化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4929-4938.DOI: 10.16085/j.issn.1000-6613.2022-1921
邵志国1(), 任雯1, 许世佩1,2(), 聂凡1, 许毓1, 刘龙杰1, 谢水祥1, 李兴春1, 王庆吉1, 谢加才1
收稿日期:
2022-10-17
修回日期:
2022-12-07
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
许世佩
作者简介:
邵志国(1982—),男,博士,高级工程师,研究方向为含油固体废物处理与资源化技术。E-mail:shaozhiguo003@163.com。
基金资助:
SHAO Zhiguo1(), REN Wen1, XU Shipei1,2(), NIE Fan1, XU Yu1, LIU Longjie1, XIE Shuixiang1, LI Xingchun1, WANG Qingji1, XIE Jiacai1
Received:
2022-10-17
Revised:
2022-12-07
Online:
2023-09-15
Published:
2023-09-28
Contact:
XU Shipei
摘要:
页岩气开发处理过程中会产生大量对生态环境和人体健康造成严重危害的油基钻屑。为了实现油基钻屑的资源化利用,本文研究了热解终温对油基钻屑热解产物分布和特性的影响。结果表明,油基钻屑中的油水轻组分在50~250℃之间受热汽化逸出,碳酸盐在450℃之后大量分解,油基钻屑中的硫元素在气相中主要以H2S形式存在。随着热处理温度升高,固相残渣收率明显降低,气相收率明显升高,油水收率缓慢升高。测试结果表明,在热解温度不低于300℃时,油基钻屑残渣的含油量可降低至0.3%(质量分数)以下。热解回收油组成主要为白油,沸程与柴油相当,油品品质优秀。油基钻屑热解的气体总产量随着热解温度的升高逐步升高。结果认为,在油基钻屑热解工业化的过程中,应该控制热解终温保持在450℃以下,以避免能量的浪费和有害气体的逸出,同时增加传热效率,保证物料热解完全。
中图分类号:
邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938.
SHAO Zhiguo, REN Wen, XU Shipei, NIE Fan, XU Yu, LIU Longjie, XIE Shuixiang, LI Xingchun, WANG Qingji, XIE Jiacai. Influence of final temperature on the distribution and characteristics of oil-based drilling cuttings pyrolysis products[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4929-4938.
分类 | 处理方法 | 目标污染物 | 初始污染物浓度/g·kg-1 | 去除率/% | 参考文献 |
---|---|---|---|---|---|
生物处理 | 鼠李糖脂增强洗涤 | TPH | 5.939 | 76.8 | [ |
堆肥、牛胆汁和细菌培养的组合 | TPH | 30 | 99.7 | [ | |
溶剂清洗后生物处理 | TPH | 16.5 | 87.1 | [ | |
生物表面活性剂基洗涤与生物降解结合 | TPH | 85 | 85.1 | [ | |
高级氧化 | 电动力-Fenton氧化 | TPH | 316 | 77.0 | [ |
超临界水氧化 | PAHs | 290 | 91.0 | [ | |
超临界水氧化 | TOC | 200 | 83.9 | [ | |
近/超临界水氧化 | TOC | 200 | 69.5 | [ | |
以城市污水污泥为稀释剂超临界水氧化 | TOC | 200 | 98.4 | [ | |
脉冲介电势垒放电等离子体 | 油 | 165.372 | 61.8 | [ | |
脱硫化分离-芬顿氧化反应的结合 | TPH | 93.8 | 85.1 | [ | |
热解处理 | 微波热解 | TPH | 67.8 | 98.5 | [ |
微波热解 | TPH | 160 | 95.0 | [ | |
与聚氯乙烯共热解 | 油 | 34.7 | 93.5 | [ | |
与酒糟共热解 | 油 | 68.9 | 99.3 | [ |
表1 不同油基钻屑处理方法及其效率
分类 | 处理方法 | 目标污染物 | 初始污染物浓度/g·kg-1 | 去除率/% | 参考文献 |
---|---|---|---|---|---|
生物处理 | 鼠李糖脂增强洗涤 | TPH | 5.939 | 76.8 | [ |
堆肥、牛胆汁和细菌培养的组合 | TPH | 30 | 99.7 | [ | |
溶剂清洗后生物处理 | TPH | 16.5 | 87.1 | [ | |
生物表面活性剂基洗涤与生物降解结合 | TPH | 85 | 85.1 | [ | |
高级氧化 | 电动力-Fenton氧化 | TPH | 316 | 77.0 | [ |
超临界水氧化 | PAHs | 290 | 91.0 | [ | |
超临界水氧化 | TOC | 200 | 83.9 | [ | |
近/超临界水氧化 | TOC | 200 | 69.5 | [ | |
以城市污水污泥为稀释剂超临界水氧化 | TOC | 200 | 98.4 | [ | |
脉冲介电势垒放电等离子体 | 油 | 165.372 | 61.8 | [ | |
脱硫化分离-芬顿氧化反应的结合 | TPH | 93.8 | 85.1 | [ | |
热解处理 | 微波热解 | TPH | 67.8 | 98.5 | [ |
微波热解 | TPH | 160 | 95.0 | [ | |
与聚氯乙烯共热解 | 油 | 34.7 | 93.5 | [ | |
与酒糟共热解 | 油 | 68.9 | 99.3 | [ |
收率/% | 温度/℃ |
---|---|
0.5 | 206 |
5 | 223 |
10 | 231 |
20 | 243 |
30 | 253 |
40 | 261 |
50 | 268 |
60 | 274 |
70 | 280 |
80 | 288 |
90 | 308 |
95 | 326 |
99.5 | 486 |
表2 油基钻屑的原始油品模拟蒸馏
收率/% | 温度/℃ |
---|---|
0.5 | 206 |
5 | 223 |
10 | 231 |
20 | 243 |
30 | 253 |
40 | 261 |
50 | 268 |
60 | 274 |
70 | 280 |
80 | 288 |
90 | 308 |
95 | 326 |
99.5 | 486 |
样品 | 物料组成(收到基) | 工业分析(干燥基) | 元素分析(干燥基) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
含水率 | 含油率 | 固含量 | 挥发分 | 灰分 | 固定碳 | C | H | N | S | |||
油基钻屑 | 9.1 | 16.6 | 74.3 | 20.38 | 76.94 | 2.68 | 13.76 | 1.32 | 0.15 | 4.05 |
表3 油基钻屑的物性分析(质量分数,%)
样品 | 物料组成(收到基) | 工业分析(干燥基) | 元素分析(干燥基) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
含水率 | 含油率 | 固含量 | 挥发分 | 灰分 | 固定碳 | C | H | N | S | |||
油基钻屑 | 9.1 | 16.6 | 74.3 | 20.38 | 76.94 | 2.68 | 13.76 | 1.32 | 0.15 | 4.05 |
SiO2 | CaO | Al2O3 | SO3 | Fe2O3 | BaO | MgO | K2O | Na2O | Cl | TiO2 | 其他 |
---|---|---|---|---|---|---|---|---|---|---|---|
54.16 | 12.24 | 9.25 | 7.16 | 4.83 | 4.39 | 2.76 | 1.77 | 1.31 | 1.15 | 0.41 | 0.60 |
表4 油基钻屑(干基)全元素XRF分析(质量分数,%)
SiO2 | CaO | Al2O3 | SO3 | Fe2O3 | BaO | MgO | K2O | Na2O | Cl | TiO2 | 其他 |
---|---|---|---|---|---|---|---|---|---|---|---|
54.16 | 12.24 | 9.25 | 7.16 | 4.83 | 4.39 | 2.76 | 1.77 | 1.31 | 1.15 | 0.41 | 0.60 |
温度/℃ | 灰分质量分数/% | 元素分析(质量分数)/% | |||
---|---|---|---|---|---|
C | H | N | S | ||
250 | 82.30 | 8.26 | 0.39 | 0.17 | 3.74 |
300 | 82.66 | 8.13 | 0.38 | 0.17 | 3.91 |
350 | 83.17 | 7.88 | 0.36 | 0.16 | 4.03 |
400 | 83.25 | 7.79 | 0.32 | 0.15 | 4.00 |
450 | 83.86 | 7.54 | 0.29 | 0.15 | 3.90 |
550 | 86.87 | 7.04 | 0.24 | 0.12 | 3.82 |
650 | 89.85 | 6.67 | 0.18 | 0.11 | 3.70 |
750 | 95.80 | 5.58 | 0.17 | 0.10 | 3.67 |
表5 不同温度残渣特性
温度/℃ | 灰分质量分数/% | 元素分析(质量分数)/% | |||
---|---|---|---|---|---|
C | H | N | S | ||
250 | 82.30 | 8.26 | 0.39 | 0.17 | 3.74 |
300 | 82.66 | 8.13 | 0.38 | 0.17 | 3.91 |
350 | 83.17 | 7.88 | 0.36 | 0.16 | 4.03 |
400 | 83.25 | 7.79 | 0.32 | 0.15 | 4.00 |
450 | 83.86 | 7.54 | 0.29 | 0.15 | 3.90 |
550 | 86.87 | 7.04 | 0.24 | 0.12 | 3.82 |
650 | 89.85 | 6.67 | 0.18 | 0.11 | 3.70 |
750 | 95.80 | 5.58 | 0.17 | 0.10 | 3.67 |
温度/℃ | 元素分析(质量分数)/% | 氢碳原子比 | |||
---|---|---|---|---|---|
C | H | N | S | ||
250 | 84.93 | 14.46 | 0.39 | 0.23 | 2.04 |
300 | 84.98 | 14.46 | 0.39 | 0.18 | 2.07 |
350 | 85.03 | 14.08 | 0.60 | 0.30 | 2.04 |
400 | 85.36 | 14.08 | 0.37 | 0.20 | 1.99 |
450 | 85.04 | 14.19 | 0.57 | 0.20 | 1.98 |
550 | 84.85 | 14.54 | 0.45 | 0.16 | 2.00 |
650 | 84.78 | 14.52 | 0.49 | 0.22 | 2.06 |
750 | 84.84 | 14.70 | 0.30 | 0.16 | 2.06 |
表6 不同温度热处理回收油元素分析
温度/℃ | 元素分析(质量分数)/% | 氢碳原子比 | |||
---|---|---|---|---|---|
C | H | N | S | ||
250 | 84.93 | 14.46 | 0.39 | 0.23 | 2.04 |
300 | 84.98 | 14.46 | 0.39 | 0.18 | 2.07 |
350 | 85.03 | 14.08 | 0.60 | 0.30 | 2.04 |
400 | 85.36 | 14.08 | 0.37 | 0.20 | 1.99 |
450 | 85.04 | 14.19 | 0.57 | 0.20 | 1.98 |
550 | 84.85 | 14.54 | 0.45 | 0.16 | 2.00 |
650 | 84.78 | 14.52 | 0.49 | 0.22 | 2.06 |
750 | 84.84 | 14.70 | 0.30 | 0.16 | 2.06 |
油品 | 元素分析(质量分数)/% | 氢碳原子比 | ||
---|---|---|---|---|
C | H | N+S | ||
回收油平均值 | 84.98 | 14.38 | 0.65 | 2.03 |
俄罗斯原油 | 85.62 | 12.65 | 1.73 | 1.77 |
大庆原油 | 85.78 | 13.17 | 1.05 | 1.84 |
表7 热处理回收油与原油对比
油品 | 元素分析(质量分数)/% | 氢碳原子比 | ||
---|---|---|---|---|
C | H | N+S | ||
回收油平均值 | 84.98 | 14.38 | 0.65 | 2.03 |
俄罗斯原油 | 85.62 | 12.65 | 1.73 | 1.77 |
大庆原油 | 85.78 | 13.17 | 1.05 | 1.84 |
1 | GAO Shikui, DONG Dazhong, TAO Ketao, et al. Experiences and lessons learned from China’s shale gas development: 2005—2019[J]. Journal of Natural Gas Science and Engineering, 2021, 85: 103648. |
2 | ZHAO Fu, FAN Ying, ZHANG Shaohui. Assessment of efficiency improvement and emission mitigation potentials in China’s petroleum refining industry[J]. Journal of Cleaner Production, 2021, 280: 124482. |
3 | CHEN Zhong, LI Dongyuan, TONG Kun, et al. Static decontamination of oil-based drill cuttings with pressurized hot water using response surface methodology[J]. Environmental Science and Pollution Research, 2019, 26(7): 7216-7227. |
4 | MISHRA Asmita, SIDDIQI Hammad, KUMARI Usha, et al. Pyrolysis of waste lubricating oil/waste motor oil to generate high-grade fuel oil: A comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2021, 150: 111446. |
5 | 李学庆, 杨金荣, 尹志亮, 等. 油基钻井液含油钻屑无害化处理工艺技术[J]. 钻井液与完井液, 2013, 30(4): 81-83, 98. |
LI Xueqing, YANG Jinrong, YIN Zhiliang, et al. Novel harmless treating technology of oily cuttings[J]. Drilling Fluid & Completion Fluid, 2013, 30(4): 81-83, 98. | |
6 | 王天宇, 蒋文明, 刘杨. 含油污泥阴燃处理技术研究与进展[J]. 化工学报, 2020, 71(4): 1411-1423. |
WANG Tianyu, JIANG Wenming, LIU Yang. Research and progress of smoldering combustion technology for oily sludge[J]. CIESC Journal, 2020, 71(4): 1411-1423. | |
7 | 王君, 刘天璐, 黄群星, 等. 储运含油污泥慢速热解特性分析[J]. 化工学报, 2017, 68(3): 1138-1145. |
WANG Jun, LIU Tianlu, HUANG Qunxing, et al. Slow pyrolysis characteristics of petroleum sludge[J]. CIESC Journal, 2017, 68(3): 1138-1145. | |
8 | 许世佩, 王超, 李庆远, 等. 氧化钙对油基钻屑热脱附产物影响的研究[J]. 化工学报, 2022, 73(4): 1724-1731. |
XU Shipei, WANG Chao, LI Qingyuan, et al. Study on influence of CaO during thermal desorption products of oil-based drilling cuttings[J]. CIESC Journal, 2022, 73(4): 1724-1731. | |
9 | 郭亮, 翟永帆, 葛思佳, 等. 油基钻屑热解吸处理装置的现场应用[J]. 钻采工艺, 2020, 43(5): 130-133. |
GUO Liang, ZHAI Yongfan, GE Sijia, et al. Field application of oil-based cuttings thermal desorption unit[J]. Drilling & Production Technology, 2020, 43(5): 130-133. | |
10 | 杨华龙, 麦天佑. 废弃油基钻屑热解吸方案实验探究[J]. 化学工程与装备, 2020(7): 250-252. |
YANG Hualong, Tianyou MAI. Experimental research on thermal desorption scheme of waste oil-based drilling cuttings [J]. Chemical Engineering & Equipment, 2020(7): 250-252. | |
11 | 郭文辉, 孟祥海, 肖超, 等. 热脱附技术处理油基钻屑实验研究[J]. 油气田环境保护, 2018, 28(4): 38-41, 62. |
GUO Wenhui, MENG Xianghai, XIAO Chao, et al. Experimental study on the oil-based drill cuttings treatment by thermal desorption[J]. Environmental Protection of Oil & Gas Fields, 2018, 28(4): 38-41, 62. | |
12 | OLASANMI Ibukun O, THRING Ronald W. Evaluating rhamnolipid-enhanced washing as a first step in remediation of drill cuttings and petroleum-contaminated soils[J]. Journal of Advanced Research, 2020, 21: 79-90. |
13 | Daniel OSEI-TWUMASI, Bernard FEI-BAFFOE, ANNING Alexander Kofi, et al. Synergistic effects of compost, cow bile and bacterial culture on bioremediation of hydrocarbon-contaminated drill mud waste[J]. Environmental Pollution, 2020, 266: 115202. |
14 | POYAI Thaksina, GETWECH Chiratthakan, DHANASIN Phanachit, et al. Solvent-based washing as a treatment alternative for onshore petroleum drill cuttings in Thailand[J]. Science of the Total Environment, 2020, 718: 137384. |
15 | YAN Ping, LU Mang, GUAN Yueming, et al. Remediation of oil-based drill cuttings through a biosurfactant-based washing followed by a biodegradation treatment[J]. Bioresource Technology, 2011, 102(22): 10252-10259. |
16 | ADHAMI Sajjad, AHMAD Jamshidi-Zanjani, DARBAN Ahmad Khodadadi. Remediation of oil-based drilling waste using the electro Kinetic-Fenton method[J]. Process Safety and Environmental Protection, 2021, 149: 432-441. |
17 | KRONHOLM Juhani, KALPALA Jarno, HARTONEN Kari, et al. Pressurized hot water extraction coupled with supercritical water oxidation in remediation of sand and soil containing PAHs[J]. The Journal of Supercritical Fluids, 2002, 23(2): 123-134. |
18 | CHEN Zhong, CHEN Zeliang, YIN Fengjun, et al. Supercritical water oxidation of oil-based drill cuttings[J]. Journal of Hazardous Materials, 2017, 332: 205-213. |
19 | CHEN Zhong, TONG Kun, HE Chunlan, et al. High quality oil recovery from oil-based drill cuttings via catalytic upgrading in presence of near-/supercritical water and different industrial wastes[J]. Journal of Cleaner Production, 2021, 321: 129061. |
20 | CHEN Zhong, ZHENG Zhijian, LI Dongyuan, et al. Continuous supercritical water oxidation treatment of oil-based drill cuttings using municipal sewage sludge as diluent[J]. Journal of Hazardous Materials, 2020, 384: 121225. |
21 | WU Yongqian, DING Lijian, ZHANG Cheng, et al. Experimental study on the treatment of oil-based drill cutting by pulsed dielectric barrier discharge plasma at atmospheric pressure[J]. Journal of Cleaner Production, 2022, 339: 130757. |
22 | YANG Hang, CAI Jiaxi, SUN Jianfa, et al. Treatment of oil-based drilling cuttings using the demulsification separation-Fenton oxidation method[J]. Environmental Science and Pollution Research, 2021, 28(45): 64307-64321. |
23 | JÚNIOR Irineu Petri, MARTINS André Leibsohn, ATAIDE Carlos H, et al. Microwave drying remediation of petroleum-contaminated drill cuttings[J]. Journal of Environmental Management, 2017, 196: 659-665. |
24 | SHANG H, SNAPE C E, KINGMAN S W, et al. Microwave treatment of oil-contaminated North Sea drill cuttings in a high power multimode cavity[J]. Separation and Purification Technology, 2006, 49(1): 84-90. |
25 | XIE Pin, WU Hongyi, YANG Hang, et al. Utilization of Cr-contaminated oil-based drilling-cuttings ash in preparation of bauxite-based proppants [J]. Environmental Engineering Science, 2022, 39(1): 73-80. |
26 | YANG Hang, LIU Yunli, BAI Guoliang, et al. Study on the co-pyrolysis characteristics of oil-based drill cuttings and lees[J]. Biomass and Bioenergy, 2022, 160: 106436. |
27 | XU Shipei, ZENG Xi, HAN Zhennan, et al. Quick pyrolysis of a massive coal sample via rapid infrared heating[J]. Applied Energy, 2019, 242: 732-740. |
28 | SIRAMARD Somprasong, ZHAN Jinhui, HAN Zhennan, et al. Secondary cracking of volatile and its avoidance in infrared-heating pyrolysis reactor[J]. Carbon Resources Conversion, 2018, 1(3): 202-208. |
29 | ZHU Jialong, JIN Lijun, LI Jiangang, et al. Fast pyrolysis behaviors of cedar in an infrared-heated fixed-bed reactor[J]. Bioresource Technology, 2019, 290: 121739. |
30 | 中国煤炭工业协会. 煤的工业分析方法: [S]. 北京: 中国标准出版社, 2008. |
Proximate analysis of coal: [S]. Beijing: Standards Press of China, 2008. | |
31 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤的元素分析: [S]. 北京: 中国标准出版社, 2015. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Ultimate analysis of coal: [S]. Beijing: Standards Press of China, 2015. | |
32 | 许世佩. 红外快速加热与反应分级调控煤热解制油气研究[D]. 北京:中国科学院大学(中国科学院过程工程研究所), 2019. |
XU Shipei. Coal pyrolysis for oil and gas with infrared quick heating and staged reaction control[D]. Beijing: University of Chinese Academy of Sciences (Institute of Process Engineering), 2019. | |
33 | 石磊. 煤共价键结构在热解过程中的阶段解离研究[D]. 北京: 北京化工大学, 2014. |
SHI Lei. Study on the cleavage of covalent bonds in coal pyrolysis in consecutive temperature ranges[D]. Beijing: Beijing University of Chemical Technology, 2014. |
[1] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[2] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[3] | 姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801. |
[4] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[5] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[6] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[7] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[8] | 梁贻景, 马岩, 卢展烽, 秦福生, 万骏杰, 王志远. La1-x Sr x MnO3钙钛矿涂层的抗结焦性能[J]. 化工进展, 2023, 42(4): 1769-1778. |
[9] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[10] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[11] | 赵佳琪, 黄亚继, 李志远, 丁雪宇, 祁帅杰, 张煜尧, 刘俊, 高嘉炜. 污泥和聚氯乙烯共热解三相产物特性[J]. 化工进展, 2023, 42(4): 2122-2129. |
[12] | 潘宇涵, 徐俊, 赵光杰, 林诚乾, 金亮, 薛志亮, 周永刚, 黄群星. 废轮胎梯级热解中试装置开发与产物特性分析[J]. 化工进展, 2023, 42(3): 1240-1247. |
[13] | 何阳东, 常宏岗, 王丹, 陈昌介, 李雅欣. 熔融金属法甲烷裂解制氢和碳材料研究进展[J]. 化工进展, 2023, 42(3): 1270-1280. |
[14] | 郑云武, 裴涛, 李冬华, 王继大, 李继容, 郑志锋. 金属氧化物活化P/HZSM-5催化生物质热解气重整制备富烃生物油[J]. 化工进展, 2023, 42(3): 1353-1364. |
[15] | 段一航, 高宁博, 全翠. 水热处理对含油污泥热解特性及动力学影响[J]. 化工进展, 2023, 42(2): 603-613. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |