] | 李明, 周依, 南兰, 叶晓生. 自动优化连续合成研究进展[J]. 化工进展, 2025, 44(6): 3190-3198. |
| [2] | 王笑楠, 傅思维, 刘宽, 林琮盛, 林晓风. 能源材料替代与转型中的机器学习方法[J]. 化工进展, 2025, 44(5): 2767-2776. |
| [3] | 何林, 贺常晴, 隋红. 人工智能驱动新型界面分离材料的创制[J]. 化工进展, 2024, 43(4): 1649-1654. |
| [4] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
| [5] | 吴正浩, 周天航, 蓝兴英, 徐春明. 人工智能驱动化学品创新设计的实践与展望[J]. 化工进展, 2023, 42(8): 3910-3916. |
| [6] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
| [7] | 王子宗, 索寒生, 赵学良, 闫雅琨. 数字孪生智能乙烯工厂工业互联网平台的设计与构建[J]. 化工进展, 2023, 42(10): 5029-5036. |
| [8] | 胡锦文, 孟广源, 张之杰, 张宁, 张芯婉, 陈鹏, 李童, 刘勇弟, 张乐华. 人工智能在电化学水处理过程中的应用[J]. 化工进展, 2022, 41(S1): 497-506. |
| [9] | 杨友麒, 陈丙珍. 中国过程系统工程30年:回顾与展望[J]. 化工进展, 2022, 41(8): 3991-4008. |
| [10] | 张梦轩, 刘洪辰, 王敏, 蓝兴英, 石孝刚, 高金森. 化工过程的智能混合建模方法及应用[J]. 化工进展, 2021, 40(4): 1765-1776. |
| [11] | 曹建宗, 刘琦, 陈文通, 樊帅军, 要亚坤, 周权, 马采妮, 林宸雨, 马双忱. 典型湿法脱硫系统存在的问题及人工智能在优化运行中的应用[J]. 化工进展, 2020, 39(S1): 242-249. |
| [12] | 杨友麒. 化学工业的转型升级和过程系统工程(PSE)[J]. 化工进展, 2018, 37(03): 803-814. |
| [13] | 覃伟中,朱 兵,李 强,陈丙珍. 生物炼制的挑战与过程系统工程的机遇 [J]. 化工进展, 2010, 29(5): 922-. |
| [14] | 郭锦标,傅 军. PSE在石化科技创新中的应用 [J]. 化工进展, 2007, 26(4): 599-. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |