1 |
YU Yanan, YIN Zheng, CAO Lihui, et al. Organic porous solid as promising iodine capture materials[J]. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102(5/6): 395-427.
|
2 |
SUN Qi, AGUILA Briana, MA Shengqian. Opportunities of porous organic polymers for radionuclide sequestration[J]. Trends in Chemistry, 2019, 1(3): 292-303.
|
3 |
TESFAY REDA Alemtsehay, PAN Meng, ZHANG Dongxiang, et al. Bismuth-based materials for iodine capture and storage: A review[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105279.
|
4 |
XIE Wei, CUI Di, ZHANG Shuran, et al. Iodine capture in porous organic polymers and metal-organic frameworks materials[J]. Materials Horizons, 2019, 6(8): 1571-1595.
|
5 |
张晓媛. 处理含碘放射性废水新型吸附剂的制备及组合工艺开发[D]. 天津: 天津大学, 2019.
|
|
ZHANG Xiaoyuan. Synthesis of the novel adsorbent and development of an integrated process for treating iodine-containing radioactive wastewater[D]. Tianjin: Tianjin University, 2019.
|
6 |
QIN Jianxian, ZHANG Wei, CHEN Yuantao, et al. Zinc-based triazole metal complexes for efficient iodine adsorption in water[J]. Environmental Science and Pollution Research, 2021, 28(22): 28797-28807.
|
7 |
GOGIA Alisha, Prasenjit DAS, MANDAL Sanjay K. Tunable strategies involving flexibility and angularity of dual linkers for a 3D metal-organic framework capable of multimedia iodine capture[J]. ACS Applied Materials & Interfaces, 2020, 12(41): 46107-46118.
|
8 |
Mahmoud EL-SHAHAT, ABDELHAMID Ahmed E, ABDELHAMEED R. Capture of iodide from wastewater by effective adsorptive membrane synthesized from MIL-125-NH2 and cross-linked chitosan[J]. Carbohydrate Polymers, 2020, 231: 115742.
|
9 |
LIU Rong, ZHANG Wei, CHEN Yuantao, et al. Highly efficient adsorption of iodine under ultrahigh pressure from aqueous solution[J]. Separation and Purification Technology, 2020, 233: 115999.
|
10 |
刘蓉, 张炜, 陈元涛, 等. ZIF材料对碘的吸附特性研究[J]. 无机材料学报, 2020, 35(3): 345-351.
|
|
LIU Rong, ZHANG Wei, CHEN Yuantao, et al. Adsorption of iodine by ZIF materials[J]. Journal of Inorganic Materials, 2020, 35(3): 345-351.
|
11 |
QU Guiyang, HAN Ying, QI Junjun, et al. Rapid iodine capture from radioactive wastewater by green and low-cost biomass waste derived porous silicon-carbon composite[J]. RSC Advances, 2021, 11(9): 5268-5275.
|
12 |
ZHANG Qingmei, ZHAI Tianlong, WANG Zhen, et al. Hyperporous carbon from triptycene-based hypercrosslinked polymer for iodine capture[J]. Advanced Materials Interfaces, 2019, 6(9): 1900249.
|
13 |
HUANG Min, YANG Li, LI Xiuyun, et al. An indole-derived porous organic polymer for the efficient visual colorimetric capture of iodine in aqueous media via the synergistic effects of cation-π and electrostatic forces[J]. Chemical Communications, 2020, 56(9): 1401-1404.
|
14 |
LIN Yunxiao, JIANG Xuanfeng, KIM Samuel T, et al. An elastic hydrogen-bonded cross-linked organic framework for effective iodine capture in water[J]. Journal of the American Chemical Society, 2017, 139(21): 7172-7175.
|
15 |
XIE Linhuang, ZHENG Zhiye, LIN Qiuyuan, et al. Calix[4]pyrrole-based crosslinked polymer networks for highly effective iodine adsorption from water[J]. Angewandte Chemie (International Ed in English), 2022, 61(1): e202113724.
|
16 |
ZHANG Zhizhong, LI Liang, AN Duo, et al. Triazine-based covalent organic polycalix[4]arenes for highly efficient and reversible iodine capture in water[J]. Journal of Materials Science, 2020, 55(4): 1854-1864.
|
17 |
AN Duo, LI Liang, ZHANG Zhizhong, et al. Amino-bridged covalent organic Polycalix[4]arenes for ultra efficient adsorption of iodine in water[J]. Materials Chemistry and Physics, 2020, 239: 122328.
|
18 |
CAO Jiajun, ZHU Huangtianzhi, SHANGGUAN Liqing, et al. A pillar[5]arene-based 3D polymer network for efficient iodine capture in aqueous solution[J]. Polymer Chemistry, 2021, 12(24): 3517-3521.
|
19 |
CHEN Run, HU Tianliang, LI Yongqiang. Stable nitrogen-containing covalent organic framework as porous adsorbent for effective iodine capture from water[J]. Reactive and Functional Polymers, 2021, 159: 104806.
|
20 |
WANG Yinghui, ZHAO Meng, ZHANG Lili, et al. Covalent organic polymers are highly effective absorbers of iodine in water under ultra-high pressure[J]. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329(3): 1407-1415.
|
21 |
Arunabha SEN, SHARMA Shivani, DUTTA Subhajit, et al. Functionalized ionic porous organic polymers exhibiting high iodine uptake from both the vapor and aqueous medium[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 34188-34196.
|
22 |
LI Bin, WANG Bin, HUANG Xiayang, et al. Terphen[n]arenes and quaterphen[n]arenes (n=3-6): One-pot synthesis, self-assembly into supramolecular gels, and iodine capture[J]. Angewandte Chemie International Edition, 2019, 58(12): 3885-3889.
|
23 |
ZHENG Baozhan, LIU Xiaoxia, HU Jing, et al. Construction of hydrophobic interface on natural biomaterials for higher efficient and reversible radioactive iodine adsorption in water[J]. Journal of Hazardous Materials, 2019, 368: 81-89.
|
24 |
LI Tianze, XU Hui. Recent progress of bioactivities, mechanisms of action, total synthesis, structural modifications and structure-activity relationships of indole derivatives: A review[J]. Mini Reviews in Medicinal Chemistry, 2022, 22(21): 2702-2725.
|
25 |
高宇. 洗油中吲哚和喹啉的分离基础研究[D]. 太原: 太原理工大学, 2020.
|
|
GAO Yu. Study on basic separation of indole and quinoline in washing oil[D]. Taiyuan: Taiyuan University of Technology, 2020.
|
26 |
SALEH Muhammad, LEE Han Myoung, Christian KEMP K, et al. Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7325-7333.
|
27 |
王艳. 吲哚基多孔材料的制备及对水中TNT吸附性能研究[D]. 北京: 中国工程物理研究院, 2020.
|
|
WANG Yan. Preparation of indol-based porous materials and their adsorption properties of TNT in water[D]. Beijing: China Academy of Engineering Physics, 2020.
|
28 |
CHEN Dongyang, FU Yu, YU Wenguang, et al. Versatile Adamantane-based porous polymers with enhanced microporosity for efficient CO2 capture and iodine removal[J]. Chemical Engineering Journal, 2018, 334: 900-906.
|
29 |
XIA Yanting, LI Yankai, GU Yuntao, et al. Adsorption desulfurization by hierarchical porous organic polymer of poly-methylbenzene with metal impregnation[J]. Fuel, 2016, 170: 100-106.
|
30 |
JIN Tian, AN Shuhao, YANG Xuejing, et al. Efficient adsorptive desulfurization by task-specific porous organic polymers[J]. AIChE Journal, 2016, 62(5): 1740-1746.
|
31 |
李和国, 王立莹, 赵越, 等. 一类新型高效捕获碘蒸汽的低成本超交联微孔聚合物[J]. 兵器装备工程学报, 2021, 42(7): 269-273.
|
|
LI Heguo, WANG Liying, ZHAO Yue, et al. A kind of novel low-cost hypercrosslinked polymers with efficient iodine adsorption[J]. Journal of Ordnance Equipment Engineering, 2021, 42(7): 269-273.
|
32 |
HUANG Yalin, LI Wei, XU Yuwei, et al. Rapid iodine adsorption from vapor phase and solution by a nitrogen-rich covalent piperazine-triazine-based polymer[J]. New Journal of Chemistry, 2021, 45(12): 5363-5370.
|
33 |
WANG Yan, TAO Jian, XIONG Shaohui, et al. Ferrocene-based porous organic polymers for high-affinity iodine capture[J]. Chemical Engineering Journal, 2020, 380: 122420.
|
34 |
XU Meiyun, WANG Tao, ZHOU Lei, et al. Fluorescent conjugated mesoporous polymers with N,N-diethylpropylamine for the efficient capture and real-time detection of volatile iodine[J]. Journal of Materials Chemistry A, 2020, 8(4): 1966-1974.
|
35 |
WANG Chang, WANG Yu, GE Rile, et al. A 3D covalent organic framework with exceptionally high iodine capture capability[J]. Chemistry (Weinheim an Der Bergstrasse, Germany), 2018, 24(3): 585-589.
|
36 |
LIN Jingxiang, LIANG Jun, FENG Jifei, et al. Iodine uptake and enhanced electrical conductivity in a porous coordination polymer based on cucurbit[6]uril[J]. Inorganic Chemistry Frontiers, 2016, 3(11): 1393-1397.
|
37 |
WALL S L D, MEADOWS E S, BARBOUR L, et al. Solution- and solid-state evidence for alkali metal cation-π interactions with indole, the side chain of tryptophan[J]. Journal of the American Chemical Society, 1999, 121: 5613-5614.
|
38 |
SCHLAMADINGER Diana E, DASCHBACH Megan M, GOKEL George W, et al. UV resonance Raman study of cation-π interactions in an indole crown ether[J]. Journal of Raman Spectroscopy: JRS, 2011, 42(4): 633-638.
|
39 |
SVENSSON Per H, KLOO Lars. Synthesis, structure, and bonding in polyiodide and metal iodide-iodine systems[J]. Chemical Reviews, 2003, 103(5): 1649-1684.
|