1 |
谢远成, 欧中红. 电子设备散热技术的发展[J]. 舰船电子工程, 2019, 39(8): 14-18.
|
|
XIE Yuancheng, Zhonghong OU. Development of heat dissipation technology for electronic equipment[J]. Ship Electronic Engineering, 2019, 39(8): 14-18.
|
2 |
TULLIUS J F, TULLIUS T K, BAYAZITOGLU Y. Optimization of short micro pin fins in minichannels[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 3921-3932.
|
3 |
梅响, 姚元鹏, 吴慧英. 连通微通道内过冷流动沸腾传热强化机理分析[J]. 化工进展, 2022, 41(6): 2884-2892.
|
|
MEI Xiang, YAO Yuanpeng, WU Huiying. Analysis of heat transfer enhancement mechanism on subcooled flow boiling in interconnected microchannels[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2884-2892.
|
4 |
许浩榕, 孙欢, 朱宏伟, 等. 纵向肋间距对微针肋散热器流动传热特性影响的模拟研究[J]. 冷藏技术, 2022, 45(2): 43-51.
|
|
XU Haorong, SUN Huan, ZHU Hongwei, et al. Simulation study on the effect of vertical pin spacing on thermal-hydraulic characteristics of micro-pin-fin heat sinks[J]. Journal of Refrigeration Technology, 2022, 45(2): 43-51.
|
5 |
PELES Yoav, Ali KOŞAR, MISHRA Chandan, et al. Forced convective heat transfer across a pin fin micro heat sink[J]. International Journal of Heat and Mass Transfer, 2005, 48(17): 3615-3627.
|
6 |
刘东, 舒宇, 何蔚然, 等. 微针肋槽道内去离子水换热特性[J]. 强激光与粒子束, 2018, 30(4): 25-30.
|
|
LIU Dong, SHU Yu, HE Weiran, et al. Heat transfer characteristics of mini pin-fin channels[J]. High Power Laser and Particle Beams, 2018, 30(4): 25-30.
|
7 |
徐迪. 不同形状微针肋流动与换热性能模拟与试验研究[D]. 南京: 南京师范大学, 2020.
|
|
XU Di. Simulation and experimental study of flow and heat transfer performance of microneedle ribs of different shapes[D]. Nanjing: Nanjing Normal University, 2020.
|
8 |
宋虹, 黄维平, 付雪鹏. 基于模型试验和数值模拟的柔性串列圆柱体涡激振动研究[J]. 振动与冲击, 2020, 39(6): 64-73.
|
|
SONG Hong, HUANG Weiping, FU Xuepeng. Vortex induced vibration of flexible tandem cylinders based on model tests and numerical simulations[J]. Journal of Vibration and Shock, 2020, 39(6): 64-73.
|
9 |
赵鹏, 王晓凯, 张耀. 小尺寸低质量比的并联圆柱涡激振动仿真研究[J]. 石油机械, 2022, 50(6): 50-57.
|
|
ZHAO Peng, WANG Xiaokai, ZHANG Yao. Simulation study on vortex-induced vibration of small-sized side-by-side cylinders with low mass ratio[J]. China Petroleum Machinery, 2022, 50(6): 50-57.
|
10 |
刘志刚, 吕明明, 孔令健, 等. 基于Micro-PIV的不同截面形状微柱群内部流场特性研究[J]. 山东科学, 2019, 32(5): 81-87.
|
|
LIU Zhigang, Mingming LYU, KONG Lingjian, et al. Study on flow field in micro-cylinder groups with different cross-section shapes by micro-PIV method[J]. Shandong Science, 2019, 32(5): 81-87.
|
11 |
QIN Luwen, HUA Junye, ZHAO Xiaobao, et al. Micro-PIV and numerical study on influence of vortex on flow and heat transfer performance in micro arrays[J]. Applied Thermal Engineering, 2019, 161: 114186.
|
12 |
王乐, 翁建华. 微柱群流动及换热研究进展[J]. 化工进展, 2020, 39(11): 4330-4341.
|
|
WANG Le, WENG Jianhua. Research progress of flow and heat transfer in micro-pin-fins[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4330-4341.
|
13 |
马超. 不同排列方式的微柱群通道内流动的Micro-PIV研究[D]. 北京: 华北电力大学, 2021.
|
|
MA Chao. Micro-PIV study of flow in micro-column channels with different arrangements[D]. Beijing: North China Electric Power University, 2021.
|
14 |
XIA Guodong, CHEN Zhuo, CHENG Lixin, et al. Micro-PIV visualization and numerical simulation of flow and heat transfer in three micro pin-fin heat sinks[J]. International Journal of Thermal Sciences, 2017, 119: 9-23.
|
15 |
刘志刚, 董开明, 吕明明, 等. 基于微观粒子图像测速法的微肋阵通道内流场特性研究[J]. 化工学报, 2021, 72(10): 5094-5101.
|
|
LIU Zhigang, DONG Kaiming, Mingming LYU, et al. Study on characteristics of flow field in micro pin fin array based on micro-PIV[J]. CIESC Journal, 2021, 72(10): 5094-5101.
|
16 |
LIU Z G, GUAN N, ZHANG C W, et al. The flow resistance and heat transfer characteristics of micro pin-fins with different cross-sectional shapes[J]. Nanoscale and Microscale Thermophysical Engineering, 2015, 19(3): 221-243.
|
17 |
YANG Dawei, WANG Yan, DING Guifu, et al. Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations[J]. Applied Thermal Engineering, 2017, 112: 1547-1556.
|
18 |
AMBREEN T, KIM M H. Effect of fin shape on the thermal performance of nanofluid-cooled micro pin-fin heat sinks[J]. International Journal of Heat and Mass Transfer, 2018, 126: 245-256.
|
19 |
XU Fayao, PAN Zhenhai, WU Huiying. Experimental investigation on the flow transition in different pin-fin arranged microchannels[J]. Microfluidics and Nanofluidics, 2018, 22(1): 1-13.
|
20 |
刘中春, 侯吉瑞, 岳湘安. 微尺度流动界面现象及其流动边界条件分析[J]. 水动力学研究与进展(A辑), 2006, 21(3): 339-346.
|
|
LIU Zhongchun, HOU Jirui, YUE Xiangan. Interfacial phenomena in micro-scale flowing and its flowing boundary condition[J]. Journal of Hydrodynamics(Ser. A), 2006, 21(3): 339-346.
|
21 |
孙江龙, 吕续舰, 郭磊, 等. 微尺度流动研究的简要综述[J]. 机械强度, 2010, 32(3): 502-508.
|
|
SUN Jianglong, Xujian LYU, GUO Lei, et al. Brief summarization of micro-scale flow research[J]. Journal of Mechanical Strength, 2010, 32(3): 502-508.
|
22 |
MEIS M, VARAS F, VELÁZQUEZ A, et al. Heat transfer enhancement in micro-channels caused by vortex promoters[J]. International Journal of Heat and Mass Transfer, 2010, 53(1/2/3): 29-40.
|
23 |
JUNG J, KUO C J, PELES Y, et al. The flow field around a micropillar confined in a microchannel[J]. International Journal of Heat and Fluid Flow, 2012, 36: 118-132.
|
24 |
季璨, 吕明明, 黄继凯, 等. 微通道内单柱绕流特性的实验研究[J]. 工程热物理学报, 2021, 42(7): 1844-1850.
|
|
JI Can, Mingming LYU, HUANG Jikai, et al. Experimental study on flow around a single pin fin in a microchannel[J]. Journal of Engineering Thermophysics, 2021, 42(7): 1844-1850.
|
25 |
李济超, 季璨, 吕明明, 等. 微通道内单柱绕流特性的Micro-PIV实验研究[J]. 化工学报, 2020, 71(4): 1844-1850.
|
|
LI Jichao, JI Can, Mingming LYU, et al. Experimental study on characteristics of flow around single cylinder in microchannel based on micro-PIV[J]. CIESC Journal, 2020, 71(4): 1844-1850.
|
26 |
张立. 小雷诺数下圆柱绕流的数值模拟[J]. 力学季刊, 2010, 31(4): 543-547.
|
|
ZHANG Li. Numerical simulation of flow around circular cylinder with small Reynolds numbers[J]. Chinese Quarterly of Mechanics, 2010, 31(4): 543-547.
|
27 |
凌杰, 王毅. 小雷诺数下圆柱绕流数值模拟[J]. 机械工程与自动化, 2019(2): 87-88, 91.
|
|
LING Jie, WANG Yi. Numerical simulation of circular flow around a cylinder at small Reynolds number[J]. Mechanical Engineering & Automation, 2019(2): 87-88, 91.
|