化工进展 ›› 2023, Vol. 42 ›› Issue (6): 3123-3129.DOI: 10.16085/j.issn.1000-6613.2022-1410
收稿日期:
2022-07-27
修回日期:
2022-09-23
出版日期:
2023-06-25
发布日期:
2023-06-29
通讯作者:
杨许召
作者简介:
杨许召(1978—),男,博士,副教授,主要研究方向为化学工艺、精细化工。E-mail: yangxz@zzuli.edu.cn。
基金资助:
YANG Xuzhao(), LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide
Received:
2022-07-27
Revised:
2022-09-23
Online:
2023-06-25
Published:
2023-06-29
Contact:
YANG Xuzhao
摘要:
以1-甲基咪唑、1,3-二溴丙烷为原料合成Gemini离子液体1,1'-(1,3-三亚甲基)双-3-甲基咪唑二溴盐[C3(MIM)2Br2],并以不同C3(MIM)2Br2与乙二醇组成制备了一系列低共熔溶剂。熔点测试结果显示,所有的低共熔溶剂的熔点均低于-90℃,远低于C3(MIM)2Br2和乙二醇的熔点,且随着乙二醇组成的增大而降低。在288.15~323.15K条件下对该低共熔溶剂的密度、黏度、电导率、比热容等热力学性质进行了测定,结果表明,密度和黏度会随着温度的升高而降低,电导率与比热容则随着温度的升高而升高。随着乙二醇物质的量的升高,密度和黏度减小,电导率和比热容增大。密度、比热容随温度变化的线性方程的相关系数大于0.99。用VFT经验方程对黏度和电导率随温度的变化进行了拟合,结果表明,黏度与电导率的相关系数均大于0.999。
中图分类号:
杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129.
YANG Xuzhao, LI Qing, YUAN Kangkang, ZHANG Yingying, HAN Jingli, WU Shide. Thermodynamic properties of Gemini ionic liquid based deep eutectic solvents[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3123-3129.
热力学性质 | 实验值 | 文献值 | 相对误差/% | T/K |
---|---|---|---|---|
ρ/g·mL-1 | 1.1162 | 1.11676[ | -0.050 | 288.15 |
1.1021 | 1.1030[ | -0.082、-0.075、0.018、-0.056 | 308.15 | |
1.0986 | 1.0999[ | -0.118、0.457、-0.055 | 313.15 | |
1.0949 | 1.0978[ | -0.264、-0.055、-0.068 | 318.15 | |
1.0906 | 1.09105[ | -0.0412、-0.130、0.544 | 323.15 | |
η/mPa·s | 26.0965 | 26.343[ | -0.936 | 288.15 |
10.0952 | 9.2122[ | 9.585、-3.598、-10.153 | 308.15 | |
8.6371 | 7.9605[ | 8.499、-8.155 | 313.15 | |
6.8190 | 6.2933[ | 8.353、-14.172、-16.084 | 318.15 | |
6.4921 | 6.992[ | -7.150、-6.359、-4.161、19.191 | 323.15 | |
κ/μS·m-1 | 0.413 | 0.400[ | 3.250 | 303.15 |
0.516 | 0.502[ | 2.789 | 313.15 | |
0.609 | 0.600[ | 1.500 | 323.15 | |
cp /J·g-1·K-1 | 2.3462 | 2.3533[ | -0.302、-1.1254 | 293.15 |
2.3891 | 2.3826[ | 0.273、-0.130 | 298.15 | |
2.4286 | 2.4160[ | 0.522、0.688、1.445 | 303.15 | |
2.5671 | 2.478[ | 3.596 | 323.15 |
表1 乙二醇热力学性质测定结果与文献值对比
热力学性质 | 实验值 | 文献值 | 相对误差/% | T/K |
---|---|---|---|---|
ρ/g·mL-1 | 1.1162 | 1.11676[ | -0.050 | 288.15 |
1.1021 | 1.1030[ | -0.082、-0.075、0.018、-0.056 | 308.15 | |
1.0986 | 1.0999[ | -0.118、0.457、-0.055 | 313.15 | |
1.0949 | 1.0978[ | -0.264、-0.055、-0.068 | 318.15 | |
1.0906 | 1.09105[ | -0.0412、-0.130、0.544 | 323.15 | |
η/mPa·s | 26.0965 | 26.343[ | -0.936 | 288.15 |
10.0952 | 9.2122[ | 9.585、-3.598、-10.153 | 308.15 | |
8.6371 | 7.9605[ | 8.499、-8.155 | 313.15 | |
6.8190 | 6.2933[ | 8.353、-14.172、-16.084 | 318.15 | |
6.4921 | 6.992[ | -7.150、-6.359、-4.161、19.191 | 323.15 | |
κ/μS·m-1 | 0.413 | 0.400[ | 3.250 | 303.15 |
0.516 | 0.502[ | 2.789 | 313.15 | |
0.609 | 0.600[ | 1.500 | 323.15 | |
cp /J·g-1·K-1 | 2.3462 | 2.3533[ | -0.302、-1.1254 | 293.15 |
2.3891 | 2.3826[ | 0.273、-0.130 | 298.15 | |
2.4286 | 2.4160[ | 0.522、0.688、1.445 | 303.15 | |
