1 |
LU Wenjing, YUAN Zhizhang, ZHAO Yuyue, et al. Porous membranes in secondary battery technologies[J]. Chemical Society Reviews, 2017, 46(8): 2199-2236.
|
2 |
YUAN Z Z, YIN Y B, XIE C X, et al. Advanced materials for zinc-based flow battery: Development and challenge[J]. Advanced Materials, 2019, 31(50): 1970356.
|
3 |
CHAYAMBUKA K, MULDER G, DANILOV D L, et al. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities[J]. Advanced Energy Materials, 2020, 10(38): 2001310.
|
4 |
ZHANG Xin, HU Junping, FU Na, et al. Comprehensive review on zinc-ion battery anode: Challenges and strategies[J]. InfoMat, 2022, 4(7): e12306.
|
5 |
裴英伟, 张红, 王星辉. 可充电锌离子电池电解质的研究进展[J]. 储能科学与技术, 2022, 11(7): 2075-2082.
|
|
PEI Yingwei, ZHANG Hong, WANG Xinghui. Recent advances in the electrolytes of rechargeable zinc-ion batteries[J]. Energy Storage Science and Technology, 2022, 11(7): 2075-2082.
|
6 |
HERTZBERG B J, HUANG A, HSIEH A, et al. Effect of multiple cation electrolyte mixtures on rechargeable Zn-MnO2 alkaline battery[J]. Chemistry of Materials, 2016, 28(13): 4536-4545.
|
7 |
SHOJI T, HISHINUMA M, YAMAMOTO T. Zinc-manganese dioxide galvanic cell using zinc sulphate as electrolyte. Rechargeability of the cell[J]. Journal of Applied Electrochemistry, 1988, 18(4): 521-526.
|
8 |
YAMAMOTO Takakazu, SHOJI Takayuki. Rechargeable Zn∣ZnSO4∣MnO2-type cells[J]. Inorganica Chimica Acta, 1986, 117(2): L27-L28.
|
9 |
XU Chengjun, LI Baohua, DU Hongda, et al. Energetic zinc ion chemistry: The rechargeable zinc ion battery[J]. Angewandte Chemie International Edition, 2012, 51(4): 933-935.
|
10 |
YAN Y, SHU C, ZENG T, et al. Surface-preferred crystal plane growth enabled by underpotential deposited monolayer toward dendrite-free zinc anode[J]. ACS Nano, 2022, 16(6): 9150-9162..
|
11 |
ZHENG Jingxu, ZHAO Qing, TANG Tian, et al. Reversible epitaxial electrodeposition of metals in battery anodes[J]. Science, 2019, 366(6465): 645-648.
|
12 |
QIU Meijia, SUN Peng, QIN Aimiao, et al. Metal-coordination chemistry guiding preferred crystallographic orientation for reversible zinc anode[J]. Energy Storage Materials, 2022, 49: 463-470.
|
13 |
YUAN Du, ZHAO Jin, REN Hao, et al. Anion texturing towards dendrite-free Zn anode for aqueous rechargeable batteries[J]. Angewandte Chemie International Edition, 2021, 60(13): 7213-7219.
|
14 |
ZHAO Zedong, WANG Rong, PENG Chengxin, et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries[J]. Nature Communications, 2021, 12: 6606.
|
15 |
ZHOU Jiahui, XIE Man, WU Feng, et al. Ultrathin surface coating of nitrogen-doped graphene enables stable zinc anodes for aqueous zinc-ion batteries[J]. Advanced Materials, 2021, 33(33): 2101649.
|
16 |
王心怡, 李维杰, 韩朝, 等. 水系锌离子电池金属负极的挑战与优化策略[J]. 储能科学与技术, 2022, 11(4): 1211-1225.
|
|
WANG Xinyi, LI Weijie, HAN Chao, et al. Challenges and optimization strategies of the anode of aqueous zinc-ion battery[J]. Energy Storage Science and Technology, 2022, 11(4): 1211-1225.
|
17 |
HAN Daliang, WU Shichao, ZHANG Siwei, et al. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems[J]. Small, 2020, 16(29): 2001736.
|
18 |
HAN Daliang, CUI Changjun, ZHANG Kangyu, et al. A non-flammable hydrous organic electrolyte for sustainable zinc batteries[J]. Nature Sustainability, 2021, 5(3): 205-213.
|
19 |
HAN Daliang, WANG Zhenxing, LU Haotian, et al. A self-regulated interface toward highly reversible aqueous zinc batteries[J]. Advanced Energy Materials, 2022, 12(9): 2102982.
|
20 |
唐波, 樊贺飞, 刘乾锋, 等. 水系锌离子电池无枝晶锌金属负极研究进展[J]. 电源技术, 2022, 46(3): 221-225.
|
|
TANG Bo, FAN Hefei, LIU Qianfeng, et al. Research progress of dendrite-free zinc metal anodes for aqueous zinc-ion batteries[J]. Chinese Journal of Power Sources, 2022, 46(3): 221-225.
|
21 |
YANG Zefang, ZHANG Qi, XIE Chunlin, et al. Electrochemical interface reconstruction to eliminate surface heterogeneity for dendrite-free zinc anodes[J]. Energy Storage Materials, 2022, 47: 319-326.
|
22 |
CAO Qinghe, GAO Heng, GAO Yong, et al. Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries[J]. Advanced Functional Materials, 2021, 31(37): 2103922.
|
23 |
WANG Zhuo, HUANG Jianhang, GUO Zhaowei, et al. A metal-organic framework host for highly reversible dendrite-free zinc metal anodes[J]. Joule, 2019, 3(5): 1289-1300.
|
24 |
ZHAO Zhiming, ZHAO Jingwen, HU Zhenglin, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase[J]. Energy & Environmental Science, 2019, 12(6): 1938-1949.
|
25 |
CUI Yanhui, ZHAO Qinghe, WU Xiaojun, et al. An interface-bridged organic-inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes[J]. Angewandte Chemie International Edition, 2020, 59(38): 16594-16601.
|
26 |
YANG Yang, LIU Chaoyue, Zeheng LYU, et al. Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes[J]. Advanced Materials, 2021, 33(11): 2007388.
|
27 |
CAI Zhao, WANG Jindi, LU Ziheng, et al. Ultrafast metal electrodeposition revealed by in situ optical imaging and theoretical modeling towards fast-charging Zn battery chemistry[J]. Angewandte Chemie International Edition, 2022, 61(14): e202116560.
|
28 |
CAO Jin, ZHANG Dongdong, GU Chao, et al. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries[J]. Advanced Energy Materials, 2021, 11(29): 2101299.
|
29 |
ZHOU M, GUO S, LI J L, et al. Surface-preferred crystal plane for a stable and reversible zinc anode[J]. Advanced Materials, 2021, 33(21): e2100187.
|
30 |
GUO X X, ZHANG Z Y, LI J W, et al. Alleviation of dendrite formation on zinc anodes via electrolyte additives[J]. ACS Energy Letters, 2021, 6(2): 395-403.
|
31 |
WIPPERMANN K, SCHULTZE J W, KESSEL R, et al. The inhibition of zinc corrosion by bisaminotriazole and other triazole derivatives[J]. Corrosion Science, 1991, 32(2): 205-230.
|
32 |
GAMBURG Y D, ZANGARI G. Theory and practice of metal electrodeposition[M]. New York: Springer, 2011.
|
33 |
LÓPEZ C M, K-S CHOI. Electrochemical synthesis of dendritic zinc films composed of systematically varying motif crystals[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2006, 22(25): 10625-10629.
|
34 |
ZHENG Jingxu, YIN Jiefu, ZHANG Duhan, et al. Spontaneous and field-induced crystallographic reorientation of metal electrodeposits at battery anodes[J]. Science Advances, 2020, 6(25): eabb1122.
|
35 |
BUDEVSKI E, STAIKOV G, LORENZ W J. Electrocrystallization: Nucleation and growth phenomena[J]. Electrochimica Acta, 2000, 45(15/16): 2559-2574.
|
36 |
TRAN Richard, XU Zihan, RADHAKRISHNAN Balachandran, et al. Surface energies of elemental crystals[J]. Scientific Data, 2016, 3: 160080.
|
37 |
SERÉ P R, CULCASI J D, ELSNER C I, et al. Relationship between texture and corrosion resistance in hot-dip galvanized steel sheets[J]. Surface and Coatings Technology, 1999, 122(2/3): 143-149.
|
38 |
JIA Xiaoxiao, LIU Chaofeng, NEALE Zachary G, et al. Active materials for aqueous zinc ion batteries: Synthesis, crystal structure, morphology, and electrochemistry[J]. Chemical Reviews, 2020, 120(15): 7795-7866.
|
39 |
SATO Ryoitiro. Crystal growth of electrodeposited zinc[J]. Journal of the Electrochemical Society, 1959, 106(3): 206.
|
40 |
OVIEDO O A, REINAUDI L, GARCÍA S G, et al. Underpotential deposition[M]. Cham: Springer Science & Business Media, 2016, 361.
|
41 |
ZHENG Jingxu, DENG Yue, YIN Jiefu, et al. Textured electrodes: Manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation[J]. Advanced Materials, 2022, 34(1): 2106867.
|
42 |
PU S D, GONG C, TANG Y T, et al. Achieving ultrahigh-rate planar and dendrite-free zinc electroplating for aqueous zinc battery anodes[J]. Advanced Materials, 2022, 34(28): 2202552.
|
43 |
YANG Xianzhong, LI Chao, SUN Zhongti, et al. Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes[J]. Advanced Materials, 2021, 33(52): 2105951.
|
44 |
HAO Yu, FENG Doudou, HOU Lei, et al. Gel electrolyte constructing Zn (002) deposition crystal plane toward highly stable Zn anode[J]. Advanced Science, 2022, 9(7): 2104832.
|
45 |
YANG Huijun, CHANG Zhi, QIAO Yu, et al. Constructing a super-saturated electrolyte front surface for stable rechargeable aqueous zinc batteries[J]. Angewandte Chemie International Edition, 2020, 59(24): 9377-9381.
|