化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3791-3801.DOI: 10.16085/j.issn.1000-6613.2022-1659
姚丽铭1,2,3(), 王亚琢2,3, 范洪刚2,3, 顾菁2,3, 袁浩然2,3(), 陈勇1,2,3
收稿日期:
2022-09-08
修回日期:
2022-10-19
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
袁浩然
作者简介:
姚丽铭(1999—),女,硕士研究生,研究方向为有机固废热解。E-mail:lydia.yao@qq.com。
基金资助:
YAO Liming1,2,3(), WANG Yazhuo2,3, FAN Honggang2,3, GU Qing2,3, YUAN Haoran2,3(), CHEN Yong1,2,3
Received:
2022-09-08
Revised:
2022-10-19
Online:
2023-07-15
Published:
2023-08-14
Contact:
YUAN Haoran
摘要:
我国餐厨垃圾产生量巨大,且具有含水量高、组分复杂等特点,若未妥善处置,将造成严重的环境污染。本文首先介绍了餐厨垃圾预处理工艺的必要性及其工艺流程,对国内外主要的餐厨垃圾处理技术进行综述,分别阐述了卫生填埋、焚烧、好氧堆肥、厌氧发酵和热解技术的优势、存在问题及应用现状,并提出热解处理技术能够满足我国餐厨垃圾的处理原则,热解过程不产生有害物质、餐厨垃圾体积重量减量程度高以及热解三相产物可二次利用,具有无害化、减量化和资源化的技术优势。同时,从热解特性、热解方式和热解产物利用三个方面对餐厨垃圾热解领域的发展现状进行介绍和展望,以期为我国餐厨垃圾的无害化处理技术发展提供借鉴和参考。
中图分类号:
姚丽铭, 王亚琢, 范洪刚, 顾菁, 袁浩然, 陈勇. 餐厨垃圾处理现状及其热解技术研究进展[J]. 化工进展, 2023, 42(7): 3791-3801.
YAO Liming, WANG Yazhuo, FAN Honggang, GU Qing, YUAN Haoran, CHEN Yong. Treatment status of kitchen waste and its research progress of pyrolysis technology[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3791-3801.
1 | HAFID Halimatun Saadiah, RAHMAN Nor’ Aini Abdul, SHAH Umi Kalsom Md, et al. Feasibility of using kitchen waste as future substrate for bioethanol production: A review[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 671-686. |
2 | 易志刚. 餐厨垃圾收运与资源化利用研究进展[J]. 中国资源综合利用, 2021, 39(12): 116-119, 125. |
YI Zhigang. Research progress on the collection, transportation and resource utilization of kitchen waste[J]. China Resources Comprehensive Utilization, 2021, 39(12): 116-119, 125. | |
3 | GIWA Abdulmoseen Segun, XU Heng, CHANG Fengmin, et al. Pyrolysis coupled anaerobic digestion process for food waste and recalcitrant residues: Fundamentals, challenges, and considerations[J]. Energy Science & Engineering, 2019, 7(6): 2250-2264. |
4 | DIGGELMAN Carol, Robert K HAM. Household food waste to wastewater or to solid waste? That is the question[J]. Waste Management & Research, 2003, 21(6): 501-514. |
5 | 何品晶. 农村生活垃圾处理的目标、原则和评价方法浅议[J]. 环境卫生工程, 2018, 26(1): 52-55. |
HE Pinjing. Target, principle and assessment method of waste treatment in small towns and rural area[J]. Environmental Sanitation Engineering, 2018, 26(1): 52-55. | |
6 | 杨小云, 贾悦, 钟洁, 等. 上海市生活垃圾强制分类对收运体系的初步影响及建议[J]. 环境卫生工程, 2021, 29(6): 67-70, 81. |
YANG Xiaoyun, JIA Yue, ZHONG Jie, et al. The preliminary impact and suggestion on the collection and transportation system of MSW compulsory classification in Shanghai[J]. Environmental Sanitation Engineering, 2021, 29(6): 67-70, 81. | |
7 | 雷永康, 熊春江, 姜苏峻, 等. 典型餐厨垃圾预处理效果比较[J]. 环境卫生工程, 2017, 25(4): 54-57. |
LEI Yongkang, XIONG Chunjiang, JIANG Sujun, et al. Comparison of pretreatment effect on typical food waste[J]. Environmental Sanitation Engineering, 2017, 25(4): 54-57. | |
8 | 宫克勤, 李才, 张绍军, 等. 浅谈餐厨垃圾以及常规处理工艺[J]. 广东化工, 2019, 46(19): 158-159, 152. |
GONG Keqin, LI Cai, ZHANG Shaojun, et al. Discussion on food waste and conventional treatment process[J]. Guangdong Chemical Industry, 2019, 46(19): 158-159, 152. | |
9 | 史红钻. 简述餐厨垃圾资源化利用的预处理系统[J]. 资源节约与环保, 2013(7): 255-256. |