2.5671 | 2.478[ | 3.596 | 323.15 |
溶剂 | 熔点/℃ |
---|---|
C3(MIM)2Br2 | 171[ |
乙二醇 | -13[ |
DES1 | -98 |
DES2 | -108 |
DES3 | -110 |
DES4 | -114 |
表2 离子液体和DES的熔点
溶剂 | 熔点/℃ |
---|---|
C3(MIM)2Br2 | 171[ |
乙二醇 | -13[ |
DES1 | -98 |
DES2 | -108 |
DES3 | -110 |
DES4 | -114 |
热力学性质 | 溶剂 | A | B | R2 | σ |
---|---|---|---|---|---|
密度 | DES1 | 1.57066 | -6.78488×10-4 | 0.99997 | 0.00011 |
DES2 | 1.53140 | -6.82138×10-4 | 0.99998 | 0.00011 | |
DES3 | 1.51577 | -6.82252×10-4 | 0.99999 | 0.00011 | |
DSE4 | 1.48676 | -6.83652×10-4 | 0.99998 | 0.00009 | |
比热容 | DES1 | 0.95372 | 0.00308 | 0.99766 | 0.0025 |
DES2 | 0.55713 | 0.00531 | 0.99847 | 0.0034 | |
DES3 | 0.01762 | 0.0078 | 0.99858 | 0.0048 | |
DES4 | -0.51295 | 0.01004 | 0.99900 | 0.0051 |
表3 DES密度、比热容方程参数及标准差
热力学性质 | 溶剂 | A | B | R2 | σ |
---|---|---|---|---|---|
密度 | DES1 | 1.57066 | -6.78488×10-4 | 0.99997 | 0.00011 |
DES2 | 1.53140 | -6.82138×10-4 | 0.99998 | 0.00011 | |
DES3 | 1.51577 | -6.82252×10-4 | 0.99999 | 0.00011 | |
DSE4 | 1.48676 | -6.83652×10-4 | 0.99998 | 0.00009 | |
比热容 | DES1 | 0.95372 | 0.00308 | 0.99766 | 0.0025 |
DES2 | 0.55713 | 0.00531 | 0.99847 | 0.0034 | |
DES3 | 0.01762 | 0.0078 | 0.99858 | 0.0048 | |
DES4 | -0.51295 | 0.01004 | 0.99900 | 0.0051 |
热力学性质 | 溶剂 | A | B | T0/K | R2 |
---|---|---|---|---|---|
黏度 | DES1 | -2.08244 | 892.19761 | 170 | 0.99992 |
DES2 | -2.21258 | 850.66318 | 158 | 0.99983 | |
DES3 | -2.14673 | 798.55697 | 163 | 0.99998 | |
DES4 | -2.50824 | 832.22644 | 159 | 1 | |
电导率 | DES1 | 3.16148 | -107.04625 | 249 | 0.99994 |
DES2 | 3.55785 | -166.03872 | 221 | 0.99997 | |
DES3 | 3.70920 | -191.57429 | 210 | 0.99999 | |
DES4 | 3.85660 | -206.90876 | 203 | 0.99995 |
表4 DES黏度、电导率的VFT方程参数及相关系数
热力学性质 | 溶剂 | A | B | T0/K | R2 |
---|---|---|---|---|---|
黏度 | DES1 | -2.08244 | 892.19761 | 170 | 0.99992 |
DES2 | -2.21258 | 850.66318 | 158 | 0.99983 | |
DES3 | -2.14673 | 798.55697 | 163 | 0.99998 | |
DES4 | -2.50824 | 832.22644 | 159 | 1 | |
电导率 | DES1 | 3.16148 | -107.04625 | 249 | 0.99994 |
DES2 | 3.55785 | -166.03872 | 221 | 0.99997 | |
DES3 | 3.70920 | -191.57429 | 210 | 0.99999 | |
DES4 | 3.85660 | -206.90876 | 203 | 0.99995 |
1 | ABBOTT Andrew P, CAPPER Glen, DAVIES David L, et al. Novel solvent properties of choline chloride/urea mixtures[J]. Chemical Communications, 2003, 9(1): 70-71. |
2 | ABBOTT A P, CAPPER G, DAVIES D L, et al. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains[J]. Chemical Communications, 2001(19): 2010-2011. |
3 | SHAHBAZ K, BAROUTIAN S, MJALLI F S, et al. Densities of ammonium and phosphonium based deep eutectic solvents: prediction using artificial intelligence and group contribution techniques[J]. Thermochimica Acta, 2012, 527: 59-66. |
4 | ABBOTT A, BOOTHBY D, CAPPER G, et al. Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids[J]. Journal of the American Chemical Society, 2004, 126(29): 9142-9147. |
5 | PERNA Filippo Maria, VITALE Paola, CAPRIATI Vito. Deep eutectic solvents and their applications as green solvents[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 21: 27-33. |
6 | TORRES Paulo, BALCELLS Mercè, Ramon CANELA-GARAYOA. Effect of novel deep eutectic solvents on the endo/exo ratio of Diels-Alder reactions at room temperature[J]. ACS Omega, 2021, 6(30): 19392-19399. |
7 | GANO Zaharaddeen S, MJALLI Farouq S, Talal AL-WAHAIBI, et al. Extractive desulfurization of liquid fuel with FeCl3-based deep eutectic solvents: experimental design and optimization by central-composite design[J]. Chemical Engineering and Processing: Process Intensification, 2015, 93: 10-20. |
8 | Alberto GUTIÉRREZ, APARICIO Santiago, ATILHAN Mert. Design of arginine-based therapeutic deep eutectic solvents as drug solubilization vehicles for active pharmaceutical ingredients[J]. Physical Chemistry Chemical Physics, 2019, 21(20): 10621-10634. |
9 | 冯善花. 低共熔溶剂的制备及在芳烃烷烃体系分离中的基础研究[D]. 北京: 北京化工大学, 2019. |
FENG Shanhua. Preparation of the eutectic solvent and its application in separation of aromation hydrocarbon alkane systems[D]. Beijing: Beijing University of Chemical Technology, 2019. | |
10 | 黄文睿, 唐超凡, 陶雨峰, 等. 绿色低共熔溶剂提取野菊花中黄酮类化合物[J]. 精细化工, 2022, 39(3): 569-576. |
HUANG Wenrui, TANG Chaofan, TAO Yufeng, et al. Extraction of flavonoids from Chrysanthemum indicum L.by green deep eutectic solvents [J]. Fine Chemicals, 2022, 39(3): 569-576. | |
11 | RODRIGUEZ Nerea R, GERLACH Thomas, SCHEEPERS Daniëlle, et al. Experimental determination of the LLE data of systems consisting of{hexane + benzene + deep eutectic solvent}and prediction using the conductor-like screening model for real solvents[J]. The Journal of Chemical Thermodynamics, 2017, 104: 128-137. |
12 | ABBOTT A P, BARRON J C, RYDER K S, et al. Eutectic-based ionic liquids with metal-containing anions and cations[J]. Chemistry, 2007, 13(22): 6495-6501. |
13 | ABBOTT A, CAPPER G, DAVIES D, et al. Solubility of metal oxides in deep eutectic solvents based on choline chloride[J]. Journal of Chemical & Engineering Data, 2006, 51: 1280-1282. |
14 | FRANCISCO M, VAN DEN BRUINHORST A, KROON M. Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents[J]. Angewandte Chemie International Edition, 2013, 52(11): 3074-3085. |
15 | Gregorio GARCÍA, ATILHAN Mert, APARICIO Santiago. An approach for the rationalization of melting temperature for deep eutectic solvents from DFT[J]. Chemical Physics Letters, 2015, 634: 151-155. |
16 | AFZAL Waheed, MOHAMMADI Amir H, RICHON Dominique. Volumetric properties of mono-, di-, tri-, and polyethylene glycol aqueous solutions from (273.15 to 363.15) K: experimental measurements and correlations[J]. Journal of Chemical & Engineering Data, 2010, 54(4): 1254-1261. |
17 | 邓荣华, 刘迎新, 张凌伟, 等. 乙二醇-水体系的理化性质研究[J]. 内蒙古工业大学学报(自然科学版), 2009, 28(2): 106-112. |
DENG Ronghua, LIU Yingxin, ZHANG Lingwei, et al. A study on the physicochemical properties of ethylene glycol and water system[J]. Journal of Inner Mongolia University of Technology (Natural Science), 2009, 28(2): 106-112. | |
18 | COMELLI F, OTTANI T S, FRANCESCONI R, et al. Excess molar enthalpies of binary mixtures containing glycols or polyglycols + dimethyl sulfoxide at 308.15K[J]. Journal of Chemical & Engineering Data, 2003, 48: 995-998. |
19 | GEYER H, ULBIG P, GÖRNERT M. Measurement of densities and excess molar volumes for (1,2-ethanediol, or 1,2-propanediol, or 1,2-butanediol + water) at the temperatures (278.15, 288.15, 298.15, 308.15, and 318.15) K and for (2,3-butanediol + water) at the temperatures (308.15, 313.15, and 318.15) K[J]. The Journal of Chemical Thermodynamics, 2000, 32(12): 1585-1596. |
20 | YANG Changsheng, MA Peisheng, JING Fengming, et al. Excess molar volumes, viscosities, and heat capacities for the mixtures of ethylene glycol + water from 273.15K to 353.15K[J]. Journal of Chemical & Engineering Data, 2003, 48(4): 836-840. |
21 | Milan VRANEŠ, Ivona RADOVIĆ, Siniša BIKIĆ, et al. Improving ethylene glycol transport properties by caffeine: thermodynamic and computational evidence[J]. Journal of Molecular Liquids, 2021, 333: 115918. |
22 | KUMAR Bhupinder, SINGH Tejwant, RAO K Srinivasa, et al. Thermodynamic and spectroscopic studies on binary mixtures of imidazolium ionic liquids in ethylene glycol[J]. The Journal of Chemical Thermodynamics, 2012, 44(1): 121-127. |
23 | AZIZIAN Saeid, BASHAVARD Nowrouz. Surface properties of diluted solutions of cyclohexanol and cyclopentanol in ethylene glycol[J]. Journal of Colloid and Interface Science, 2005, 282(2): 428-433. |
24 | AZIZIAN Saeid, HEMMATI Maryam. Surface tension of binary mixtures of ethanol + ethylene glycol from 20 to 50℃[J]. Journal of Chemical & Engineering Data, 2003, 48(3): 662-663. |
25 | GURUNG Bhoj Bahadur, ROY Mahendra Nath. Study of densities, viscosity deviations, and isentropic compressibilities of ternary liquid mixtures of water and ethane-1,2-diol with some monoalcohols at various temperatures[J]. Physics and Chemistry of Liquids, 2007, 45(3): 331-343. |
26 | QUIJADA-MALDONADO E, MEINDERSMA G W, DE HAAN A B. Viscosity and density data for the ternary system water(1)-ethanol(2)-ethylene glycol(3) between 298.15K and 328.15K[J]. The Journal of Chemical Thermodynamics, 2013, 57: 500-505. |
27 | 谭志诚, 沈惠华, 陈淑霞. 乙二醇及其水溶液二元体系理化性能数据的测定[J]. 化学工程, 1983, 11(1): 41-50. |
TAN Zhicheng, SHEN Huihua, CHEN Shuxia. Determination of physical and chemical properties of ethylene glycol and its aqueous solution[J]. Chemical Engineering(China), 1983, 11 (1): 41-50. | |
28 | ZHOU Nianyong, FENG Hao, GUO Yixing, et al. Experimental study on the spray cooling heat transfer performance and dimensionless correlations for ethylene glycol water solution[J]. Applied Thermal Engineering Design Processes Equipment Economics, 2022, 214: 118824. |
29 | 王军, 张真真, 杨许召, 等. 双阳离子型离子液体的合成与性能[J]. 化学试剂, 2009, 31(9): 719-722. |
WANG Jun, ZHANG Zhenzhen, YANG Xuzhao, et al. Study on synthesis and properties of dicationic ionic liquids[J]. Chemical Reagents, 2009, 31(9): 719-722. | |
30 | 杨许召. 非对称Gemini离子液体的合成及性能研究[D]. 无锡: 江南大学, 2019. |
YANG Xuzhao. Study on synthesis and properties of asymmetrical gemini ionic liquids[D]. Wuxi: Jiangnan University, 2019. | |
31 | CHEMAT Fareeda, ANJUM Hirra, SHARIFF Azmi Md, et al. Thermal and physical properties of (choline chloride + urea + L-arginine) deep eutectic solvents[J]. Journal of Molecular Liquids, 2016, 218: 301-308. |
32 | ABBOTT Andrew P, HARRIS Robert C, RYDER Karl S, et al. Glycerol eutectics as sustainable solvent systems[J]. Green Chemistry, 2011, 13(1): 82-90. |
33 | Carmine D’AGOSTINO, HARRIS Robert C, ABBOTT Andrew P, et al. Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy[J]. Physical Chemistry Chemical Physics, 2011, 13(48): 21383-21391. |
34 | ABBOTT Andrew P, HARRIS Robert C, RYDER Karl S. Application of hole theory to define ionic liquids by their transport properties[J]. The Journal of Physical Chemistry B, 2007, 111(18): 4910-4913. |
[1] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[2] | 叶玉玺, 丁晓茜, 池华睿, 朱楷伦, 刘杨, 王凌云, 郭庆杰. 疏水性低共熔溶剂氢键交互作用调控及萃取铜性能[J]. 化工进展, 2022, 41(S1): 397-406. |
[3] | 何晨露, 邱晨茜, 方娟, 杨旋, 赖建军, 郑新宇, 吕建华, 陈燕丹, 黄彪. 基于低共熔溶剂体系的氮掺杂超级电容炭[J]. 化工进展, 2022, 41(9): 4946-4953. |
[4] | 程明强, 汝娟坚, 华一新, 王丁, 耿笑, 张文文, 黄皓铭, 王道祥. 低共熔溶剂在废旧锂离子电池正极材料回收中的研究进展[J]. 化工进展, 2022, 41(6): 3293-3305. |
[5] | 解先利, 刘云云, 余强, 张宇, 张荣清, 邱雨心. 低共熔溶剂预处理提高甘草渣酶解效果优化[J]. 化工进展, 2022, 41(3): 1349-1356. |
[6] | 陈磊, 闫兴清, 胡延伟, 于帅, 杨凯, 陈绍云, 关辉, 喻健良, HMAHGEREFTE Haroun, MARTYNOV Sergey. 二氧化碳管道意外泄漏减压过程的断裂控制研究进展[J]. 化工进展, 2022, 41(3): 1241-1255. |
[7] | 阮佳纬, 叶香珠, 陈立芳, 漆志文. 离子液体和低共熔溶剂催化二氧化碳合成有机碳酸酯的研究进展[J]. 化工进展, 2022, 41(3): 1176-1186. |
[8] | 谷志攀, 阳季春, 张叶, 陶乐仁, 刘泛函. 市政污泥吸附等温线模型和热力学性质[J]. 化工进展, 2022, 41(2): 998-1008. |
[9] | 刘乾静, 陈晓淼, 王芷, 史吉平, 李保国, 刘莉. 低共熔溶剂预处理杨木水解渣拆解木质素[J]. 化工进展, 2022, 41(10): 5612-5618. |
[10] | 张豪, 叶国华, 陈子杨, 谢禹, 左琪. 黏土钒矿直接常压活化酸浸提钒热力学分析[J]. 化工进展, 2021, 40(10): 5360-5369. |
[11] | 易兰, 李文英, 冯杰. 离子液体/低共熔溶剂在煤基液体分离中的应用[J]. 化工进展, 2020, 39(6): 2066-2078. |
[12] | 刘昊然, 王韵淇, 李秀萍, 赵荣祥. C6H11NO/nCF3SO3H型低共熔溶剂氧化脱除模拟油中的二苯并噻吩[J]. 化工进展, 2020, 39(5): 1632-1640. |
[13] | 张凯,武多多,刘强,彭越,杨震,段远源. 高密度流体声速测量中脉冲回波传播时间的测定[J]. 化工进展, 2020, 39(4): 1219-1226. |
[14] | 窦金孝,赵永奇,段晓谞,柴红宁,余江龙. 络合亚铁乙二醇-四丁基溴化铵低共熔溶剂协同吸收SO2和NO[J]. 化工进展, 2020, 39(2): 453-460. |
[15] | 成洪业, 漆志文. 低共熔溶剂用于萃取分离的研究进展[J]. 化工进展, 2020, 39(12): 4896-4907. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |