| [1] |
向速林, 楚明航, 刘丽贞, 等. 鄱阳湖流域赣江(南昌段)沉积物磷赋存形态特征及释放风险分析[J]. 湖泊科学, 2024, 36(4): 1121-1130.
|
|
XIANG Sulin, CHU Minghang, LIU Lizhen, et al. Characteristics and release risk of phosphorus fractions in sediments of Nanchang section of Ganjiang River, Lake Poyang Basin[J]. Journal of Lake Sciences, 2024, 36(4): 1121-1130.
|
| [2] |
韩锦诚, 王丹阳, 汤显强, 等. 洞庭湖区沉积物氮磷累积时空分布及其水沙响应机制[J]. 环境科学学报, 2024, 44(5): 187-197.
|
|
HAN Jincheng, WANG Danyang, TANG Xianqiang, et al. Distribution and spatiotemporal accumulation of nitrogen and phosphorus in sediments of Dongting Lake and their water-sediment response mechanism[J]. Acta Scientiae Circumstantiae, 2024, 44(5): 187-197.
|
| [3] |
曹文珍, 曾悦, 张玉珍, 等. 亚热带河道型水库沉积物-水界面磷赋存形态与迁移转化机制[J]. 环境科学学报, 2024, 44(1): 299-310.
|
|
CAO Wenzhen, ZENG Yue, ZHANG Yuzhen, et al. Speciation, migration, and release mechanism of phosphorus at the sediment-water interface of subtropical river-type reservoir[J]. Acta Scientiae Circumstantiae, 2024, 44(1): 299-310.
|
| [4] |
徐全, 易乐, 麻洋, 等. 铬污染土壤的电动修复研究[J]. 矿冶工程, 2024, 44(3): 124-129.
|
|
XU Quan, YI Le, MA Yang, et al. Electrokinetic remediation of chromium contaminated soil[J]. Mining and Metallurgical Engineering, 2024, 44(3): 124-129.
|
| [5] |
YUAN Hezhong, TAI Ziqiu, LI Qiang, et al. In-situ, high-resolution evidence from water-sediment interface for significant role of iron bound phosphorus in eutrophic lake[J]. Science of the Total Environment, 2020, 706: 136040.
|
| [6] |
HEINRICH Lena, ROTHE Matthias, BRAUN Burga, et al. Transformation of redox-sensitive to redox-stable iron-bound phosphorus in anoxic lake sediments under laboratory conditions[J]. Water Research, 2021, 189: 116609.
|
| [7] |
乐静全, 江伟欣, 潘伟杰, 等. 沉积物异化铁还原耦合植酸去磷酸化[J]. 环境科学与技术, 2024, 47(2): 53-59.
|
|
LE Jingquan, JIANG Weixin, PAN Weijie, et al. Phytic acid dephosphorylation coupled with dissimilatory iron reduction in sediment[J]. Environmental Science & Technology, 2024, 47(2): 53-59.
|
| [8] |
YUAN Hezhong, JIA Bingchan, ZENG Qingfei, et al. Dissimilatory nitrate reduction to ammonium (DNRA) potentially facilitates the accumulation of phosphorus in lake water from sediment[J]. Chemosphere, 2022, 303: 134664.
|
| [9] |
PING Qian, ZHANG Bingqian, ZHANG Zhipeng, et al. Speciation analysis and formation mechanism of iron-phosphorus compounds during chemical phosphorus removal process[J]. Chemosphere, 2023, 310: 136852.
|
| [10] |
CHOI Jeong-Hee, MARUTHAMUTHU Sundaram, LEE Hyun-Goo, et al. Removal of phosphate from agricultural soil by electrokinetic remediation with iron electrode[J]. Journal of Applied Electrochemistry, 2010, 40(6): 1101-1111.
|
| [11] |
黎睿, 汤显强, 胡艳平,等. 基于沉积物孔隙水电动导排的氮磷污染沉积物修复技术[J]. 工程科学与技术, 2025, 57(1): 234-243.
|
|
LI Rui, TANG Xianqiang, HU Yanping, et al. Response of nitrogen and phosphorus release flux at the sediment-water interface to the drainage of pore water[J].Advanced Engineering Sciences, 2025, 57(1):234-243.
|
| [12] |
顾鋆鋆, 黎睿, 吴兴熠, 等. 电动导排孔隙水对泥-水界面氮释放通量的控制效果研究[J]. 化工学报, 2022, 73(11): 5118-5127.
|
|
GU Junjun, LI Rui, WU Xingyi, et al. Study on the control effect of electrokinetic drainage of pore water on nitrogen release flux at the mud-water interface[J]. CIESC Journal, 2022, 73(11): 5118-5127.
|
| [13] |
吴兴熠, 黎睿, 汤显强, 等. 电动导排间隙水脱除底泥内源氮的性能[J]. 中国环境科学, 2021, 41(3): 1208-1218.
|
|
WU Xingyi, LI Rui, TANG Xianqiang, et al. Performance of separating sediment endogenous nitrogen via electrokinetic drainage of pore water[J]. China Environmental Science, 2021, 41(3): 1208-1218.
|
| [14] |
韩丁, 黎睿, 汤显强, 等. 电动脱除孔隙水削减底泥内源磷的效果研究[J]. 中国环境科学, 2020, 40(7): 3114-3123.
|
|
HAN Ding, LI Rui, TANG Xianqiang, et al. Performance of sediment phosphorus reduction via electrokinetic drainage of pore water[J]. China Environmental Science, 2020, 40(7): 3114-3123.
|
| [15] |
TANG Xianqiang, LI Rui, HAN Ding, et al. Impacts of electrokinetic isolation of phosphorus through pore water drainage on sediment phosphorus storage dynamics[J]. Environmental Pollution, 2020, 266: 115210.
|
| [16] |
陈婷, 梁启斌, 王艳霞, 等. 沉积物-上覆水界面有效铁浓度对内源磷再移动的影响[J]. 环境科学研究, 2023, 36(10): 1937-1945.
|
|
CHEN Ting, LIANG Qibin, WANG Yanxia, et al. Effect of DGT-labile Fe on endogenous phosphorus remobilization at the sediment-water interface[J]. Research of Environmental Sciences, 2023, 36(10): 1937-1945.
|
| [17] |
Quevauviller P, Mahwar R S. The standards, measurements and testing programme (SM&T) of the European Commission[C]. Workshop on development and use of environmental reference materials, 1996 .
|
| [18] |
孙猛, 包宇飞, 王雨春, 等. 澜沧江梯级水库沉积物磷形态特征及释放风险[J]. 中国环境科学, 2023, 43(7): 3634-3643.
|
|
SUN Meng, BAO Yufei, WANG Yuchun, et al. Characteristics of phosphorus fractions distribution and release risk of sediment in the cascade reservoirs in the middle and lower reaches of Lancang River[J]. China Environmental Science, 2023, 43(7): 3634-3643.
|
| [19] |
DING Shiming, SUN Qin, XU Di, et al. High-resolution simultaneous measurements of dissolved reactive phosphorus and dissolved sulfide: The first observation of their simultaneous release in sediments[J]. Environmental Science & Technology, 2012, 46(15): 8297-8304.
|
| [20] |
姜斯乔, 谢舒恬, 郑元铸, 等. 四种常见湖泊沉积物氮磷通量估算方法对比分析[J]. 湖泊科学, 2022, 34(6): 1923-1938.
|
|
JIANG Siqiao, XIE Shutian, ZHENG Yuanzhu, et al. Comparative analysis of four universal estimation methods of nitrogen and phosphorus fluxes in lake sediments[J]. Journal of Lake Sciences, 2022, 34(6): 1923-1938.
|
| [21] |
景建元, 袁亮, 张水勤, 等. 腐殖酸磷肥中的腐殖酸对磷迁移的影响及机理[J]. 中国农业科学, 2021, 54(23): 5032-5042.
|
|
JING Jianyuan, YUAN Liang, ZHANG Shuiqin, et al. Effects and mechanism of humic acid in humic acid enhanced phosphate fertilizer on fertilizer-phosphorus migration[J]. Scientia Agricultura Sinica, 2021, 54(23): 5032-5042.
|
| [22] |
李春越, 党廷辉, 王万忠, 等. 腐殖酸对农田土壤磷素吸附行为的影响研究[J]. 水土保持学报, 2011, 25(3): 77-82.
|
|
LI Chunyue, DANG Tinghui, WANG Wanzhong, et al. Influence of humic acid on the adsorption behavior of phosphorus in agricultural soil[J]. Journal of Soil and Water Conservation, 2011, 25(3): 77-82.
|
| [23] |
张娅洁, 朱亮. 生物质炭覆盖对太湖沉积物-水界面氮磷迁移与转化的影响[J]. 环境科学学报, 2022, 42(8): 246-259.
|
|
ZHANG Yajie, ZHU Liang. Effects of biochar covering on the migration and transformation of nitrogen and phosphorus at the sediment-water interface in Taihu Lake[J]. Acta Scientiae Circumstantiae, 2022, 42(8): 246-259.
|
| [24] |
DU Qing, ZHANG Shuaishuai, ANTONIETTI Markus, et al. Sustainable leaching process of phosphates from animal bones to alleviate the world phosphate crisis[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(26): 9775-9782.
|
| [25] |
YANG Fan, ZHANG Shuaishuai, SONG Jingpeng, et al. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility[J]. Angewandte Chemie International Edition, 2019, 58(52): 18813-18816.
|
| [26] |
THISTLETON J, T-A BERRY, PEARCE P, et al. Mechanisms of chemical phosphorus removal Ⅱ: iron (Ⅲ) salts[J]. Process Safety and Environmental Protection, 2002, 80(5): 265-269.
|
| [27] |
FYTIANOS K, VOUDRIAS E, RAIKOS N. Modelling of phosphorus removal from aqueous and wastewater samples using ferric iron[J]. Environmental Pollution, 1998, 101(1): 123-130.
|
| [28] |
陈方鑫. 湖泊沉积物内源磷释放特性及电化学控磷技术研究[D]. 北京: 中国地质大学(北京), 2021.
|
|
CHEN Fangxin. Study on release characteristics of endogenous phosphorus in lake sediments and electrochemical phosphorus control technology[D]. Beijing: China University of Geosciences, 2021.
|
| [29] |
ADRIANO D C, WENZEL W W, VANGRONSVELD J, et al. Role of assisted natural remediation in environmental cleanup[J]. Geoderma, 2004, 122(2/3/4): 121-142.
|
| [30] |
HORPPILA Jukka. Sediment nutrients, ecological status and restoration of lakes[J]. Water Research, 2019, 160: 206-208.
|
| [31] |
LIU Wen, WU Jinglu, ZENG Haiao, et al. Geochemical evidence of human impacts on deep Lake Fuxian, southwest China[J]. Limnologica, 2014, 45: 1-6.
|
| [32] |
TANG Xianqiang, LI Qingyun, WANG Zhenhua, et al. In situ electrokinetic isolation of cadmium from paddy soil through pore water drainage: Effects of voltage gradient and soil moisture[J]. Chemical Engineering Journal, 2018, 337: 210-219.
|
| [33] |
LI Xiaojing, WANG Lige, SUN Xueming, et al. Analysis of mobilization of inorganic ions in soil by electrokinetic remediation[J]. Frontiers of Structural and Civil Engineering, 2019, 13(6): 1463-1473.
|
| [34] |
Huser B J. Phosphorus sorption by sediments in eutrophic and acidic lakes:[M]. Minneapolis University of Minnesota, 2005.
|