SHI Hongzuan. Brief introduction of pretreatment system for resource utilization of kitchen waste[J]. Resources Economization & Environmental Protection, 2013(7): 255-256. | |
10 | 唐欣, 薛方亮, Doda ADA, 等. 预处理技术对餐厨垃圾厌氧发酵的影响[J]. 环境工程, 2017, 35(S2): 289-292, 296. |
TANG Xin, XUE Fangliang, Doda ADA, et al. Effects of the pretreatment technology on the anaerobic digestion of food waste[J]. Environmental Engineering, 2017, 35(S2): 289-292, 296. | |
11 | 张军, 周凯, 聂永山. 快速好氧堆肥工艺在餐厨垃圾处理中的应用[J]. 现代化工, 2022, 42(2): 6-9. |
ZHANG Jun, ZHOU Kai, NIE Yongshan. Application of rapid aerobic composting process in kitchen waste treatment[J]. Modern Chemical Industry, 2022, 42(2): 6-9. | |
12 | 李北, 徐永安, 杨巍. 餐厨废弃油脂回收利用及运行模式探讨[J]. 中国油脂, 2013, 38(3): 58-60. |
LI Bei, XU Yongan, YANG Wei. Discussion on recycling and operation mode of kitchen waste oil[J]. China Oils and Fats, 2013, 38(3): 58-60. | |
13 | 曹泳民. 餐厨废弃物油脂回收提纯技术研究及应用[J]. 广东化工, 2020, 47(9): 68-70. |
CAO Yongmin. Research and application of oil recovery and purification technology from kitchen waste[J]. Guangdong Chemical Industry, 2020, 47(9): 68-70. | |
14 | 孙旭东, 白光建, 公丕玉, 等. 餐厨垃圾粗油脂精炼及油品提升技术攻关[R]. 山东: 中节能 (2018-01-28) [2022-10-19] https://kns.cnki.net/KCMS/detail/detail.aspx? dbname=SNAD&filename=SNAD000001826118. |
15 | 胡鑫鑫. 杭州市餐厨垃圾预处理技术的应用[J]. 环境卫生工程, 2018, 26(3): 8-10. |
HU Xinxin. Application on pretreatment technology of food waste in Hangzhou[J]. Environmental Sanitation Engineering, 2018, 26(3): 8-10. | |
16 | 林仞. 城镇规模化餐厨垃圾预处理设备的研究[J]. 科学技术创新, 2021(22): 184-186. |
LIN Ren. Study on pretreatment equipment of larg-scale kitchen waste in cities and towns[J]. Scientific and Technological Innovation, 2021(22): 184-186. | |
17 | 景欢, 潘宁宁, 李美婷, 等. 家庭餐厨废油脂回收制肥皂研究[J]. 辽宁科技学院学报, 2020, 22(3): 20-22. |
JING Huan, PAN Ningning, LI Meiting, et al. Study on production of soap by recovered household waste cooking oil[J]. Journal of Liaoning Institute of Science and Technology, 2020, 22(3): 20-22. | |
18 | 乔子茹, 魏华炜, 马佳莹, 等. 餐厨垃圾生物处理过程中VOCs的产生与控制研究进展[J]. 应用与环境生物学报, 2020, 26(1): 210-216. |
QIAO Ziru, WEI Huawei, MA Jiaying, et al. Review of the generation of volatile organic compounds during the bio-treatment process of food waste[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(1): 210-216. | |
19 | QASIM M, XIAO H, HE K, et al. Impact of landfill garbage on insect ecology and human health[J]. Acta Tropica, 2020, 211: 105630. |
20 | WANG Ning, TAN Li, XIE Lianke, et al. Investigation of volatile methyl siloxanes in biogas and the ambient environment in a landfill[J]. Journal of Environmental Sciences, 2020, 91: 54-61. |
21 | KHAN Moonis Ali, HAMEED Bassim H, SIDDIQUI Masoom Raza, et al. Comparative investigation of the physicochemical properties of chars produced by hydrothermal carbonization, pyrolysis, and microwave-induced pyrolysis of food waste[J]. Polymers, 2022, 14(4): 821. |
22 | 梅冰, 窦法楷, 汪慧莲, 等. 餐厨垃圾处理技术研究进展[J]. 环境卫生工程, 2015, 23(5): 17-18. |
MEI Bing, DOU Fakai, WANG Huilian, et al. Research progress of food waste treatment technology[J]. Environmental Sanitation Engineering, 2015, 23(5): 17-18. | |
23 | 许晓杰, 冯向鹏, 李冀闽, 等. 国内外餐厨垃圾处理现状及技术[J]. 环境卫生工程, 2014, 22(3): 31-33. |
XU Xiaojie, FENG Xiangpeng, LI Jimin, et al. Situation and technologies of food waste treatment at domestic and abroad[J]. Environmental Sanitation Engineering, 2014, 22(3): 31-33. | |
24 | LEE Suk Hui, CHOI Ki In, OSAKO Masahiro, et al. Evaluation of environmental burdens caused by changes of food waste management systems in Seoul, Korea[J]. Science of the Total Environment, 2007, 387(1/2/3): 42-53. |
25 | 国家数据网. 城市生活垃圾清运和处理情况[R]. (2020) [2022-03-10] https://data.stats.gov.cn/easyquery.htm?cn=C01&zb=A0C06&sj=2021 |
26 | 韩雯雯, 滕少香. 垃圾焚烧处理技术的现状及发展趋势[J]. 中国资源综合利用, 2017, 35(6): 43-45. |
HAN Wenwen, TENG Shaoxiang. Present situation and development trend of waste incineration technology[J]. China Resources Comprehensive Utilization, 2017, 35(6): 43-45. | |
27 | 程伟, 鞠阿莲. 日本生活垃圾焚烧处理现状及启示[J]. 环境卫生工程, 2019, 27(6): 57-60. |
CHENG Wei, JU Alian. Current situation and enlightenment on incineration treatment of domestic waste in Japan[J]. Environmental Sanitation Engineering, 2019, 27(6): 57-60. | |
28 | BADGETT Alex, MILBRANDT Anelia. Food waste disposal and utilization in the United States: A spatial cost benefit analysis[J]. Journal of Cleaner Production, 2021, 314: 128057. |
29 | 符鑫杰, 李涛, 班允鹏, 等. 垃圾焚烧技术发展综述[J]. 中国环保产业, 2018(8): 56-59. |
FU Xinjie, LI Tao, BAN Yunpeng, et al. Overview on technical development of refuse incineration[J]. China Environmental Protection Industry, 2018(8): 56-59. | |
30 | 阚慧, 孙翔, 肖芸, 等. 基于好氧堆肥的餐厨垃圾肥料化利用污染分析及控制策略[J]. 环境工程, 2014, 32(1): 97-101. |
KAN Hui, SUN Xiang, XIAO Yun, et al. Analysis and strategic control on pollution in the process of food waste aerobic composting[J]. Environmental Engineering, 2014, 32(1): 97-101. | |
31 | 展争艳, 顾生芳, 展成业, 等. 餐厨垃圾制备有机肥生产工艺探析[J]. 广东化工, 2022, 49(4): 126-128. |
ZHAN Zhengyan, GU Shengfang, ZHAN Chengye, et al. Study on the production technology of organic fertilizer from kitchen waste[J]. Guangdong Chemical Industry, 2022, 49(4): 126-128. | |
32 | 李江东. 餐厨垃圾好氧堆肥资源化利用及无害化处理的研究[D]. 南昌: 南昌大学, 2021. |
LI Jiangdong. Research on resource utilization and harmless treatment of food waste[D]. Nanchang: Nanchang University, 2021. | |
33 | 王发生. 餐厨垃圾固相物好氧堆肥工艺设计[J]. 甘肃科技纵横, 2021, 50(1): 20-22. |
WANG Fasheng. Design of aerobic composting process for solid phase of food waste[J]. Scientific & Technical Information of Gansu, 2021, 50(1): 20-22. | |
34 | 韩涛, 任连海. 餐厨垃圾好氧堆肥工艺条件优化[J]. 环境卫生工程, 2007, 15(6): 28-29, 33. |
HAN Tao, REN Lianhai. Technological conditions optimization of food residue aerobic composting[J]. Environmental Sanitation Engineering, 2007, 15(6): 28-29, 33. | |
35 | LEE Ye Eun, SHIN Dong Chul, JEONG Yoonah, et al. Effects of pyrolysis temperature and retention time on fuel characteristics of food waste feedstuff and compost for co-firing in coal power plants[J]. Energies, 2019, 12(23): 4538. |
36 | 郭伟, 张盼盼. 餐厨垃圾回收利用管理——日本经验及借鉴[J]. 天津城建大学学报, 2017, 23(3): 214-219. |
GUO Wei, ZHANG Panpan. Food waste recovery and utilization management: Japanese experiences and its enlightenment for China[J]. Journal of Tianjin Chengjian University, 2017, 23(3): 214-219. | |
37 | LEE Ye Eun, Jun Ho JO, KIM I Tae, et al. Value-added performance and thermal decomposition characteristics of dumped food waste compost by pyrolysis[J]. Energies, 2018, 11(5): 1061. |
38 | 周营. 餐厨垃圾好氧堆肥微生物强化及复混肥制备的研究[D]. 广州: 华南理工大学, 2018. |
ZHOU Ying. Study on the microorganism enhancement and organic-inorganic compound fertilizer of food waste composting[D]. Guangzhou: South China University of Technology, 2018. | |
39 | 毕珠洁, 邰俊, 许碧君. 中国餐厨垃圾管理现状研究[J]. 环境工程, 2016, 34(S1): 765-768. |
BI Zhujie, TAI Jun, XU Bijun. The current food waste management situation in China[J]. Environmental Engineering, 2016, 34(S1): 765-768. | |
40 | 张黎阳. 餐厨垃圾厌氧消化后沼渣的好氧堆肥优化研究[D]. 杭州: 浙江大学, 2020. |
ZHANG Liyang. Study on optimization of compost of food waste anaerobic digestion residue[D]. Hangzhou: Zhejiang University, 2020. | |
41 | 宋景辉. 不同生物炭对餐厨垃圾厌氧发酵的影响及经济效益分析[D]. 杨凌: 西北农林科技大学, 2021. |
SONG Jinghui. Effects of different biochar on anaerobic digestion of food waste and analysis of economic benefits[D]. Yangling: Northwest A & F University, 2021. | |
42 | 胡致远, 张新杰, 王宇, 等. 生物强化菌系添加量对不同食微比餐厨垃圾厌氧发酵性能影响[J]. 新能源进展, 2021, 9(6): 489-495. |
HU Zhiyuan, ZHANG Xinjie, WANG Yu, et al. Effect of bioaugmentation on anaerobic digestion of food waste at different food to micro ratios[J]. Advances in New and Renewable Energy, 2021, 9(6): 489-495. | |
43 | 崔文静, 陆敏博. 餐厨垃圾处理现状及今后发展趋势[J]. 广东化工, 2021, 48(19): 140-141. |
CUI Wenjing, LU Minbo. The present disposing situation and development trend of kitchen waste[J]. Guangdong Chemical Industry, 2021, 48(19): 140-141. | |
44 | 炊春萌, 李保国, 刘莉, 等. 餐厨垃圾厌氧发酵研究进展[J]. 食品与发酵科技, 2020, 56(4): 60-64, 112. |
CHUI Chunmeng, LI Baoguo, LIU Li, et al. Advances in anaerobic fermentation of kitchen waste[J]. Food and Fermentation Sciences & Technology, 2020, 56(4): 60-64, 112. | |
45 | 陈林艺. 餐厨垃圾厌氧消化热碱预处理技术研究[D]. 广州: 华南理工大学, 2020. |
CHEN Linyi. Study on thermal and alkali pretreatment of anaerobic digestion of food waste[D]. Guangzhou: South China University of Technology, 2020. | |
46 | 程亚莉, 毕桂灿, 沃德芳, 等. 国内外餐厨垃圾现状及其处理措施[J]. 新能源进展, 2017, 5(4): 266-271. |
CHENG Yali, BI Guican, Defang WO, et al. Status quo of kitchen waste and its treatment measures at home and abroad[J]. Advances in New and Renewable Energy, 2017, 5(4): 266-271. | |
47 | 涂卫峰. 生物垃圾厌氧发酵的原理研究[D]. 合肥: 合肥工业大学, 2006. |
TU Weifeng. Biological waste anaerobic fermentation theory research[D]. Hefei: Hefei University of Technology, 2006. | |
48 | OPATOKUN Suraj Adebayo, STREZOV Vladimir, KAN Tao. Product based evaluation of pyrolysis of food waste and its digestate[J]. Energy, 2015, 92: 349-354. |
49 | 马磊, 刘肃, 宣晓英. 城市餐厨垃圾资源化处理技术综述[J]. 城市管理与科技, 2013, 15(2): 62-63. |
MA Lei, LIU Su, XUAN Xiaoying. Summary of resource treatment technology of urban kitchen waste[J]. Urban Management Science & Technology, 2013, 15(2): 62-63. | |
50 | 钱鹏, 汪华林, 王剑刚. 餐厨垃圾的混速热解实验研究[J]. 太原理工大学学报, 2010, 41(5): 508-511. |
QIAN Peng, WANG Hualin, WANG Jiangang. Research on multi-rate pyrolysis of kitchen residue[J]. Journal of Taiyuan University of Technology, 2010, 41(5): 508-511. | |
51 | Jun-Ho JO, KIM Seung-Soo, SHIM Jae-work, et al. Pyrolysis characteristics and kinetics of food wastes[J]. Energies, 2017,10: 1191. |
52 | KAMINSKY Walter. Chemical recycling of plastics by fluidized bed pyrolysis[J]. Fuel Communications, 2021, 8: 100023. |
53 | 孔晶, 李宣, 陈正件, 等. 垃圾处理及其热解气化技术应用现状[J]. 当代化工研究, 2021(22): 107-109. |
KONG Jing, LI Xuan, CHEN Zhengjian, et al. Current status of municipal solid waste treatment and pyrolysis gasification technology application[J]. Modern Chemical Research, 2021(22): 107-109. | |
54 | 李水清, 姚强, 池涌, 等. 废轮胎小型和中试规模热解研究的实验方法[J]. 燃烧科学与技术, 2004, 10(1): 42-50. |
LI Shuiqing, YAO Qiang, CHI Yong, et al. Principle and practice of scrap tyre pyrolysis: Lab-scale and pilot-scale studies[J]. Journal of Combustion Science and Technology, 2004, 10(1): 42-50. | |
55 | KLOSE Wolfgang, WIEST Wolfgang. Experiments and mathematical modeling of maize pyrolysis in a rotary kiln[J]. Fuel, 1999, 78(1): 65-72. |
56 | 王越. 生活垃圾热解气化技术应用现状及发展前景[J]. 科技创新导报, 2019, 16(35): 84-85. |
WANG Yue. Application status and development prospect of domestic waste pyrolysis and gasification technology[J]. Science and Technology Innovation Herald, 2019, 16(35): 84-85. | |
57 | 黄博. 餐厨垃圾分选有机废物热解特性及示范工程研究[D]. 北京: 北京化工大学, 2017. |
HUANG Bo. Study on pyrolysis characteristics and demonstration project of the organic waste sorted from food waste[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
58 | OPATOKUN Suraj Adebayo, KAN Tao, SHOAIBI Ahmed Al, et al. Characterization of food waste and its digestate as feedstock for thermochemical processing[J]. Energy & Fuels, 2016, 30(3): 1589-1597. |
59 | SURIAPPARAO Dadi V, VINU R. Recovery of renewable carbon resources from the household kitchen waste via char induced microwave pyrolysis[J]. Renewable Energy, 2021, 179: 370-378. |
60 | 李文, 魏晴, 马宁宁, 等. 校园餐厨垃圾组成及热解特性分析[J]. 甘肃科技, 2017, 33(13): 65-67. |
LI Wen, WEI Qing, MA Ningning, et al. Analysis of composition and pyrolysis characteristics of campus kitchen waste[J]. Gansu Science and Technology, 2017, 33(13): 65-67. | |
61 | 徐帆帆. 城市生活垃圾典型组分分级热解气化研究[D]. 东营: 中国石油大学(华东), 2019. |
XU Fanfan. The hierarchical pyrolysis and gasification study of typical municipal solid waste components[D]. Dongying: China University of Petroleum (Huadong), 2019. | |
62 | ELKHALIFA Samar, Tareq AL-ANSARI, MACKEY Hamish R, et al. Food waste to biochars through pyrolysis: A review[J]. Resources, Conservation and Recycling, 2019, 144: 310-320. |
63 | 李爱民, 李延吉. 固体废物在固定床式热解炉内热解产气特性的实验研究[J]. 环境污染治理技术与设备, 2003(4): 4-10. |
LI Aimin, LI Yanji. Experimental study on pyrolysis gas characteristics of solid wastes in fixed pyrolyzer[J]. Techniques and Equipment for Environmental Pollution Control, 2003(4): 4-10. | |
64 | 黄云龙, 郭庆杰, 田红景, 等. 餐厨垃圾热解实验研究[J]. 高校化学工程学报, 2012, 26(4): 721-728. |
HUANG Yunlong, GUO Qingjie, TIAN Hongjing, et al. Study on pyrolysis of kitchen waste (KW) by using thermo gravimetric analyzer (TGA) and tube furnace[J]. Journal of Chemical Engineering of Chinese Universities, 2012, 26(4): 721-728. | |
65 | MING Xue, XU Fanfan, JIANG Yuan, et al. Thermal degradation of food waste by TG-FTIR and Py-GC/MS: Pyrolysis behaviors, products, kinetic and thermodynamic analysis[J]. Journal of Cleaner Production, 2020, 244: 118713. |
66 | LEE Xin Jiat, Hwai Chyuan ONG, GAN Yong Yang, et al. State of art review on conventional and advanced pyrolysis of macroalgae and microalgae for biochar, bio-oil and bio-syngas production[J]. Energy Conversion and Management, 2020, 210: 112707. |
67 | SU Guangcan, Hwai Chyuan ONG, I M Rizwanul FATTAH, et al. State-of-the-art of the pyrolysis and co-pyrolysis of food waste: Progress and challenges[J]. Science of the Total Environment, 2022, 809: 151170. |
68 | 沈超青. 广州市餐厨垃圾的资源化利用研究[D]. 广州: 华南理工大学, 2013. |
SHEN Chaoqing. Resource utilization of the kitchen waste in Guangzhou[D]. Guangzhou: South China University of Technology, 2013. | |
69 | PARK Chanyeong, LEE Nahyeon, KIM Jisu, et al. Co-pyrolysis of food waste and wood bark to produce hydrogen with minimizing pollutant emissions[J]. Environmental Pollution, 2021, 270: 116045. |
70 | Gábor NAGY, Zsolt DOBÓ. Experimental investigation of fixed-bed pyrolysis and steam gasification of food waste blended with woody biomass[J]. Biomass and Bioenergy, 2020, 139: 105580. |
71 | CHEN Lin, YU Zhaosheng, FANG Shiwen, et al. Co-pyrolysis kinetics and behaviors of kitchen waste and chlorella vulgaris using thermogravimetric analyzer and fixed bed reactor[J]. Energy Conversion and Management, 2018, 165: 45-52. |
72 | TANG Yijing, HUANG Qunxing, SUN Kai, et al. Co-pyrolysis characteristics and kinetic analysis of organic food waste and plastic[J]. Bioresource Technology, 2018, 249: 16-23. |
73 | KIM Soosan, LEE Younghyun, LIN Kun-Yi Andrew, et al. The valorization of food waste via pyrolysis[J]. Journal of Cleaner Production, 2020, 259: 120816. |
74 | KIM Soosan, LEE Changgu, KIM Yong Tae, et al. Effect of Pt catalyst on the condensable hydrocarbon content generated via food waste pyrolysis[J]. Chemosphere, 2020, 248: 126043. |
75 | CHAIHAD Nichaboon, KARNJANAKOM Surachai, KURNIA Irwan, et al. Catalytic upgrading of bio-oils over high alumina zeolites[J]. Renewable Energy, 2019, 136: 1304-1310. |
76 | KADLIMATTI H M, Raj MOHAN B, SAIDUTTA M B. Microwave-assisted pyrolysis of food waste: Optimization of fixed carbon content using response surface methodology[J]. Biofuels-UK, 2019, 12(9): 1051-1058. |
77 | 赵计伟. 餐厨基生物炭的制备及应用潜力研究[D]. 北京: 北京化工大学, 2019. |
ZHAO Jiwei. Study on preparation and application potential of kitchen-based biomass carbon[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
78 | 袁婷婷, 席雪萍, 齐超, 等. 生物炭修复土壤重金属污染的研究进展[J]. 环境科学与管理, 2022, 47(3): 123-126. |
YUAN Tingting, XI Xueping, QI Chao, et al. Research progress on biochar remediation of heavy metal contaminated soil[J]. Environmental Science and Management, 2022, 47(3): 123-126. | |
79 | 王楠, 张珺婷, 朱昊辰, 等. 由餐厨垃圾制备生物炭的研究进展[J]. 环境科学与技术, 2016, 39(S2): 245-250. |
WANG Nan, ZHANG Junting, ZHU Haochen, et al. Research progress in producing biochar from food waste[J]. Environmental Science & Technology, 2016, 39(S2): 245-250. | |
80 | 李荭荭, 李洲, 李海龙, 等. 生物炭与硅酸钠复合施加抑制水稻对土壤铅吸收富集的机制研究[J]. 环境科学学报, 2022, 42(7): 446-455. |
LI Honghong, LI Zhou, LI Hailong, et al. The combinations of biochar and sodium silicate reduced the accumulation and transfer of Pb in soil-rice system[J]. Acta Scientiae Circumstantiae, 2022, 42(7): 446-455. | |
81 | 李忱昊. 生物炭修复污染土壤的研究进展[J]. 资源节约与环保, 2022(2): 91-93. |
LI Chenhao. Research progress on biochar remediation of contaminated soil[J]. Resources Economization & Environmental Protection, 2022(2): 91-93. | |
82 | 袁访, 李开钰, 杨慧, 等. 生物炭施用对黄壤土壤养分及酶活性的影响[J]. 环境科学, 2022, 43(9): 4655-4661. |
YUAN Fang, LI Kaiyu, YANG Hui, et al. Effects of biochar application on yellow soil nutrients and enzyme activities[J]. Environmental Science, 2022, 43(9): 4655-4661. | |
83 | 夏桂敏, 王宇佳, 王淑君, 等. 灌溉方式与生物炭对花生根系、磷素利用及产量的影响[J]. 农业机械学报, 2022, 53(2): 316-326. |
XIA Guimin, WANG Yujia, WANG Shujun, et al. Effects of irrigation methods and biochar on peanut root, phosphorus utilization and yield[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 316-326. | |
84 | 黄钰坪, 王登辉, 惠世恩, 等. 生物炭材料吸附VOCs研究进展[J]. 洁净煤技术, 2022, 28(2): 40-53. |
HUANG Yuping, WANG Denghui, HUI Shien, et al. Research progress of VOCs adsorption by biochar material[J]. Clean Coal Technology, 2022, 28(2): 40-53. | |
85 | 朱俊波, 赵建兵, 周世萍, 等. 花生壳生物炭去除水中铅镉离子的性能及吸附机理研究[J]. 西南林业大学学报(自然科学), 2022, 42(5): 78-86. |
ZHU Junbo, ZHAO Jianbing, ZHOU Shiping, et al. Study on adsorption performance and mechanism of peanut shell biochar for Pb2+ and Cd2+ in water[J]. Journal of Southwest Forestry University (Natural Sciences), 2022, 42(5): 78-86. | |
86 | 刘建勋, 刘根起, 尹德忠, 等. 花生壳生物炭吸附剂的制备及性能研究[J]. 广东化工, 2022, 49(6): 23-25. |
LIU Jianxun, LIU Gengqi, YIN Dezhong, et al. Preparation and properties of peanut shell biochar adsorbent[J]. Guangdong Chemical Industry, 2022, 49(6): 23-25. | |
87 | 刘总堂, 邵江, 李艳, 等. 碱改性小麦秸秆生物炭对水中四环素的吸附性能[J]. 中国环境科学, 2022, 42(8): 3736-3743. |
LIU Zongtang, SHAO Jiang, LI Yan, et al. Adsorption performance of tetracycline in water by alkali-modified wheat straw biochars[J]. China Environmental Science, 2022, 42(8): 3736-3743. | |
88 | SHEHZAD Areeb, BASHIR Mohammed J K, SETHUPATHI Sumathi, et al. An overview of heavily polluted landfill leachate treatment using food waste as an alternative and renewable source of activated carbon[J]. Process Safety and Environmental Protection, 2015, 98: 309-318. |
89 | 袁艳文, 赵立欣, 孟海波, 等. 生物质炭化热解气催化重整制取费-托合成气研究进展[J]. 化工进展, 2019, 38(S1): 152-158. |
YUAN Yanwen, ZHAO Lixin, MENG Haibo, et al. Research on the preparation of Fischer-Tropsch synthesis gas by biomass carbonization pyrolysis gas catalytic reforming[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 152-158. | |
90 | 李盾. 玉米秸秆热解气催化重整制备合成气特性实验研究[D]. 郑州: 河南农业大学, 2019. |
LI Dun. Experimental study on the characteristics of catalytic reforming of corn straw pyrolysis gas to synthetic gas[D]. Zhengzhou: Henan Agricultural University, 2019. | |
91 | 刘心志, 张后雷. 热解过程的物料受热方式与热解气品质分析[J]. 能源研究与利用, 2017(2): 24-30, 36. |
LIU Xinzhi, ZHANG Houlei. Analysis of heating mode of materials and pyrolysis gas quality in pyrolysis process[J]. Energy Research & Utilization, 2017(2): 24-30, 36. | |
92 | 刘辉. 生物质热解气生物法甲烷化工艺优化及机理探究[D]. 北京: 北京化工大学, 2016. |
LIU Hui. Research on the mechanism and process optimization of biological methanation of biomass pyrolysis gas[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
93 | 李伟玉. 热解气活化法制备生物质活性炭及其吸附应用[D]. 大连: 大连理工大学, 2017. |
LI Weiyu. Preparation of activated carbons by pyrolysis gas and their adsorption application[D]. Dalian: Dalian University of Technology, 2017. | |
94 | 李伟玉, 李爱民. 热解气活化的活性炭对水体中甲萘威的吸附性能[J]. 环境工程学报, 2018, 12(1): 41-48. |
LI Weiyu, LI Aimin. Adsorption performance of carbaryl of wastewater on activated carbons prepared by pyrolysis gas activation[J]. Chinese Journal of Environmental Engineering, 2018, 12(1): 41-48. | |
95 | 李荣萱. 双金属催化剂用于木质素热解油加氢脱氧的研究[D]. 广州: 广东工业大学, 2021. |
LI Rongxuan. Study on the bimetallic catalysts hydrodeoxygenation of lignin pyrolysis oil[D]. Guangzhou: Guangdong University of Technology, 2021. | |
96 | 丁超, 张振文, 王陆洋, 等. 低温热解油厌氧消化产甲烷条件研究[J]. 中国环境科学, 2021, 41(8): 3676-3683. |
DING Chao, ZHANG Zhenwen, WANG Luyang, et al. The research on anaerobic digestion conditions of biomethanation using low-temperature pyrolysis oil[J]. China Environmental Science, 2021, 41(8): 3676-3683. | |
97 | 王铖, 梅德清, 郭冬梅, 等. 提质生物质热解油的燃烧与排放特性[J]. 石油学报(石油加工), 2020, 36(1): 130-136. |
WANG Cheng, MEI Deqing, GUO Dongmei, et al. Combustion and emission characteristics of upgraded biomass pyrolysis oil[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 130-136. | |
98 | 庄诗韵, 陈玉保, 张旭, 等. 热解油加氢催化制航空燃料工艺及响应面优化[J]. 太阳能学报, 2021, 42(10): 311-316. |
ZHUANG Shiyun, CHEN Yubao, ZHANG Xu, et al. Optimization of process conditions and response surface on catalytic hydrotreatment of pyrolysis oil for producing aviation fuel[J]. Acta Energiae Solaris Sinica, 2021, 42(10): 311-316. | |
99 | 郝亚杰. 麻疯树油一步加氢催化制备生物航空煤油的研究[D]. 昆明: 云南师范大学, 2017. |
HAO Yajie. Catalytic preparation of bio-aviation kerosene by one-step hydrogenation of jatropha oil[D]. Kunming: Yunnan Normal University, 2017. | |
100 | 常苗苗. 热解油组分对地暖木地板用改性酚醛树脂甲醛释放的影响[D]. 北京: 北京林业大学, 2020. |
CHANG Miaomiao. Effect of bio-oil components on formaldehyde emission of phenol-formaldehyde resin modified by bio-oil for wooden heating[D]. Beijing: Beijing Forestry University, 2020. |
[1] | 王雪婷, 顾霞, 徐先宝, 赵磊, 薛罡, 李响. 水热预处理对餐厨垃圾厌氧发酵产戊酸的影响[J]. 化工进展, 2023, 42(9): 4994-5002. |
[2] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[3] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[4] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[5] | 张杉, 仲兆平, 杨宇轩, 杜浩然, 李骞. 磷酸盐改性高岭土对生活垃圾热解过程中重金属的富集[J]. 化工进展, 2023, 42(7): 3893-3903. |
[6] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[7] | 李栋先, 王佳, 蒋剑春. 皂脚热解-催化气态加氢制备生物燃料[J]. 化工进展, 2023, 42(6): 2874-2883. |
[8] | 王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665. |
[9] | 赵佳琪, 黄亚继, 李志远, 丁雪宇, 祁帅杰, 张煜尧, 刘俊, 高嘉炜. 污泥和聚氯乙烯共热解三相产物特性[J]. 化工进展, 2023, 42(4): 2122-2129. |
[10] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[11] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[12] | 梁贻景, 马岩, 卢展烽, 秦福生, 万骏杰, 王志远. La1-x Sr x MnO3钙钛矿涂层的抗结焦性能[J]. 化工进展, 2023, 42(4): 1769-1778. |
[13] | 潘宇涵, 徐俊, 赵光杰, 林诚乾, 金亮, 薛志亮, 周永刚, 黄群星. 废轮胎梯级热解中试装置开发与产物特性分析[J]. 化工进展, 2023, 42(3): 1240-1247. |
[14] | 何阳东, 常宏岗, 王丹, 陈昌介, 李雅欣. 熔融金属法甲烷裂解制氢和碳材料研究进展[J]. 化工进展, 2023, 42(3): 1270-1280. |
[15] | 郑云武, 裴涛, 李冬华, 王继大, 李继容, 郑志锋. 金属氧化物活化P/HZSM-5催化生物质热解气重整制备富烃生物油[J]. 化工进展, 2023, 42(3): 1353-1364. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |