化工进展 ›› 2024, Vol. 43 ›› Issue (2): 903-912.DOI: 10.16085/j.issn.1000-6613.2023-1364
张长胜1,2(), 文松1,2, 赵晋翀1,2, 卢方旭1,2, 姜杰1,2()
收稿日期:
2023-08-09
修回日期:
2023-10-20
出版日期:
2024-02-25
发布日期:
2024-03-07
通讯作者:
姜杰
作者简介:
张长胜(1989—),男,博士,研究方向为化工过程安全。E-mail:zhangcs.qday@sinopec.com。
ZHANG Changsheng1,2(), WEN Song1,2, ZHAO Jinchong1,2, LU Fangxu1,2, JIANG Jie1,2()
Received:
2023-08-09
Revised:
2023-10-20
Online:
2024-02-25
Published:
2024-03-07
Contact:
JIANG Jie
摘要:
进入21世纪,随着我国化工生产装置的不断投产,有更多化工过程产生了含氧有机气体,脱氧以实现其本质安全化处置成为一项重点课题。然而,由于场景多变、组成复杂以及脱氧深度需求不一等因素,脱氧技术发展仍有诸多问题。本文立足作者长期脱氧技术研究工作经验,概述了当前化工过程含氧有机气体化学脱氧技术的应用情况以及最新研究进展。基于不同场景下的脱氧需求,分析了各类化学脱氧技术适用性及技术竞争力。针对化工生产过程形成的高含氧、大通量、连续化含氧气体脱氧,指出催化脱氧具有流程简单、可操作性强、脱氧效果好等特点,在当前实际工业应用中更具竞争力,并从工艺、催化剂等方面进行了综合分析。基于当前各化学脱氧方式特点,指出含氧有机气体深度脱氧、高含氧有机气体脱氧以及温和脱氧等技术具有广阔市场需求,是未来脱氧技术发展的重要方向。
中图分类号:
张长胜, 文松, 赵晋翀, 卢方旭, 姜杰. 化工过程含氧有机气体化学脱氧研究进展[J]. 化工进展, 2024, 43(2): 903-912.
ZHANG Changsheng, WEN Song, ZHAO Jinchong, LU Fangxu, JIANG Jie. Advances in chemical deoxidation of oxygen-containing organic gases in chemical processes[J]. Chemical Industry and Engineering Progress, 2024, 43(2): 903-912.
场景 | 气体组成 | 氧气产生原因 |
---|---|---|
过氧酸氧化制环己酮工艺 | O2以及挥发性有机组分(需使用氮气等稀释至爆限以下) | 过氧化物分解 |
炼厂FCC及焦化工艺 | CH4, C2H4, C2H6, O2(100~1000μL/L), H2S等 | 催化剂再生阶段引入 |
电石生产工艺 | CO(>70%), CO2, N2, O2(0.2%~0.6%), N2等 | 空气原料引入 |
煤炭开采过程 | CH4, O2(8%~20%) | 井下抽采混入空气 |
乙烯法环氧乙烷工艺 | CH4(30%~80%), C2H4, O2(4%~10%) | O2原料反应不完全 |
表1 含氧气体产生场景及气体组成特点
场景 | 气体组成 | 氧气产生原因 |
---|---|---|
过氧酸氧化制环己酮工艺 | O2以及挥发性有机组分(需使用氮气等稀释至爆限以下) | 过氧化物分解 |
炼厂FCC及焦化工艺 | CH4, C2H4, C2H6, O2(100~1000μL/L), H2S等 | 催化剂再生阶段引入 |
电石生产工艺 | CO(>70%), CO2, N2, O2(0.2%~0.6%), N2等 | 空气原料引入 |
煤炭开采过程 | CH4, O2(8%~20%) | 井下抽采混入空气 |
乙烯法环氧乙烷工艺 | CH4(30%~80%), C2H4, O2(4%~10%) | O2原料反应不完全 |
类型 | 反应温度/℃ | 牺牲剂 | 应用场景 | 发展阶段 |
---|---|---|---|---|
焦炭燃烧 | 500~1000 | 碳材料 | 煤层气脱氧等 | 商业应用 |
催化脱氧 | 50~300 | H2、C、 有机气等 | 广泛 | 商业应用 |
化学吸收 | 室温~200 | 可变价元素 | 气体精制微量氧脱除 | 实验室及中试 |
表2 化学脱氧技术总结
类型 | 反应温度/℃ | 牺牲剂 | 应用场景 | 发展阶段 |
---|---|---|---|---|
焦炭燃烧 | 500~1000 | 碳材料 | 煤层气脱氧等 | 商业应用 |
催化脱氧 | 50~300 | H2、C、 有机气等 | 广泛 | 商业应用 |
化学吸收 | 室温~200 | 可变价元素 | 气体精制微量氧脱除 | 实验室及中试 |
活性组分 | 使用条件 | 残氧体积分数 | 应用场景 | 机构 | 引文 |
---|---|---|---|---|---|
Pd | 63℃,O2体积分数0.2% | <0.5μL/L | 合成气脱氧 | 大连凯利特催化工程技术有限公司 | [ |
MnO x | 常温,O2体积分数<100μL/L | <0.1μL/L | 聚合级液态丙烯脱氧 | 大连化学物理研究所 | [ |
Pt/Ru等 | 100℃,O2体积分数<1.0% | 0.1μL/L | FCC干气脱氧 | 中国石化 | [ |
Pd | 常压,150℃,O2体积分数0.2%~0.5% | <1μL/L | 合成气脱氧 | 兰州化学物理研究所 | [ |
Pd | 20~50℃,1.5~2.4MPa,O2体积分数15~300μL/L | <2μL/L | 液态丙烯脱氧 | 华硕科技有限公司 | [ |
Co-Mo | 80℃,O2体积分数0.2% | <10μL/L | H2精制脱氧 | 华东理工大学 | [ |
Ag | <80℃,O2体积分数0.2% | 低于检测 | 烯烃临氢脱氧 | 贝尔法斯特皇后大学等 | [ |
Cu/CeO2 | 400~800℃,O2体积分数5%~14% | <1000μL/L | 煤层气脱氧 | 山西煤炭化学研究所 | [ |
Cu/Mn | 200℃,O2体积分数12%~18% | <1% | PO装置尾气脱氧 | 辽宁石油化工大学 | [ |
Cu/Mo | 400~500℃,O2体积分数3% | <0.6% | 煤层气脱氧 | 中国石化 | [ |
表3 脱氧催化剂种类及应用场景举例
活性组分 | 使用条件 | 残氧体积分数 | 应用场景 | 机构 | 引文 |
---|---|---|---|---|---|
Pd | 63℃,O2体积分数0.2% | <0.5μL/L | 合成气脱氧 | 大连凯利特催化工程技术有限公司 | [ |
MnO x | 常温,O2体积分数<100μL/L | <0.1μL/L | 聚合级液态丙烯脱氧 | 大连化学物理研究所 | [ |
Pt/Ru等 | 100℃,O2体积分数<1.0% | 0.1μL/L | FCC干气脱氧 | 中国石化 | [ |
Pd | 常压,150℃,O2体积分数0.2%~0.5% | <1μL/L | 合成气脱氧 | 兰州化学物理研究所 | [ |
Pd | 20~50℃,1.5~2.4MPa,O2体积分数15~300μL/L | <2μL/L | 液态丙烯脱氧 | 华硕科技有限公司 | [ |
Co-Mo | 80℃,O2体积分数0.2% | <10μL/L | H2精制脱氧 | 华东理工大学 | [ |
Ag | <80℃,O2体积分数0.2% | 低于检测 | 烯烃临氢脱氧 | 贝尔法斯特皇后大学等 | [ |
Cu/CeO2 | 400~800℃,O2体积分数5%~14% | <1000μL/L | 煤层气脱氧 | 山西煤炭化学研究所 | [ |
Cu/Mn | 200℃,O2体积分数12%~18% | <1% | PO装置尾气脱氧 | 辽宁石油化工大学 | [ |
Cu/Mo | 400~500℃,O2体积分数3% | <0.6% | 煤层气脱氧 | 中国石化 | [ |
1 | XIONG Wei, GU Xiangkui, ZHANG Zhenhua, et al. Fine cubic Cu2O nanocrystals as highly selective catalyst for propylene epoxidation with molecular oxygen[J]. Nature Communications, 2021, 12: 6429. |
2 | 史延强, 夏玥穜, 温朗友, 等. 过氧化氢及其基本有机化学品绿色合成技术[J]. 化工进展, 2021, 40(4): 2048-2059. |
SHI Yanqiang, XIA Yuetong, WEN Langyou, et al. Hydrogen peroxide and its green synthesis of basic organic chemicals[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 2048-2059. | |
3 | 袁浩然, 汪玲瑶, 杜仁峰, 等. 分子氧氧化法合成ε-己内酯的研究进展[J]. 中国科学(化学), 2020, 50(2): 245-258. |
YUAN Haoran, WANG Lingyao, DU Renfeng, et al. Research progress in synthesis of ε-caprolactone by molecular oxygen oxidation[J]. Scientia Sinica Chimica, 2020, 50(2): 245-258. | |
4 | LIU Yujia, ZHAO Chenyang, SUN Bing, et al. TS-1 with abundant micropore channel-supported Au catalysts toward improved performance in gas-phase epoxidation of propylene[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(18): 7042-7052. |
5 | 张宇杰, 吕权, 李夏冰, 等. 微界面强化蒽醌法制双氧水的氧化工段的模拟计算研究[J]. 南京大学学报(自然科学), 2023, 59, 3, 494-502. |
ZHANG Yujie, Quan LYU, LI Xiabing, et al. Simulation calculation study of microinterface enhanced oxidation section in hydrogen peroxide production by anthraquinone method[J]. Journal of Nanjing University (natural science), 2023, 59, 3, 494-502. | |
6 | CHAI Yuxi, ZHANG Yanan, TAN Yannan, et al. Life cycle assessment of high concentration organic wastewater treatment by catalytic wet air oxidation[J]. Chinese Journal of Chemical Engineering, 2023, 56: 80-88. |
7 | RODRIGUES Alana Alves, SILVA Márcio J DA, FERREIRA Sukarno Olavo, et al. Assessment of the metal exchanged phosphomolybdic acid salt-catalyzed nerol oxidation reactions with hydrogen peroxide[J]. Molecular Catalysis, 2023, 545: 113221. |
8 | 王梦秋, 龚惠娟, 樊杨梅, 等. 双氧水对亚硫酸铵的氧化特性[J]. 化工进展, 2014, 33(2): 505-509. |
WANG Mengqiu, GONG Huijuan, FAN Yangmei, et al. Oxidation characteristics of ammonium sulfite using hydrogen peroxide[J]. Chemical Industry and Engineering Progress, 2014, 33(2): 505-509. | |
9 | Daicel Chemical Industries Ltd, Process for producing epsilon-caprolactone : US 6936724[P]. |
10 | 大赛璐化学工业株式会社. ε-己内酯的制备方法: CN100363360[P]. 2008-01-23. |
Daicel Chemical Industries Ltd. Methods for producing epsilon-caprolactone: CN100363360[P]. 2008-01-23. | |
11 | 任金成, 任铎. 干气提浓乙烯技术在茂名石化炼油厂的工业应用[J]. 中外能源, 2011, 16(5): 103-106. |
REN Jincheng, REN Duo. The commercial-scale application of technology for recovering concentrated ethylene from dry gas in refinery of SINOPEC Maoming company[J]. Sino-Global Energy, 2011, 16(5): 103-106. | |
12 | 张敬升, 李东风. 炼厂干气的回收和利用技术概述[J]. 化工进展, 2015, 34(9): 3207-3215. |
ZHANG Jingsheng, LI Dongfeng. Overview on recovery technologies of refinery dry gas[J]. Chemical Industry and Engineering Progress, 2015, 34(9): 3207-3215. | |
13 | 张礼树, 张杰, 韦光建, 电石炉气净化技术研究进展 [J]. 2019, 5, 46, 160-162. |
ZHANG Lishu, ZHANG Jie, WEI Guangjian. Research progress of carbide furnace vent gas purification technology[J]. Guangdong Chemical Industry, 2019, 5, 46, 160-162. | |
14 | 付山强. 电石炉气在氯碱行业中的应用[J]. 聚氯乙烯, 2020, 48(7): 5-6. |
FU Shanqiang. Application of calcium carbide furnace gas in chlor-alkali industry[J]. Polyvinyl Chloride, 2020, 48(7): 5-6. | |
15 | 王海洋, 张信伟, 李红营, 等. 煤层气脱氧催化剂制备及其性能研究[J]. 天然气化工(C1化学与化工), 2021, 46(1): 28-33. |
WANG Haiyang, ZHANG Xinwei, LI Hongying, et al. Preparation and performance of catalysts for deoxidization of coal-bed methane[J]. Natural Gas Chemical Industry, 2021, 46(1): 28-33. | |
16 | 张进华, 刘书贤, 秦强, 等 .煤层气脱氧技术研究进展[J]. 洁净煤技术, 2021, 27(5): 115-1223. |
ZHANG Jinhua, LIU Shuxian, QIN Qiang, et al. Research and development on deoxidation technology of coal bed methane[J]. Clean Coal Technology, 2021, 27(5): 115-123. | |
17 | 张斌, 肖露. 溶液吸收法浓缩低浓度含氧煤层气[J]. 广东化工, 2016, 43(21): 90-91. |
Zhang BIN, LU Xiao. Concentration of coal mine methane(CMM) by absorption method[J]. Guangdong Chemical Industry, 2016, 43(21): 90-91. | |
18 | 金建辉. Ce基整体催化剂的制备及其甲烷贫氧催化燃烧性能研究[D]. 大连: 大连理工大学, 2017. |
JIN Jianhui. Preparation of Ce-based monolithic catalyst and its catalytic combustion performance for methane with poor oxygen[D]. Dalian: Dalian University of Technology, 2017. | |
19 | 李井辉, 薛之化, 吴晓军, 等. 氯醇法环氧丙烷含氧尾气的回收利用[J]. 氯碱工业, 2009, 45(12): 28-33. |
LI Jinghui, XUE Zhihua, WU Xiaojun, et al. Recycle of oxygen-containing tail gas from propylene epoxide production by chlorohydrination process[J]. Chlor-Alkali Industry, 2009, 45(12): 28-33. | |
20 | 郭学东, 李锡铭, 艾秒. 氯醇法制环氧丙烷中废渣的路用性能试验研究[J]. 科学技术与工程, 2017, 17(12): 273-278. |
GUO Xuedong, LI Ximing, AI Miao. Experimental study on the road performance of the waste residue from propylene oxide by chlorohydrin[J]. Science Technology and Engineering, 2017, 17(12): 273-278. | |
21 | 陈凯平. 氯醇法制环氧丙烷的国外技术进展[J]. 氯碱工业, 2000, 36(2): 26-32. |
CHEN Kaiping. International technological progress in the preparation of propylene oxide by chlorohydrination[J]. Chlor-Alkali Industry, 2000, 36(2): 26-32. | |
22 | 黄青丹, 张亚茹, 刘静, 等. 煤层气脱氧剂的研究进展[J]. 化工进展, 2019, 38(11): 4999-5004. |
HUANG Qingdan, ZHANG Yaru, LIU Jing, et al. Review on research progress of coal bed methane deoxidants[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4999-5004. | |
23 | 胡善霖, 廖炯, 曾健, 等. 一种煤层气焦炭脱氧工艺: CN1919986A[P]. 2007-02-28. |
HU Shanlin, LIAO Jiong, ZENG Jian, et al. A process for deoxidation of coal bed gases: CN1919986A[P]. 2007-02-28. | |
24 | 季新跃, 杜红涛, 李迎春, 工业废气中氢气的回收利用工艺 [J]. 河南化工, 2015, 32(12): 45-47. |
JI Xinyue, DU Hongtao, LI Yingchun. Recycling process of hydrogen in industrial waste gas[J]. Henan Chemical Industries, 2015, 32(12): 45-47. | |
25 | ZHANG Qiaofei, LI Yakun, CHAI Ruijuan, et al. Low-temperature active, oscillation-free PdNi(alloy)/Ni-foam catalyst with enhanced heat transfer for coalbed methane deoxygenation via catalytic combustion[J]. Applied Catalysis B: Environmental, 2016, 187: 238-248. |
26 | 徐卫, 刘振峰, 杜霞茹, 等. O-846型合成气低温脱氧催化剂的性能研究[J]. 工业催化, 2016, 24(10): 74-76. |
XU Wei, LIU Zhenfeng, DU Xiaru, et al. Development of O-846 deoxidation catalyst for syngas at low temperature[J]. INDUSTRIAL CATALYSIS, 2016, 24(10): 74-76. | |
27 | ZHAO Peiyu, ZHANG Guijie, SUN Yinghui, et al. A review of oxygen removal from oxygen-bearing coal-mine methane[J]. Environmental Science and Pollution Research, 2017, 24(18): 15240-15253. |
28 | GUO Xuan, REN Jun, XIE Chuanjin, et al. A comparison study on the deoxygenation of coal mine methane over coal gangue and coke under microwave heating conditions[J]. Energy Conversion and Management, 2015, 100: 45-55. |
29 | REN Jun, XIE Chuanjin, LIN Jianying, et al. Co-utilization of two coal mine residues: Non-catalytic deoxygenation of coal mine methane over coal gangue[J]. Process Safety and Environmental Protection, 2014, 92(6): 896-902. |
30 | JING Ruijun, ZHANG Yongfa, WANG Ying, et al. Study on deoxidization of coal-bed methane under low temperature[J]. Advanced Materials Research, 2013, 805/806: 1425-1428. |
31 | 张永发,景瑞军,徐英,等. 应用双桶体移动床反应器的煤层气非催化脱氧工艺: CN102660343B[P]. 2012-09-12. |
ZHANG Yongfa, JING Ruijun, XU Ying, et al. A non-catalytic deoxidation process of coal bed gases using a double barrel moving bed reactor: CN102660343B[P]. 2012-09-12. | |
32 | 范震宇, 周凤琴, 赵素芳, 等. 新型高效脱氧剂的工业应用[J]. 内蒙古石油化工, 2001, (1), 112-115. |
FAN Zhenyu, ZHOU Fengqin, ZHAO Sufang, et al. A practical application of novel deoxidation catalysts[J]. Inner Mongolia Petrochemical Industry, 2001, (1), 112-115. | |
33 | ZHOU Feiyi, XIN Qi, FU Yujie, et al. Efficient catalytic oxidation of chlorinated volatile organic compounds over RuO2-WO x /Sn0.2Ti0.8O2 catalysts: Insight into the Cl poisoning mechanism of acid sites[J]. Chemical Engineering Journal, 2023, 464: 142471. |
34 | ZHANG Qin, QIN Zhangjie, JIAN Xiahou, et al. Effects and mechanisms of Al substitution on the catalytic ability of ferrihydrite for Mn(Ⅱ) oxidation and the subsequent oxidation and immobilization of coexisting Cr(Ⅲ)[J]. Journal of Hazardous Materials, 2023, 452: 131351. |
35 | YAN Xin, ZHAO Lingkui, HUANG Yan, et al. Three-dimensional porous CuO-modified CeO2-Al2O3 catalysts with chlorine resistance for simultaneous catalytic oxidation of chlorobenzene and mercury: Cu-Ce interaction and structure[J]. Journal of Hazardous Materials, 2023, 455: 131585. |
36 | 王科菊, 赵成, 胡晓玫, 等. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
WANG Keju, ZHAO Cheng, HU Xiaomei, et al. Research progress of low temperature catalytic oxidation of VOCs by metal oxides[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2402-2412. | |
37 | 王东超, 侯珂珂, 刘冰, 等. 合成气脱氧催化剂研究进展[J]. 山东化工, 2021, 50(16):96-97. |
WANG Dongchao, HOU Keke, LIU Bing, et al. Research progress of catalysts for deoxidation of syngas[J]. Shandong Chemical Industry, 2021, 50(16):96-97. | |
38 | 何海. 富甲烷条件下Pt/T型分子筛脱氧催化剂研究[D]. 南京: 南京大学, 2018. |
HE Hai. Study on Pt/T molecular sieve deoxidation catalyst under methane-rich condition[D].Nanjing: Nanjing University, 2018. | |
39 | 董明会, 潘智勇, 彭颖, 等. 一种催化裂化干气脱除微量氧的催化剂: CN101745391A[P]. 2010-06-23. |
DONG Minghui, PAN Zhiyong, PENG Ying, et al. A catalyst for the trace amount of O2 removal in FCC dry gases: CN101745391A[P]. 2010-06-23. | |
40 | 徐贤伦, 马军, 汤爱华, 等. 合成气脱氧催化剂及净化工艺研究[J]. 工业催化, 1993, 1(3): 3-12. |
XU Xianlun, MA Jun, TANG Aihua, et al. The catalyst and purifying technology for removing oxygen from synthesis gas[J]. Industrial Catalysis, 1993, 1(3): 3-12. | |
41 | ZHANG Qiaofei, WU Xinping, ZHAO Guofeng, et al. High-performance PdNi alloy structured in situ on monolithic metal foam for coalbed methane deoxygenation via catalytic combustion[J]. Chemical Communications, 2015, 51(63): 12613-12616. |
42 | ZHANG Qiaofei, WU Xinping, LI Yakun, et al. High-performance PdNi nanoalloy catalyst in situ structured on Ni foam for catalytic deoxygenation of coalbed methane: Experimental and DFT studies[J]. ACS Catalysis, 2016, 6(9): 6236-6245. |
43 | 刘应杰, 王先厚, 孔渝华, 液态丙烯脱氧催化剂的研制 [J]. 工业催化, 2016, 24(1): 61-64. |
LIU Yingjie, WANG Xianhou, KONG Yuhua, Development of liquid propylene deoxidation catalyst[J]. Industrial Catalysis, 2016, 24(1): 61-64. | |
44 | ZHANG Changsheng, CHU Shaoqi, JIANG Jie, et al. Minute-scale synthesis of nano silicalite-1 zeolites[J]. Frontiers in Chemistry, 2022, 10: 860795. |
45 | ZHAO Jinchong, JIANG Jie, WEN Song, et al. Research on alkali metal-modified Pd catalyst for oxygen removal from propylene[J]. Frontiers in Chemistry, 2022, 10: 987556. |
46 | 宋兴福, 万江, 汪瑾, 等. Co-Mo/γ-Al2O3非贵金属高效脱氧催化剂的研究[J]. 工业催化, 2004, 12(8): 46-49. |
SONG Xingfu, WAN Jiang, WANG Jin, et al. Development of a high-efficient non-noble metal Co-Mo/γ-Al2O3 deoxidation catalyst[J]. Industrial Catalysis, 2004, 12(8): 46-49. | |
47 | INCEESUNGVORN Burapat, MEUNIER Frederic C, HARDACRE Chris, et al. Selective catalytic reduction of O2 with excess H2 in the presence of C2H4 or C3H6 [J]. Chemical Communications, 2008(46): 6212. |
48 | INCEESUNGVORN B, LÓPEZ-CASTRO J, CALVINO J J, et al. Nano-structural investigation of Ag/Al2O3 catalyst for selective removal of O2 with excess H2 in the presence of C2H4 [J]. Applied Catalysis A: General, 2011, 391(1/2): 187-193. |
49 | 王建国, 令狐建设, 吴志伟, 等. 一种具有核壳结构的脱氧催化剂、制备方法及应用: CN106362720B[P]. 2019-01-25. |
WANG Jianguo, LINGHU Jianshe, WU Zhiwei, et al. A method for synthesis and application of a deoxidation catalyst with core-shell structures: CN106362720B[P]. 2019-01-25. | |
50 | 宋丽娟, 桂建舟, 孙兆林, 等. 一种脱氧催化剂及其制备方法和应用: CN100579653C[P]. 2010-01-13. |
SONG Lijuan, GUI Jianzhou, SUN Zhaolin, et al. A method for synthesis and application of a deoxidation catalyst: CN100579653C[P]. 2010-01-13. | |
51 | 李杰, 张信伟, 倪向前, 等. 一种煤层气催化燃烧催化剂及其制备方法: CN109772440B[P]. 2022-04-08. |
LI Jie, ZHANG Xinwei, NI Xiang Qian, A O 2-removal catalyst and synthesis method: CN109772440B[P]. 2022-04-08. | |
52 | 张艺馨,方芳,一种耐硫脱氧催化剂及其制备方法和应用 : CN114602487A[P]. 2022-06-10. |
ZHANG Yixin, FANG Fang, A sulfur-resistant deoxidation catalyst and applications: CN114602487A[P]. 2022-06-10. | |
53 | 任杰,孙予罕,刘东艳,等 .高浓度一氧化碳合成气脱氧催化剂: CN1220302A[P]. 1999-06-23. |
REN Jie, SUN Yuhan, LIU Dongyan, et al. A deoxidation catalyst for O2 removal in syngas: CN1220302A[P]. 1999-06-23. | |
54 | TIAN Fang, ZHANG Tun, ZHANG Yan, et al. Study on Na2S deoxidation of coal mine methane in low gassy mine[J]. 2011, Coal Science & Technology. 39(7): 124-128. |
55 | HU Pingfeng, PAN Hongyan, LIN Qian, et al. Modified with transition metals (Cu, Fe, Ni, Co) as efficient deoxidizers for O2 removal from low-concentration coal bed methane[J]. Energy & Fuels, 2018, 32(5): 6136-6143. |
56 | PEPPEL Tim, SEEBURG Dominik, FULDA Gerhard, et al. Methods for the trace oxygen removal from methane-rich gas streams[J]. Chemical Engineering & Technology, 2017, 40(1): 153-161. |
57 | 含氧煤层气催化脱氧技术(D-O 2 TE)通过成果鉴定[J]. 工业催化, 2009, 17(12): 49. |
The technology appraisal for deoxidation of coal bed gas was passed[J]. Industrial Catalysis, 2009, 17(12): 49. |
[1] | 王天富, 周晨, 张国俊. 2023年度国家自然科学基金委员会化学工程与工业化学领域科学基金项目申请与评审工作综述[J]. 化工进展, 2024, 43(1): 560-564. |
[2] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[3] | 李婉麒, 杨凤娟, 贾德臣, 姜卫红, 顾阳. 合成气的生物利用与定向转化[J]. 化工进展, 2023, 42(1): 73-85. |
[4] | 周晨, 傅杰, 张国俊. 2022年度国家自然科学基金委员会化学工程与工业化学领域科学基金项目申请和评审工作综述[J]. 化工进展, 2023, 42(1): 553-558. |
[5] | 王志, 原野, 生梦龙, 李庆华. 膜法碳捕集技术——研究现状及展望[J]. 化工进展, 2022, 41(3): 1097-1101. |
[6] | 傅杰, 赵志坚, 张国俊. 2021年度国家自然科学基金委员会化学工程与工业化学科学基金项目申请和评审工作综述[J]. 化工进展, 2022, 41(1): 513-518. |
[7] | 周川,原博,张守鑫,杨小兵,钟近艺. 锆基金属有机骨架UiO-66的合成及在化学防护领域中的研究进展[J]. 化工进展, 2019, 38(10): 4614-4622. |
[8] | 何飞强, 邓先和, 陈民. 乙二胺四乙酸铁络合物湿法络合脱硝液的再生研究进展[J]. 化工进展, 2018, 37(02): 737-743. |
[9] | 齐雁斌, 马伟超, 陈可泉. 利用大肠杆菌全细胞催化赖氨酸发酵液生产1,5-戊二胺[J]. 化工进展, 2017, 36(05): 1843-1847. |
[10] | 刘洋, 王丰收, 董万田. 烷基糖苷在废物处理中的应用及工业化的可行性[J]. 化工进展, 2017, 36(01): 329-335. |
[11] | 周云龙, 司梦银, 左元慧, 康诗飞, 王燕刚, 史焕聪, 崔立峰. 燃烧尾气后处理的反应溶剂型大型工业CO2吸收塔工艺技术进展[J]. 化工进展, 2016, 35(S1): 1-9. |
[12] | 王宏耀, 吴静, 王瑞雪, 曹明见, 姜荣泉. 外热式多管回转低阶煤提质半工业化装置试验研究[J]. 化工进展, 2016, 35(05): 1567-1574. |
[13] | 方梦祥, 厉文榜, 岑建孟, 王勤辉, 骆仲泱. 煤催化气化技术的研究现状与展望[J]. 化工进展, 2015, 34(10): 3656-3664. |
[14] | 吴家鑫1,2,张国栋1,2,齐 鹏1,2,郑应华1,2,何继红1,2. 黄霉素工业化发酵过程中灰色预测模型的应用[J]. 化工进展, 2013, 32(12): 2957-2960. |
[15] | 邵 平 均. SLC-S催化剂的工业化应用[J]. 化工进展, 2013, 32(07): 1717-1720. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |