化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3128-3144.DOI: 10.16085/j.issn.1000-6613.2023-0815
• 材料科学与技术 • 上一篇
谢蒙蒙1,2(), 刘健1(), 党蕊2(), 李美馨1,2, 林晓婷1, 苏舟1, 王洁1
收稿日期:
2023-05-15
修回日期:
2023-08-18
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
刘健,党蕊
作者简介:
谢蒙蒙(1997—),女,硕士研究生,研究方向为导电水凝胶及柔性可穿戴电子。E-mail:xiemeng1216@163.com。
基金资助:
XIE Mengmeng1,2(), LIU Jian1(), DANG Rui2(), LI Meixin1,2, LIN Xiaoting1, SU Zhou1, WANG Jie1
Received:
2023-05-15
Revised:
2023-08-18
Online:
2024-06-15
Published:
2024-07-02
Contact:
LIU Jian, DANG Rui
摘要:
离子导电水凝胶是一种具有高含水量、可拉伸性和良好生物相容性的高分子聚合物材料,聚合物网络间存在的自由离子使其表现出与人类皮肤非常相似的离子导电方式,在可穿戴传感设备、能量存储器件和生物医疗等应用领域展现出巨大潜力。本文简要介绍了离子导电水凝胶的研究背景与进展,讨论了离子导电水凝胶的制备方式,介绍了离子导电水凝胶在导电性、柔韧性、抗冻保水性、自愈合性、黏附性及生物相容性等功能特性方面的研究进展,分析和阐述了离子导电水凝胶材料相关的应用研究进展。最后,总结了离子导电水凝胶材料在稳定性、环境适应性、多功能协同匹配性等方面存在的问题与挑战,展望了离子导电水凝胶材料的发展趋势及前景,指出开发具有高导电性、极端环境稳定性、自愈合性能及生物可降解性的功能可调控离子导电水凝胶将成为下一步的研究重点,同时结合无线传感网络技术、自供电设备开发无线传感及自供电功能的可穿戴传感系统也将成为重要的研究方向之一。
中图分类号:
谢蒙蒙, 刘健, 党蕊, 李美馨, 林晓婷, 苏舟, 王洁. 离子导电水凝胶的制备及在柔性电子领域的应用[J]. 化工进展, 2024, 43(6): 3128-3144.
XIE Mengmeng, LIU Jian, DANG Rui, LI Meixin, LIN Xiaoting, SU Zhou, WANG Jie. Preparation of ionic conductive hydrogels and its applications in flexible electronic[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3128-3144.
水凝胶 | 导电介质 | 电导率/S·m-1 | 灵敏度(GF) | 断裂伸长率/% | 拉伸应力/kPa | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|
P(AA-AM)-Fe3+/CS-SO42- | Fe3+; SO42- | 3.04 | 6 | 1225 | 5100 | 传感器 | [ |
PAM/卡拉胶/KCl | KCl | — | 0.63 | 2000 | 550 | 传感器 | [ |
DA-Fe-PAA | Fe3+ | 30 | — | >2000 | 13 | 传感器 | [ |
P(SBMA-HEMA)/XLG | XLG;SBMA | 0.24 | 1.8 | 2000 | 270 | 传感器 | [ |
PVA/PVP/CNCs-Fe3+ | Fe3+ | — | 0.478 | 830 | 2100 | 传感器 | [ |
GMA-SA-PAM | NaCl | 5.26 | — | 407 | 21.63 | 传感器 | [ |
PAM-CMC/Ca2+ | Ca2+ | 1.4 | 1.42 | 1480 | 276 | 传感器 | [ |
PAM/SC/CMS-Na | Na+ | 6.12 | — | 3300 | 320 | 传感器 | [ |
PAM-SA/CaCl2 | CaCl2 | 8 | — | 400 | — | 超级电容器 | [ |
PAM/干酪素/LiCl | LiCl | 7.53 | — | 1465 | 168 | 传感器 | [ |
PVA-NaCl-甘油 | NaCl | 9.25 | — | 575±29 | 570±20 | 超级电容器 | [ |
PVA-SA-TA-Bx | Bx; Na+ | 2.69 | 15.98 | 600 | 23 | 传感器 | [ |
PAM-CS/NaCl | NaCl | 17 | 2 | 1350 | 200 | 传感器伤口敷料 | [ |
PAA-TA@CNC-Al3+ | AlCl3 | — | 7.8 | 2800 | 300 | 传感器 | [ |
AC/NaOH-尿素 | NaOH | 0.016 | 0.3 | 126 | 50 | 传感器 | [ |
PAM-CMC/LiCl | LiCl | — | 3.15 | 1363 | 22.8 | 传感器 | [ |
PAM-铁蛋白 | 铁蛋白 | 0.067 | 2.06 | 1400 | 99 | 传感器 | [ |
PAA-AAPBA/TA | CaCl2 | — | 0.79 | 7300 | 54 | 传感器 | [ |
PNA/PVP/TA/Fe3+ | Fe3+ | 0.79 | 3.61 | 720 | — | 传感器 | [ |
P(AA-AM)/SA/ZnSO4 | ZnSO4 | — | 2.9 | 4200 | 210 | 传感器 | [ |
SA/ZnSO4/P(AM-AA) | ZnSO4 | 0.34 | — | >10000 | 150 | 摩擦纳米发电机 | [ |
表1 离子导电水凝胶的性能与应用
水凝胶 | 导电介质 | 电导率/S·m-1 | 灵敏度(GF) | 断裂伸长率/% | 拉伸应力/kPa | 应用 | 参考文献 |
---|---|---|---|---|---|---|---|
P(AA-AM)-Fe3+/CS-SO42- | Fe3+; SO42- | 3.04 | 6 | 1225 | 5100 | 传感器 | [ |
PAM/卡拉胶/KCl | KCl | — | 0.63 | 2000 | 550 | 传感器 | [ |
DA-Fe-PAA | Fe3+ | 30 | — | >2000 | 13 | 传感器 | [ |
P(SBMA-HEMA)/XLG | XLG;SBMA | 0.24 | 1.8 | 2000 | 270 | 传感器 | [ |
PVA/PVP/CNCs-Fe3+ | Fe3+ | — | 0.478 | 830 | 2100 | 传感器 | [ |
GMA-SA-PAM | NaCl | 5.26 | — | 407 | 21.63 | 传感器 | [ |
PAM-CMC/Ca2+ | Ca2+ | 1.4 | 1.42 | 1480 | 276 | 传感器 | [ |
PAM/SC/CMS-Na | Na+ | 6.12 | — | 3300 | 320 | 传感器 | [ |
PAM-SA/CaCl2 | CaCl2 | 8 | — | 400 | — | 超级电容器 | [ |
PAM/干酪素/LiCl | LiCl | 7.53 | — | 1465 | 168 | 传感器 | [ |
PVA-NaCl-甘油 | NaCl | 9.25 | — | 575±29 | 570±20 | 超级电容器 | [ |
PVA-SA-TA-Bx | Bx; Na+ | 2.69 | 15.98 | 600 | 23 | 传感器 | [ |
PAM-CS/NaCl | NaCl | 17 | 2 | 1350 | 200 | 传感器伤口敷料 | [ |
PAA-TA@CNC-Al3+ | AlCl3 | — | 7.8 | 2800 | 300 | 传感器 | [ |
AC/NaOH-尿素 | NaOH | 0.016 | 0.3 | 126 | 50 | 传感器 | [ |
PAM-CMC/LiCl | LiCl | — | 3.15 | 1363 | 22.8 | 传感器 | [ |
PAM-铁蛋白 | 铁蛋白 | 0.067 | 2.06 | 1400 | 99 | 传感器 | [ |
PAA-AAPBA/TA | CaCl2 | — | 0.79 | 7300 | 54 | 传感器 | [ |
PNA/PVP/TA/Fe3+ | Fe3+ | 0.79 | 3.61 | 720 | — | 传感器 | [ |
P(AA-AM)/SA/ZnSO4 | ZnSO4 | — | 2.9 | 4200 | 210 | 传感器 | [ |
SA/ZnSO4/P(AM-AA) | ZnSO4 | 0.34 | — | >10000 | 150 | 摩擦纳米发电机 | [ |
1 | CHEN Tao, CHEN Yujie, REHMAN Ur Hafeez, et al. Ultratough, self-healing, and tissue-adhesive hydrogel for wound dressing[J]. ACS Applied Materials & Interfaces, 2018, 10(39): 33523-33531. |
2 | CHEN Yang, LIU Tao, WANG Guoyin, et al. Highly swelling, tough intelligent self-healing hydrogel with body temperature-response[J]. European Polymer Journal, 2020, 140: 110047. |
3 | PENG Xin, XIA Xianfeng, XU Xiayi, et al. Ultrafast self-gelling powder mediates robust wet adhesion to promote healing of gastrointestinal perforations[J]. Science Advances, 2021, 7(23): eabe8739. |
4 | ZHENG Chunxiao, YUE Yiying, GAN Lu, et al. Highly stretchable and self-healing strain sensors based on nanocellulose-supported graphene dispersed in electro-conductive hydrogels[J]. Nanomaterials, 2019, 9(7): 937. |
5 | YU Xiaohui, ZHENG Yong, ZHANG Haopeng, et al. Fast-recoverable, self-healable, and adhesive nanocomposite hydrogel consisting of hybrid nanoparticles for ultrasensitive strain and pressure sensing[J]. Chemistry of Materials, 2021, 33(15): 6146-6157. |
6 | CUI Jianbing, CHEN Jiwei, NI Zhongbin, et al. High-sensitivity flexible sensor based on biomimetic strain-stiffening hydrogel[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 47148-47156. |
7 | HE Bin, ZHOU Yanmin, WANG Zhipeng, et al. A multi-layered touch-pressure sensing ionogel material suitable for sensing integrated actuations of soft robots[J]. Sensors and Actuators A: Physical, 2018, 272: 341-348. |
8 | YANG Canhui, SUO Zhigang. Hydrogel ionotronics[J]. Nature Reviews Materials, 2018, 3(6): 125-142. |
9 | LIU Ziyang, WANG Yue, REN Yongyuan, et al. Poly(ionic liquid) hydrogel-based anti-freezing ionic skin for a soft robotic gripper[J]. Materials Horizons, 2020, 7(3): 919-927. |
10 | YING Binbin, CHEN Ryan Zeyuan, ZUO Runze, et al. An anti-freezing, ambient-stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics[J]. Advanced Functional Materials, 2021, 31(42): 2104665. |
11 | KIRIYA Daisuke, CHEN Kevin, Hiroki OTA, et al. Design of surfactant-substrate interactions for roll-to-roll assembly of carbon nanotubes for thin-film transistors[J]. Journal of the American Chemical Society, 2014, 136(31): 11188-11194. |
12 | YEOM Chiseon, CHEN Kevin, KIRIYA Daisuke, et al. Large-area compliant tactile sensors using printed carbon nanotube active-matrix backplanes[J]. Advanced Materials, 2015, 27(9): 1561-1566. |
13 | TAKEI Kuniharu, YU Zhibin, ZHENG Maxwell, et al. Highly sensitive electronic whiskers based on patterned carbon nanotube and silver nanoparticle composite films[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5): 1703-1707. |
14 | GAO Yuji, Hiroki OTA, SCHALER Ethan W, et al. Wearable microfluidic diaphragm pressure sensor for health and tactile touch monitoring[J]. Advanced Materials, 2017, 29(39): 1701985. |
15 | GUO Jing, WU Shanshan, WANG Yilei, et al. A salt-triggered multifunctional smart window derived from a dynamic polyampholyte hydrogel[J]. Materials Horizons, 2022, 9(12): 3039-3047. |
16 | RONG Qinfeng, LEI Wenwei, CHEN Lie, et al. Anti-freezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures[J]. Angewandte Chemie International Edition, 2017, 56(45): 14159-14163. |
17 | CHEN Jingsi, PENG Qiongyao, THUNDAT Thomas, et al. Stretchable, injectable, and self-healing conductive hydrogel enabled by multiple hydrogen bonding toward wearable electronics[J]. Chemistry of Materials, 2019, 31(12): 4553-4563. |
18 | WANG Zhiwen, ZHOU Hongwei, LAI Jialiang, et al. Extremely stretchable and electrically conductive hydrogels with dually synergistic networks for wearable strain sensors[J]. Journal of Materials Chemistry C, 2018, 6(34): 9200-9207. |
19 | LI Qianming, LIU Hu, ZHANG Shuaidi, et al. Superhydrophobic electrically conductive paper for ultrasensitive strain sensor with excellent anticorrosion and self-cleaning property[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21904-21914. |
20 | XIA Shan, SONG Shixin, JIA Fei, et al. A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring[J]. Journal of Materials Chemistry B, 2019, 7(30): 4638-4648. |
21 | SHAO Hui, WU Yih Chyng, LIN Zifeng, et al. Nanoporous carbon for electrochemical capacitive energy storage[J]. Chemical Society Reviews, 2020, 49(10): 3005-3039. |
22 | LIN Fengcai, WANG Zi, SHEN Yanping, et al. Natural skin-inspired versatile cellulose biomimetic hydrogels[J]. Journal of Materials Chemistry A, 2019, 7(46): 26442-26455. |
23 | LEE Hae-Ryung, KIM Chong-Chan, SUN Jeong-Yun. Stretchable ionics—A promising candidate for upcoming wearable devices[J]. Advanced Materials, 2018, 30(42): 1704403. |
24 | WU Jin, HAN Songjia, YANG Tengzhou, et al. Highly stretchable and transparent thermistor based on self-healing double network hydrogel[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 19097-19105. |
25 | LIU Hao, LI Moxiao, LIU Shaobao, et al. Spatially modulated stiffness on hydrogels for soft and stretchable integrated electronics[J]. Materials Horizons, 2020, 7(1): 203-213. |
26 | LI Jingjing, GENG Lifang, WANG Gang, et al. Self-healable gels for use in wearable devices[J]. Chemistry of Materials, 2017, 29(21): 8932-8952. |
27 | ZHANG Xiaohui, SHENG Nannan, WANG Linan, et al. Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors[J]. Materials Horizons, 2019, 6(2): 326-333. |
28 | HU Lixuan, CHEE Pei Lin, SUGIARTO Sigit, et al. Hydrogel-based flexible electronics[J]. Advanced Materials, 2023, 35(14): 2205326. |
29 | LI Lingling, LI Weizheng, WANG Xiaoliang, et al. Ultra-tough and recyclable ionogels constructed by coordinated supramolecular solvents[J]. Angewandte Chemie International Edition, 2022, 61(50): e202212512. |
30 | WANG Zhenwu, CONG Yang, FU Jun. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors[J]. Journal of Materials Chemistry B, 2020, 8(16): 3437-3459. |
31 | KUMAR Vipin, PARK Sangbaek, PARIDA Kaushik, et al. Multi-responsive supercapacitors: Smart solution to store electrical energy[J]. Materials Today Energy, 2017, 4: 41-57. |
32 | DING Hongyao, LIANG Xiaoxu, WANG Qiao, et al. A semi-interpenetrating network ionic composite hydrogel with low modulus, fast self-recoverability and high conductivity as flexible sensor[J]. Carbohydrate Polymers, 2020, 248: 116797. |
33 | CHEN Wei, BU Yunhao, LI Delin, et al. High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose[J]. Cellulose, 2020, 27(2): 853-865. |
34 | ZHENG Siyu, MAO Shihua, YUAN Jingfeng, et al. Molecularly engineered zwitterionic hydrogels with high toughness and self-healing capacity for soft electronics applications[J]. Chemistry of Materials, 2021, 33(21): 8418-8429. |
35 | HUANG Yiwan, QIAN Sanyu, ZHOU Ju, et al. Achieving swollen yet strengthened hydrogels by reorganizing multiphase network structure[J]. Advanced Functional Materials, 2023, 33(22): 2213549. |
36 | NIU Jiabao, WANG Jianquan, DAI Xiaofu, et al. Dual physically crosslinked healable polyacrylamide/cellulose nanofibers nanocomposite hydrogels with excellent mechanical properties[J]. Carbohydrate Polymers, 2018, 193: 73-81. |
37 | LIANG Yongzhi, YE Lina, SUN Xingyue, et al. Tough and stretchable dual ionically cross-linked hydrogel with high conductivity and fast recovery property for high-performance flexible sensors[J]. ACS Applied Materials & Interfaces, 2020, 12(1): 1577-1587. |
38 | LIU Sijun, LI Lin. Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor[J]. ACS Applied Materials & Interfaces, 2017, 9(31): 26429-26437. |
39 | HUANG Hailong, HAN Lu, FU Xiaobin, et al. Multiple stimuli responsive and identifiable zwitterionic ionic conductive hydrogel for bionic electronic skin[J]. Advanced Electronic Materials, 2020, 6(7): 2000239. |
40 | JIA Zhanrong, ZENG Yan, TANG Pengfei, et al. Conductive, tough, transparent, and self-healing hydrogels based on catechol-metal ion dual self-catalysis[J]. Chemistry of Materials, 2019, 31(15): 5625-5632. |
41 | ERFANI Amir, SEABERG Joshua, AICHELE Clint Philip, et al. Interactions between biomolecules and zwitterionic moieties: A review[J]. Biomacromolecules, 2020, 21(7): 2557-2573. |
42 | PENG Xu, LIU Huili, YIN Qin, et al. A zwitterionic gel electrolyte for efficient solid-state supercapacitors[J]. Nature Communications, 2016, 7: 11782. |
43 | LENG Kaitong, LI Guojie, GUO Jingjing, et al. A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries[J]. Advanced Functional Materials, 2020, 30(23): 2001317. |
44 | WANG Zhenwu, CHEN Jing, WANG Liufang, et al. Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels[J]. Journal of Materials Chemistry B, 2019, 7(1): 24-29. |
45 | WANG Liufang, GAO Guorong, ZHOU Yang, et al. Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors[J]. ACS Applied Materials & Interfaces, 2019, 11(3): 3506-3515. |
46 | 翟晓文, 武荣瑞, 姜胶东. 聚醚酯-无机盐复合物的研究[J]. 高分子材料科学与工程, 1999, 15(1): 132-135, 138. |
ZHAI Xiaowen, WU Rongrui, JIANG Jiaodong. Study on the complexes of polyether ester with inorganic salts[J]. Polymer Materials Science & Engineering, 1999, 15(1): 132-135, 138. | |
47 | 胡金龙, 全桦红, 王静成, 等. 温敏性水凝胶Pluronic F127载硫化铜纳米颗粒修复大鼠感染性创面[J]. 中国组织工程研究, 2023, 27(12): 1927-1931. |
HU Jinlong, QUAN Huahong, WANG Jingcheng, et al. Effect of copper sulfide nanoparticles loaded thermosensitive hydrogel Pluronic F127 on infected wound healing in rats[J]. Chinese Journal of Tissue Engineering Research, 2023, 27(12): 1927-1931. | |
48 | BAEK Jinsu, KIM Seyoung, Iloh SON, et al. Hydrolysis-driven viscoelastic transition in triblock copolyether hydrogels with acetal pendants[J]. ACS Macro Letters, 2021, 10(8): 1080-1087. |
49 | ALEID Sara, WU Mengchun, LI Renyuan, et al. Salting-in effect of zwitterionic polymer hydrogel facilitates atmospheric water harvesting[J]. ACS Materials Letters, 2022, 4(3): 511-520. |
50 | LIU Yanjun, CAO Wentao, MA Mingguo, et al. Ultrasensitive wearable soft strain sensors of conductive, self-healing, and elastic hydrogels with synergistic “soft and hard” hybrid networks[J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25559-25570. |
51 | QI Jiabin, WANG Aurelia Chi, YANG Weifeng, et al. Hydrogel-based hierarchically wrinkled stretchable nanofibrous membrane for high performance wearable triboelectric nanogenerator[J]. Nano Energy, 2020, 67: 104206. |
52 | LIU Tao, ZHANG Ripeng, LIU Jianzhi, et al. High strength and conductive hydrogel with fully interpenetrated structure from alginate and acrylamide[J]. e-Polymers, 2021, 21(1): 391-97. |
53 | BAI Jiahui, WANG Ran, WANG Xiaoming, et al. Biomineral calcium-ion-mediated conductive hydrogels with high stretchability and self-adhesiveness for sensitive iontronic sensors[J]. Cell Reports Physical Science, 2021, 2(11): 100623. |
54 | WANG Siheng, YU Le, WANG Shanshan, et al. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions[J]. Nature Communications, 2022, 13: 3408. |
55 | YAO Xue, ZHANG Sufeng, QIAN Liwei, et al. Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors[J]. Advanced Functional Materials, 2022, 32(33): 2204565. |
56 | XIA Shan, SONG Shixin, GAO Guanghui. Robust and flexible strain sensors based on dual physically cross-linked double network hydrogels for monitoring human-motion[J]. Chemical Engineering Journal, 2018, 354: 817-824. |
57 | JIANG Bing, LI Qingshan, HONG Wei, et al. Improvement of mechanical strength, thermal stability, swelling, moisture content of triple network hydrogels by carbon nanotubes[J]. IOP Conference Series: Materials Science & Engineering, 2019, 585: 012054. |
58 | ZHOU Linjie, PEI Xinjie, FANG Kun, et al. Super tough, ultra-stretchable, and fast recoverable double network hydrogels physically crosslinked by triple non-covalent interactions[J]. Polymer, 2020, 192: 122319. |
59 | ZHANG Haodong, SHI Ling Wa Eric, ZHOU Jinping. Recent developments of polysaccharide-based double-network hydrogels[J]. Journal of Polymer Science, 2023, 61(1): 7-43. |
60 | WANG Cong, ZHANG Ping, XIAO Wenqing, et al. Visible-light-assisted multimechanism design for one-step engineering tough hydrogels in seconds[J]. Nature Communications, 2020, 11: 4694. |
61 | CONG Jing, FAN Zhiwei, PAN Shaoshan, et al. Polyacrylamide/chitosan-based conductive double network hydrogels with outstanding electrical and mechanical performance at low temperatures[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34942-34953. |
62 | LIN Xinghuan, ZHANG Lina, DUAN Bo. Polyphenol-mediated chitin self-assembly for constructing a fully naturally resourced hydrogel with high strength and toughness[J]. Materials Horizons, 2021, 8(9): 2503-2512. |
63 | LIANG Yujia, WANG Kaifang, LI Jingjing, et al. Low-molecular-weight supramolecular-polymer double-network eutectogels for self-adhesive and bidirectional sensors[J]. Advanced Functional Materials, 2021, 31(45): 2104963. |
64 | WANG Guangyu, ZHANG Qian, WANG Qian, et al. Bio-based hydrogel transducer for measuring human motion with stable adhesion and ultrahigh toughness[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 24173-24182. |
65 | WEI Junjie, WANG Qigang. Hofmeister effect-aided assembly of enhanced hydrogel supercapacitor with excellent interfacial contact and reliability[J]. Small Methods, 2019, 3(11): 1900558. |
66 | MORELLE Xavier P, ILLEPERUMA Widusha R, KEVIN Tian, et al. Highly stretchable and tough hydrogels below water freezing temperature[J]. Advanced Materials, 2018, 30(35): e1801541. |
67 | GUAN Lin, YAN Su, LIU Xin, et al. Wearable strain sensors based on casein-driven tough, adhesive and anti-freezing hydrogels for monitoring human-motion[J]. Journal of Materials Chemistry B, 2019, 7(34): 5230-5236. |
68 | PENG Shuijiao, LIU Shuxuan, SUN Yujun, et al. Facile preparation and characterization of poly(vinyl alcohol)-NaCl-glycerol supramolecular hydrogel electrolyte[J]. European Polymer Journal, 2018, 106: 206-213. |
69 | ZHAO Li, REN Zhijun, LIU Xiong, et al. A multifunctional, self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(9): 11344-11355. |
70 | BAO Guangyu, HUO Ran, MA Zhenwei, et al. Ionotronic tough adhesives with intrinsic multifunctionality[J]. ACS Applied Materials & Interfaces, 2021, 13(31): 37849-37861. |
71 | SHAO Changyou, WANG Meng, MENG Lei, et al. Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties[J]. Chemistry of Materials, 2018, 30(9): 3110-3121. |
72 | TONG Ruiping, CHEN Guangxue, PAN Danhong, et al. Highly stretchable and compressible cellulose ionic hydrogels for flexible strain sensors[J]. Biomacromolecules, 2019, 20(5): 2096-2104. |
73 | ZHU Tianxue, CHENG Yan, CAO Chunyan, et al. A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance[J]. Chemical Engineering Journal, 2020, 385: 123912. |
74 | WANG Rongjie, CHI Wenhao, WAN Fuqiang, et al. Nanocage ferritin reinforced polyacrylamide hydrogel for wearable flexible strain sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(18): 21278-21286. |
75 | MO Jiaying, DAI Yuhang, ZHANG Chao, et al. Design of ultra-stretchable, highly adhesive and self-healable hydrogels via tannic acid-enabled dynamic interactions[J]. Materials Horizons, 2021, 8(12): 3409-3416. |
76 | PANG Qian, HU Hongtao, ZHANG Haiqi, et al. Temperature-responsive ionic conductive hydrogel for strain and temperature sensors[J]. ACS Applied Materials & Interfaces, 2022, 14(23): 26536-26547. |
77 | FAN Xiayue, ZHONG Cheng, LIU Jie, et al. Opportunities of flexible and portable electrochemical devices for energy storage: Expanding the spotlight onto semi-solid/solid electrolytes[J]. Chemical Reviews, 2022, 122(23): 17155-17239. |
78 | SHENG Feifan, YI Jia, SHEN Shen, et al. Self-powered smart arm training band sensor based on extremely stretchable hydrogel conductors[J]. ACS Applied Materials & Interfaces, 2021, 13(37): 44868-44877. |
79 | LI Qingsi, WEN Chiyu, YANG Jing, et al. Zwitterionic biomaterials[J]. Chemical Reviews, 2022, 122(23): 17073-17154. |
80 | LI Shineng, HE Xiaofeng, ZENG Zifan, et al. Mechanically ductile, ionically conductive and low-temperature tolerant hydrogel enabled by high-concentration saline towards flexible strain sensor[J]. Nano Energy, 2022, 103: 107789. |
81 | LIANG Yuning, DING Qiongling, WANG Hao, et al. Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring[J]. Nano-Micro Letters, 2022, 14(1): 183. |
82 | HAN Lu, LIU Kezhi, WANG Menghao, et al. Mussel-inspired adhesive and conductive hydrogel with long-lasting moisture and extreme temperature tolerance[J]. Advanced Functional Materials, 2018, 28(3): 1704195. |
83 | CAI Guofa, WANG Jiangxin, QIAN Kai, et al. Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection[J]. Advanced Science, 2017, 4(2): 1600190. |
84 | CHEN Fan, ZHOU Dan, WANG Jiahui, et al. Rational fabrication of anti-freezing, non-drying tough organohydrogels by one-pot solvent displacement[J]. Angewandte Chemie International Edition, 2018, 57(22): 6568-6571. |
85 | XIE Zhihui, LI Heng, MI Haoyang, et al. Freezing-tolerant, widely detectable and ultra-sensitive composite organohydrogel for multiple sensing applications[J]. Journal of Materials Chemistry C, 2021, 9(31): 10127-10137. |
86 | WANG Meixiang, CHEN Yongmei, GAO Yang, et al. Rapid self-recoverable hydrogels with high toughness and excellent conductivity[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26610-26617. |
87 | WU Zixuan, SHI Wenxiong, DING Haojun, et al. Ultrastable, stretchable, highly conductive and transparent hydrogels enabled by salt-percolation for high-performance temperature and strain sensing[J]. Journal of Materials Chemistry C, 2021, 9(39): 13668-13679. |
88 | YANG Ningning, QI Ping, REN Jing, et al. Polyvinyl alcohol/silk fibroin/borax hydrogel ionotronics: A highly stretchable, self-healable, and biocompatible sensing platform[J]. ACS Applied Materials & Interfaces, 2019, 11(26): 23632-23638. |
89 | DI Xiang, HOU Jiawen, YANG Mingming, et al. A bio-inspired, ultra-tough, high-sensitivity, and anti-swelling conductive hydrogel strain sensor for motion detection and information transmission[J]. Materials Horizons, 2022, 9(12): 3057-3069. |
90 | SUI Xiaojie, GUO Hongshuang, CHEN Pengguang, et al. Zwitterionic osmolyte-based hydrogels with antifreezing property, high conductivity, and stable flexibility at subzero temperature[J]. Advanced Functional Materials, 2020, 30(7): 1907986. |
91 | WEI Zhao, YANG Jianhai, ZHOU Jinxiong, et al. Self-healing gels based on constitutional dynamic chemistry and their potential applications[J]. Chemical Society Reviews, 2014, 43(23): 8114-8131. |
92 | YIN Jianyu, PAN Shenxin, WU Lili, et al. A self-adhesive wearable strain sensor based on a highly stretchable, tough, self-healing and ultra-sensitive ionic hydrogel[J]. Journal of Materials Chemistry C, 2020, 8(48): 17349-17364. |
93 | ZHANG Zhuo, GAO Zhiliang, WANG Yitong, et al. Eco-friendly, self-healing hydrogels for adhesive and elastic strain sensors, circuit repairing, and flexible electronic devices[J]. Macromolecules, 2019, 52(6): 2531-2541. |
94 | WANG Zheng, ZHANG Yanan, YIN Yijia, et al. High-strength and injectable supramolecular hydrogel self-assembled by monomeric nucleoside for tooth extraction wound healing[J]. Advanced Materials, 2022, 34(13): e2108300. |
95 | ZHENG Haiyan, LIN Nan, HE Yanyi, et al. Self-healing, self-adhesive silk fibroin conductive hydrogel as a flexible strain sensor[J]. ACS Applied Materials & Interfaces, 2021, 13(33): 40013-40031. |
96 | PEI Xinjie, ZHANG Hua, ZHOU Yang, et al. Stretchable, self-healing and tissue-adhesive zwitterionic hydrogels as strain sensors for wireless monitoring of organ motions[J]. Materials Horizons, 2020, 7(7): 1872-1882. |
97 | WANG Kaifang, WANG Hai, LI Jingjing, et al. Super-stretchable and extreme temperature-tolerant supramolecular-polymer double-network eutectogels with ultrafast in situ adhesion and flexible electrochromic behaviour[J]. Materials Horizons, 2021, 8(9): 2520-2532. |
98 | SU Xing, LUO Yang, TIAN Zhuoling, et al. Ctenophore-inspired hydrogels for efficient and repeatable underwater specific adhesion to biotic surfaces[J]. Materials Horizons, 2020, 7(10): 2651-2661. |
99 | MO Funian, CHEN Ze, LIANG Guojin, et al. Zwitterionic sulfobetaine hydrogel electrolyte building separated positive/negative ion migration channels for aqueous Zn-MnO2 batteries with superior rate capabilities[J]. Advanced Energy Materials, 2020, 10(16): 2000035. |
100 | WEI Hua, WANG Zhenwu, ZHANG Hua, et al. Ultrastretchable, highly transparent, self-adhesive, and 3D-printable ionic hydrogels for multimode tactical sensing[J]. Chemistry of Materials, 2021, 33(17): 6731-6742. |
101 | ZHANG Yabin, LI Tianyu, MIAO Luyang, et al. A highly sensitive and ultra-stretchable zwitterionic liquid hydrogel-based sensor as anti-freezing ionic skin[J]. Journal of Materials Chemistry A, 2022, 10(8): 3970-3988. |
102 | FU Qingjin, HAO Sanwei, MENG Lei, et al. Engineering self-adhesive polyzwitterionic hydrogel electrolytes for flexible zinc-ion hybrid capacitors with superior low-temperature adaptability[J]. ACS Nano, 2021, 15(11): 18469-18482. |
103 | YANG Jueying, CHEN Yu, ZHAO Lin, et al. Constructions and properties of physically cross-linked hydrogels based on natural polymers[J]. Polymer Reviews, 2022, 63(3): 574-612. |
104 | YUAN Yixin, ZHOU Jiulei, LU Guoqiang, et al. Highly stretchable, transparent, and self-adhesive ionic conductor for high-performance flexible sensors[J]. ACS Applied Polymer Materials, 2021, 3(3): 1610-1617. |
105 | ZHANG Wei, WU Baohu, SUN Shengtong, et al. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network[J]. Nature Communications, 2021, 12: 4082. |
106 | LI Gang, LI Chenglong, LI Guodong, et al. Development of conductive hydrogels for fabricating flexible strain sensors[J]. Small, 2022, 18(5): 2101518. |
107 | 王思恒, 杨欣欣, 刘鹤, 等. 导电水凝胶的制备及应用研究进展[J]. 化工进展, 2021, 40(5): 2646-2664. |
WANG Siheng, YANG Xinxin, LIU He, et al. Research progress in preparation and application of conductive hydrogels[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2646-2664. | |
108 | QIN Chaoran, LU Ang. Flexible, anti-freezing self-charging power system composed of cellulose based supercapacitor and triboelectric nanogenerator[J]. Carbohydrate Polymers, 2021, 274: 118667. |
109 | LONG You, BAI Ming, LIU Xinmeng, et al. A zwitterionic cellulose-based skin sensor for the real-time monitoring and antibacterial sensing wound dressing[J]. Carbohydrate Polymers, 2022, 297: 119974. |
110 | GAO Yang, JIA Fei, GAO Guanghui. Ultra-thin, transparent, anti-freezing organohydrogel film responded to a wide range of humidity and temperature[J]. Chemical Engineering Journal, 2022, 430: 132919. |
111 | GAO Wei, HIROKI Ota, DAISUKE Kiriya, et al. Flexible electronics toward wearable sensing[J]. Accounts of Chemical Research, 2019, 52(3): 523-533. |
112 | SHEN Zequn, ZHU Xiangyang, MAJIDI Carmel, et al. Cutaneous ionogel mechanoreceptors for soft machines, physiological sensing, and amputee prostheses[J]. Advanced Materials, 2021, 33(38): 2102069. |
113 | HUANG Hailong, HAN Lu, LI Junfeng, et al. Super-stretchable, elastic and recoverable ionic conductive hydrogel for wireless wearable, stretchable sensor[J]. Journal of Materials Chemistry A, 2020, 8(20): 10291-10300. |
114 | YANG Wenjing, ZHANG Rui, GUO Xian, et al. Supramolecular polyelectrolyte hydrogel based on conjoined double-networks for multifunctional applications[J]. Journal of Materials Chemistry A, 2022, 10(44): 23649-23665. |
115 | 汪小钰, 胡平, 操齐高, 等. 不同模式多功能柔性传感器研究进展[J]. 化工进展, 2022, 41(10): 5474-5493. |
WANG Xiaoyu, HU Ping, CAO Qigao, et al. Latest research progress of multifunctional flexible sensors with different modes[J]. Chemical Industry and Engineering Progress, 2022, 41(10): 5474-5493. | |
116 | LIU Jing, WANG Haiyan, LIU Tao, et al. Multimodal hydrogel-based respiratory monitoring system for diagnosing obstructive sleep apnea syndrome[J]. Advanced Functional Materials, 2022, 32(40): 2204686. |
117 | LIU Wan, XIE Ruijie, ZHU Jingyu, et al. A temperature responsive adhesive hydrogel for fabrication of flexible electronic sensors[J]. NPJ Flexible Electronics, 2022, 6: 68. |
118 | CHEN Haotian, SONG Yu, GUO Hang, et al. Hybrid porous micro structured finger skin inspired self-powered electronic skin system for pressure sensing and sliding detection[J]. Nano Energy, 2018, 51: 496-503. |
119 | PRASAD Eknath Lokhande, CHAVAN Umesh S, ABHISHEK Pandey. Materials and fabrication methods for electrochemical supercapacitors: Overview[J]. Electrochemical Energy Reviews, 2020, 3(1): 155-186. |
120 | LIU Zhuoxin, LIANG Guojin, ZHAN Yuexing, et al. A soft yet device-level dynamically super-tough supercapacitor enabled by an energy-dissipative dual-crosslinked hydrogel electrolyte[J]. Nano Energy, 2019, 58: 732-742. |
121 | CAO Xia, Yang JIE, WANG Ning, et al. Triboelectric nanogenerators driven self-powered electrochemical processes for energy and environmental science[J]. Advanced Energy Materials, 2016, 6(23): 1600665. |
122 | LIU Zhuo, LI Hu, SHI Bojing, et al. Wearable and implantable triboelectric nanogenerators[J]. Advanced Functional Materials, 2019, 29(20): 1808820. |
123 | XU Zhenyu, ZHOU Fenghua, YAN Huizhen, et al. Anti-freezing organohydrogel triboelectric nanogenerator toward highly efficient and flexible human-machine interaction at -30℃[J]. Nano Energy, 2021, 90: 106614. |
124 | GUAN Qingbao, LIN Guanghui, GONG Yuzhu, et al. Highly efficient self-healable and dual responsive hydrogel-based deformable triboelectric nanogenerators for wearable electronics[J]. Journal of Materials Chemistry A, 2019, 7(23): 13948-13955. |
125 | Sankar GANESH R, YOON Hong-Joon, KIM Sang-Woo. Recent trends of biocompatible triboelectric nanogenerators toward self-powered e-skin[J]. EcoMat, 2020, 2(4): e12065. |
126 | MA Xiaohao, JIANG Zhengfan, LIN Yuanjing. Flexible energy storage devices for wearable bioelectronics[J]. Journal of Semiconductors, 2021, 42(10): 101602. |
127 | LIU Yiming, WONG Tsz Hung, HUANG Xingcan, et al. Skin-integrated, stretchable, transparent triboelectric nanogenerators based on ion-conducting hydrogel for energy harvesting and tactile sensing[J]. Nano Energy, 2022, 99: 107442. |
128 | QIN Ying, MO Jilong, LIU Yanhua, et al. Stretchable triboelectric self-powered sweat sensor fabricated from self-healing nanocellulose hydrogels[J]. Advanced Functional Materials, 2022, 32(27): 2201846. |
129 | CHEN Guoqi, HU Oudong, LU Jing, et al. Highly flexible and adhesive poly(vinyl alcohol)/poly(acrylic amide-co-2-acrylamido-2-methylpropane sulfonic acid)/glycerin hydrogel electrolyte for stretchable and resumable supercapacitor[J]. Chemical Engineering Journal, 2021, 425: 131505. |
130 | HUANG Jianren, GU Jianfeng, LIU Jiantao, et al. Environment stable ionic organohydrogel as a self-powered integrated system for wearable electronics[J]. Journal of Materials Chemistry A, 2021, 9(30): 16345-16358. |
131 | LI Na, YANG Shuangquan, CHEN Haosen, et al. Mechano-electrochemical perspectives on flexible lithium-ion batteries[J]. Minerals Metallurgy Materials, 2022, 29(5): 1019-1036. |
132 | FU Guopeng, SOUCEK Mark D, Thein KYU. Fully flexible lithium ion battery based on a flame retardant, solid-state polymer electrolyte membrane[J]. Solid State Ionics, 2018, 7(320): 310-315. |
133 | QIN Dejun, XUE Lixin, DU Bing, et al. Flexible fluorine containing ionic binders to mitigate the negative impact caused by the drastic volume fluctuation from silicon nano-particles in high capacity anodes of lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(20): 10928-10934. |
134 | CHEN Minfeng, CHEN Jizhang, ZHOU Weijun, et al. High-performance flexible and self-healable quasi-solid-state zinc-ion hybrid supercapacitor based on borax-crosslinked polyvinyl alcohol/nanocellulose hydrogel electrolyte[J]. Journal of Materials Chemistry A, 2019, 7(46): 26524-26532. |
135 | WANG Shuaibing, ZHANG Dong, HE Xiaomin, et al. Polyzwitterionic double-network ionogel electrolytes for supercapacitors with cryogenic-effective stability[J]. Chemical Engineering Journal, 2022, 438: 135607. |
136 | LU Jing, GU Jianfeng, HU Oudong, et al. Highly tough, freezing-tolerant, healable and thermoplastic starch/poly(vinyl alcohol) organohydrogels for flexible electronic devices[J]. Journal of Materials Chemistry A, 2021, 9(34): 18406-18420. |
137 | BAO Dequan, WEN Zhen, SHI Jihong, et al. An anti-freezing hydrogel based stretchable triboelectric nanogenerator for biomechanical energy harvesting at sub-zero temperature[J]. Journal of Materials Chemistry A, 2020, 8(27): 13787-13794. |
138 | SHENG Feifan, ZHANG Bo, ZHANG Yihan, et al. Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring[J]. ACS Nano, 2022, 16(7): 10958-10967. |
139 | YANG Yanyu, WANG Xing, YANG Fei, et al. A universal soaking strategy to convert composite hydrogels into extremely tough and rapidly recoverable double-network hydrogels[J]. Advanced Materials, 2016, 28(33): 7178-7184. |
140 | CHEN Youyou, ZHANG Chen, YIN Rui, et al. Environmentally adaptive and durable hydrogels toward multi-sensory application[J]. Chemical Engineering Journal, 2022, 449: 137907. |
141 | 郑静霞, 陈国旗, 缪玥钥, 等. 高性能水凝胶传感器研究进展[J]. 功能高分子学报, 2022, 35(4): 299-313. |
ZHENG Jingxia, CHEN Guoqi, MIAO Yueyue, et al. Recent progress of hydrogel sensors with high performance[J]. Journal of Functional Polymers, 2022, 35(4): 299-313. | |
142 | WANG Jintao, WANG Liufang, WU Changsong, et al. Antibacterial zwitterionic polyelectrolyte hydrogel adhesives with adhesion strength mediated by electrostatic mismatch[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46816-46826. |
143 | SHEN Shihong, FAN Daidi, YUAN Yang, et al. An ultrasmall infinite coordination polymer nanomedicine-composited biomimetic hydrogel for programmed dressing-chemo-low level laser combination therapy of burn wounds[J]. Chemical Engineering Journal, 2021, 426: 130610. |
144 | KIM Hyun-Jun, KIM Jae-Hwan, Ki-Woo JUN, et al. Silk nanofiber-networked bio-triboelectric generator: Silk bio-TEG[J]. Advanced Energy Materials, 2016, 6(8): 1502329. |
145 | KANG Seung-Kyun, Jahyun KOO, LEE Yoon Kyeung, et al. Advanced materials and devices for bioresorbable electronics[J]. Accounts of Chemical Research, 2018, 51(5): 988-998. |
[1] | 刘萌萌, 秋列维, 万智卫, 李世婧, 许玉雨. 自愈水凝胶的设计原理及应用[J]. 化工进展, 2024, 43(3): 1350-1362. |
[2] | 剧芳. 基于银-硫配位的协同抗菌水凝胶的制备与性能[J]. 化工进展, 2024, 43(2): 1039-1046. |
[3] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
[4] | 陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610. |
[5] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[6] | 冯琬淇, 哈尼夏·巴合提null, 葛雨璇, 赵俭波. 磁性PASP/PAM半互穿水凝胶的制备及性能[J]. 化工进展, 2023, 42(6): 3130-3137. |
[7] | 赵毅, 杨臻, 王佳, 李静雯, 郑煜. 沥青胶结料自愈合行为分子动力学模拟研究进展[J]. 化工进展, 2023, 42(2): 803-813. |
[8] | 张赫, 李小可, 熊颖, 文劲. 基于水凝胶界面光蒸发的压裂返排液脱盐降污处理[J]. 化工进展, 2023, 42(2): 1073-1079. |
[9] | 李世文, 王亮, 李春虎. CuBi2O4/BiOBr@GH双功能光催化剂的制备及其光催化性能[J]. 化工进展, 2023, 42(12): 6363-6371. |
[10] | 仉洁, 王旭东, 杨逸飞, 任玥, 陈立成. 响应面优化温敏水凝胶汲取剂的制备及性能[J]. 化工进展, 2023, 42(10): 5363-5372. |
[11] | 王子航, 梁瑞升, 邓超和, 王佳韵. 离子凝胶复合吸附剂的制备及空气取水性能[J]. 化工进展, 2022, 41(S1): 389-396. |
[12] | 邱艺娟, 林佳伟, 秦济锐, 吴嘉茵, 林凤采, 卢贝丽, 唐丽荣, 黄彪. 双重动态共价键交联纳米纤维素导电水凝胶及其柔性传感器[J]. 化工进展, 2022, 41(8): 4406-4416. |
[13] | 常炜, 史秋兰, 赵正阳, 王瑞婷, 王志福, 赵俭波. 高内相乳液法制备聚丙烯酰胺多孔水凝胶及应用[J]. 化工进展, 2022, 41(7): 3832-3839. |
[14] | 陈彰旭, 陈冰冰, 王荣财, 叶晨光, 郑炳云. β-NaYF4:Yb3+,Tm3+/g-C3N4复合水凝胶材料的制备及其应用[J]. 化工进展, 2022, 41(6): 3146-3154. |
[15] | 沈娟莉, 付时雨. 纤维素基水凝胶的研究进展[J]. 化工进展, 2022, 41(6): 3022-3037. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |