化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1129-1142.DOI: 10.16085/j.issn.1000-6613.2022-1004
吴恒1(), 李银龙1, 晏刚1(), 熊通1, 张浩1,2, 陶骙2
收稿日期:
2022-05-30
修回日期:
2022-08-26
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
晏刚
作者简介:
吴恒(1999—),男,硕士研究生,研究方向为换热器设计优化。E-mail:2466750258@qq.com。
基金资助:
WU Heng1(), LI Yinlong1, YAN Gang1(), XIONG Tong1, ZHANG Hao1,2, TAO Kui2
Received:
2022-05-30
Revised:
2022-08-26
Online:
2023-03-15
Published:
2023-04-10
Contact:
YAN Gang
摘要:
蒸气压缩制冷/热泵系统利用气液相变实现热量转移,如何应用气液分离技术对两相工质进行干度调控与流量分配,保证系统运行稳定性并提高系统性能一直是研究的热点。本文综述了蒸气压缩制冷/热泵系统中气液分离技术的研究进展,总结了系统中气液分离技术的应用方式,讨论了不同应用方式中该项技术的主要功能与工作机制,并对重点研究方向进行展望。研究发现气液分离技术的主要功能有保障系统运行可靠性、提高换热器性能、对非共沸混合工质进行组分分离以及改进循环流程等,对气液分离器性能提升方面现有的研究尚有不足,计算流体动力学(CFD)仿真模拟是研究其内部分离机理和对气液分离器进行结构优化的有效方法。气液分离技术应用方式的开发、相分离换热器优化研究与气液分离器的设计优化将会成为今后研究的重点方向。
中图分类号:
吴恒, 李银龙, 晏刚, 熊通, 张浩, 陶骙. 蒸气压缩制冷/热泵系统中的气液分离技术[J]. 化工进展, 2023, 42(3): 1129-1142.
WU Heng, LI Yinlong, YAN Gang, XIONG Tong, ZHANG Hao, TAO Kui. Vapor-liquid separation technology in refrigeration/heat pump systems[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1129-1142.
气液分离 器位置 | 主要技术 | 重力式 | 离心式 | 过滤式 | 惯性式 | 精馏式 |
---|---|---|---|---|---|---|
压缩机前 | 传统气液分离器 | √ | √ | √ | ||
再循环蒸发器 | √ | |||||
喷射器增效循环 | √ | √ | ||||
冷凝器内 | 分液冷凝器 | √ | √ | √ | ||
冷凝器后 | 高压储液器 | √ | ||||
自复叠循环 | √ | √ | ||||
多蒸发温度制冷循环 | √ | √ | ||||
膨胀阀间 | 补气增焓循环 | √ | √ | √ | ||
多级压缩循环 | √ | |||||
蒸发器前 | 气体旁通蒸发技术 | √ | √ | √ | ||
蒸发器内 | 气体旁通蒸发技术 | √ | √ | |||
新型蒸发传热强化技术 | √ |
表1 气液分离器的常见位置、主要技术与类型
气液分离 器位置 | 主要技术 | 重力式 | 离心式 | 过滤式 | 惯性式 | 精馏式 |
---|---|---|---|---|---|---|
压缩机前 | 传统气液分离器 | √ | √ | √ | ||
再循环蒸发器 | √ | |||||
喷射器增效循环 | √ | √ | ||||
冷凝器内 | 分液冷凝器 | √ | √ | √ | ||
冷凝器后 | 高压储液器 | √ | ||||
自复叠循环 | √ | √ | ||||
多蒸发温度制冷循环 | √ | √ | ||||
膨胀阀间 | 补气增焓循环 | √ | √ | √ | ||
多级压缩循环 | √ | |||||
蒸发器前 | 气体旁通蒸发技术 | √ | √ | √ | ||
蒸发器内 | 气体旁通蒸发技术 | √ | √ | |||
新型蒸发传热强化技术 | √ |
作者 | 工质 | 工作应用范围 | 分液效率关联式 |
---|---|---|---|
Li等[ | R134a | 2≤G(g/s)≤5 0.5≤x≤0.65 | |
Mo等[ | 空气/水 | 1≤ug(m/s)≤30 0.0015≤ul(m/s)≤0.2 | |
陈雪清等[ | 空气/水 | 4≤ug(m/s)≤34 0.006≤ul(m/s)≤0.125 |
表2 分液效率关联式
作者 | 工质 | 工作应用范围 | 分液效率关联式 |
---|---|---|---|
Li等[ | R134a | 2≤G(g/s)≤5 0.5≤x≤0.65 | |
Mo等[ | 空气/水 | 1≤ug(m/s)≤30 0.0015≤ul(m/s)≤0.2 | |
陈雪清等[ | 空气/水 | 4≤ug(m/s)≤34 0.006≤ul(m/s)≤0.125 |
作者 | 制冷剂 | 容量/模式 | 气液分离器类型 | 主要结论 |
---|---|---|---|---|
Elbel等[ | R744 | 9~13kW/制冷 | 重力式 | R744的传热系数在干度大于0.5后下降明显,气体旁通可降低蒸发器内平均干度,使得传热系数增大140%,蒸发器压降减小35% |
Tuo等[ | R134A | 1.81~2.92kW/制冷 | 惯性式(T型管) | 气体旁通使过热区域传热面积减小,改善制冷剂分布均匀性,气体旁通适用于压降大且制冷剂分布不均匀的蒸发器 |
Shikazono等[ | R410A | 4~16kW/制冷 | 过滤式(金属微槽) | 所用气液分离器在体积为传统气液分离器的1/7时,即可使蒸发器的压降相较于传统制冷循环下降50%以上 |
Fan等[ | R410A | 1.9~5.3kW/制热 | 重力式 | 制热模式下,蒸发器入口干度较小,可将气液分离器放在蒸发回路中;压缩机频率为60Hz时,气体旁通可以使蒸发器压降减小36.9%,制热能力提升7.1%,气体旁通适用于容量更大的系统 |
Fan等[ | R32 | 4~10kW/制热 | 过滤式(金属微槽) | 气体旁通使蒸发器压降减小25.6~84.6kPa,蒸发器熵产减小3.1%~25.3%,气液分离器相对位置、蒸发器回路数等会对气体旁通蒸发器的性能产生影响 |
表3 气体旁通蒸发技术相关研究
作者 | 制冷剂 | 容量/模式 | 气液分离器类型 | 主要结论 |
---|---|---|---|---|
Elbel等[ | R744 | 9~13kW/制冷 | 重力式 | R744的传热系数在干度大于0.5后下降明显,气体旁通可降低蒸发器内平均干度,使得传热系数增大140%,蒸发器压降减小35% |
Tuo等[ | R134A | 1.81~2.92kW/制冷 | 惯性式(T型管) | 气体旁通使过热区域传热面积减小,改善制冷剂分布均匀性,气体旁通适用于压降大且制冷剂分布不均匀的蒸发器 |
Shikazono等[ | R410A | 4~16kW/制冷 | 过滤式(金属微槽) | 所用气液分离器在体积为传统气液分离器的1/7时,即可使蒸发器的压降相较于传统制冷循环下降50%以上 |
Fan等[ | R410A | 1.9~5.3kW/制热 | 重力式 | 制热模式下,蒸发器入口干度较小,可将气液分离器放在蒸发回路中;压缩机频率为60Hz时,气体旁通可以使蒸发器压降减小36.9%,制热能力提升7.1%,气体旁通适用于容量更大的系统 |
Fan等[ | R32 | 4~10kW/制热 | 过滤式(金属微槽) | 气体旁通使蒸发器压降减小25.6~84.6kPa,蒸发器熵产减小3.1%~25.3%,气液分离器相对位置、蒸发器回路数等会对气体旁通蒸发器的性能产生影响 |
作者 | 制冷剂 | 应用工况 | 气液分离器的应用方式 | 主要结论 |
---|---|---|---|---|
Fan等[ | R32 | 结霜除霜 | 气体旁通蒸发器 | 蒸气旁通减小蒸发器压降,使结霜质量降低9.67%,平均加热能力提高7.0% |
Han等[ | R410A | 结霜除霜 | 压缩机前气液分离器 | 将电子膨胀阀开度调小后,可以在防止湿压缩现象的同时最大限度地提高除霜性能 |
Ma等[ | R410A | 结霜除霜 | 气液分离器与高压储液器组合,实现热交换 | 吸气与高温流体进行热交换,提升回气温度,可使结霜时间延缓约30min |
Qin等[ | R1234yf/R41/R14 (0.64/0.17/0.19) | 低温制冷 | 三次组分分离以提高低沸点工质纯度 | 通过三级自复叠循环实现-100℃低温制冷,COP为0.2713 |
Liu等[ | R290/R170(0.5/0.5) | 低温制冷 | 附加气液分离器改进自复叠循环 | 通过辅助分离器使更多的低沸点工质进入蒸发器,使自复叠循环COP提高16.1% |
Wang等[ | R22、R290、R32 | 低蒸发温度制热 | 喷射器增效改进闪蒸器补气增焓循环 | R22、R290和R32的单位容积加热量分别提高6.0%~8.4%、7.3%~10.2%和6.7%~8.2% |
Zhu等[ | CO2 | 高温制热 | 气液分离辅助喷射器增效循环 | 通过喷射器增效回收膨胀功,出水温度为90℃时其COP可达3.3 |
Zhang等[ | R245fa | 高温制热 | 二级压缩结合多级闪蒸器补气增焓循环 | 在冷凝温度为125℃时,与传统闪蒸器补气增焓循环相比,其COP提高18.05% |
Feng等[ | R134a | 频繁启停 | 热交换气液分离器,将部分高压液罐盘绕在气液分离器内 | 系统启动时,通过热交换可以使停机时储存在气液分离器内的制冷剂迅速蒸发,使启动时间缩短54.76%,平均COP增加13.84% |
表4 不用运行工况下气液分离技术的应用
作者 | 制冷剂 | 应用工况 | 气液分离器的应用方式 | 主要结论 |
---|---|---|---|---|
Fan等[ | R32 | 结霜除霜 | 气体旁通蒸发器 | 蒸气旁通减小蒸发器压降,使结霜质量降低9.67%,平均加热能力提高7.0% |
Han等[ | R410A | 结霜除霜 | 压缩机前气液分离器 | 将电子膨胀阀开度调小后,可以在防止湿压缩现象的同时最大限度地提高除霜性能 |
Ma等[ | R410A | 结霜除霜 | 气液分离器与高压储液器组合,实现热交换 | 吸气与高温流体进行热交换,提升回气温度,可使结霜时间延缓约30min |
Qin等[ | R1234yf/R41/R14 (0.64/0.17/0.19) | 低温制冷 | 三次组分分离以提高低沸点工质纯度 | 通过三级自复叠循环实现-100℃低温制冷,COP为0.2713 |
Liu等[ | R290/R170(0.5/0.5) | 低温制冷 | 附加气液分离器改进自复叠循环 | 通过辅助分离器使更多的低沸点工质进入蒸发器,使自复叠循环COP提高16.1% |
Wang等[ | R22、R290、R32 | 低蒸发温度制热 | 喷射器增效改进闪蒸器补气增焓循环 | R22、R290和R32的单位容积加热量分别提高6.0%~8.4%、7.3%~10.2%和6.7%~8.2% |
Zhu等[ | CO2 | 高温制热 | 气液分离辅助喷射器增效循环 | 通过喷射器增效回收膨胀功,出水温度为90℃时其COP可达3.3 |
Zhang等[ | R245fa | 高温制热 | 二级压缩结合多级闪蒸器补气增焓循环 | 在冷凝温度为125℃时,与传统闪蒸器补气增焓循环相比,其COP提高18.05% |
Feng等[ | R134a | 频繁启停 | 热交换气液分离器,将部分高压液罐盘绕在气液分离器内 | 系统启动时,通过热交换可以使停机时储存在气液分离器内的制冷剂迅速蒸发,使启动时间缩短54.76%,平均COP增加13.84% |
1 | 汪厚泰. 空调气液分离器设计研究[J]. 制冷空调与电力机械, 2010, 31(4): 6-10. |
WANG Houtai. Design and research of air conditioning gas-liquid separator[J]. Refrigeration Air Conditioning & Electric Power Machinery, 2010, 31(4): 6-10. | |
2 | 刘芳. 往复式压缩机液击故障原因分析及处理对策[J]. 广东化工, 2012, 39(8): 196-197. |
LIU Fang. Cause analysis and countermeasure of reciprocating compressor fluid strike fault[J]. Guangdong Chemical Industry, 2012, 39(8): 196-197. | |
3 | ZHONG T M, CHEN Y, ZHENG W X, et al. Experimental investigation on microchannel condensers with and without liquid-vapor separation headers[J]. Applied Thermal Engineering, 2014, 73(2): 1510-1518. |
4 | YAN Gang, CUI Chengfeng, YU Jianlin. Energy and exergy analysis of zeotropic mixture R290/R600a vapor-compression refrigeration cycle with separation condensation[J]. International Journal of Refrigeration, 2015, 53: 155-162. |
5 | PENG Xu, WANG Dingbiao, WANG Guanghui, et al. Numerical investigation on the heating performance of a transcritical CO2 vapor-injection heat pump system[J]. Applied Thermal Engineering, 2020, 166: 114656. |
6 | FANG Jianmin, YIN Xiang, WANG Anci, et al. Cooling performance enhancement for the automobile transcritical CO2 air conditioning system with various internal heat exchanger effectiveness[J]. Applied Thermal Engineering, 2021, 196: 117274. |
7 | 黄锟腾, 陈健勇, 陈颖, 等. 气液分离技术的研究现状[J]. 化工学报, 2021, 72(S1): 30-41. |
HUANG Kunteng, CHEN Jianyong, CHEN Ying, et al. Research status of vapor-liquid separation technology[J]. CIESC Journal, 2021, 72(S1): 30-41. | |
8 | WIENCKE Bent. Fundamental principles for sizing and design of gravity separators for industrial refrigeration[J]. International Journal of Refrigeration, 2011, 34(8): 2092-2108. |
9 | KANG Hoon, CHOI Kwangmin, PARK Chasik, et al. Effects of accumulator heat exchangers on the performance of a refrigeration system[J]. International Journal of Refrigeration, 2007, 30(2): 282-289. |
74 | ZHANG Yanting, ZHANG Hao, WANG Lin, et al. Application and analysis of multi-stage flash vaporization process in steam production in high-temperature heat pump system with large temperature difference[J]. International Journal of Refrigeration, 2022, 133: 123-132. |
75 | FENG Ye, WU Jianghong, LIANG Yongbiao. Improving the start-up performance of the vapor compression cycle by recovering the lost cooling energy in the accumulator[J]. Applied Thermal Engineering, 2021, 195: 116942. |
76 | CHEN Jianyong, DING Rong, LI Yunhai, et al. Application of a vapor-liquid separation heat exchanger to the air conditioning system at cooling and heating modes[J]. International Journal of Refrigeration, 2019, 100: 27-36. |
77 | 熊通, 晏刚, 樊超超, 等. 微通道换热器结霜特性研究现状与展望[J]. 制冷学报, 2020, 41(6): 22-30. |
XIONG Tong, YAN Gang, FAN Chaochao, et al. Review on research status of frosting characteristics of microchannel heat exchanger[J]. Journal of Refrigeration, 2020, 41(6): 22-30. | |
78 | LI Junjie, CHEN Jianyong, CHEN Ying, et al. Effectiveness of actively adjusting vapour-liquid in the evaporator for heat transfer enhancement[J]. Applied Thermal Engineering, 2022, 200: 117696. |
79 | LIU Ce, JIA Li, ZHANG Xuan, et al. Analysis of the heat transfer characteristics of the liquid-vapor separation condenser based on a condensate growth model in horizontal tube[J]. Applied Thermal Engineering, 2019, 163: 114307. |
10 | 吕家明, 叶奇昉, 陈江平. 基于计算流体力学模型的旋流分离器的优化设计[J]. 制冷学报, 2010, 31(3): 11-15. |
Jiaming LYU, YE Qifang, CHEN Jiangping. Optimization of cyclone vapor-liquid separator with CFD simulation[J]. Journal of Refrigeration, 2010, 31(3): 11-15. | |
11 | 胡记超, 王丹东, 王雨风, 等. 喷射式制冷系统新型旋流气液分离器的设计与优化[J]. 制冷技术, 2017, 37(6): 34-40. |
HU Jichao, WANG Dandong, WANG Yufeng, et al. Design and optimization of a new gas-liquid cyclone separator in ejector refrigeration system[J]. Chinese Journal of Refrigeration Technology, 2017, 37(6): 34-40. | |
12 | YANG Minghong, WANG Baolong, LI Xianting, et al. Evaluation of two-phase suction, liquid injection and two-phase injection for decreasing the discharge temperature of the R32 scroll compressor[J]. International Journal of Refrigeration, 2015, 59: 269-280. |
13 | 王超, 陶乐仁, 黄理浩, 等. R32制冷系统湿压缩的最佳吸气干度范围[J]. 化工进展, 2017, 36(1): 100-106. |
WANG Chao, TAO Leren, HUANG Lihao, et al. The optimal of suction refrigerant quality for R32 wet compression refrigeration system[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 100-106. | |
14 | SEONG Kyoungjin, LEE Daehui, LEE Jinho. The effects of wet compression by the electronic expansion valve opening on the performance of a heat pump system[J]. Applied Sciences, 2017, 7(3): 248. |
15 | ZHENG Bo, LIANG Xiangfei, ZHUANG Rong. Experimental investigation on the influence of the oil return hole on the performance of R-32 wet compression cycle[C]//International Refrigeration and Air Conditioning Conference at Purdue. Proc. 16th Intern. Indiana, USA: Purdue University, 2016: 2460.1-2460.7. |
16 | 邱国栋. 储液器对VRF空调系统的影响及控制优化[D]. 哈尔滨: 哈尔滨工业大学, 2011. |
QIU Guodong. Effect and control optimization of liquid reservoirs on variable refrigerant flow air-conditioning systems[D]. Harbin: Harbin Institute of Technology, 2011. | |
17 | BEHFAR Alireza, YUILL David, YU Yuebin. Automated fault detection and diagnosis for supermarkets-method selection, replication, and applicability[J]. Energy and Buildings, 2019, 198: 520-527. |
18 | WU Di, WANG Zhen, LU Gui, et al. High-performance air cooling condenser with liquid-vapor separation[J]. Heat Transfer Engineering, 2010, 31(12): 973-980. |
19 | 彭晓峰, 吴迪, 张扬. 高性能冷凝器技术原理与实践[J]. 化工进展, 2007, 26(1): 97-104. |
PENG Xiaofeng, WU Di, ZHANG Yang. Applications and principle of high performance condensers[J]. Chemical Industry and Engineering Progress, 2007, 26(1): 97-104. | |
20 | 陈健勇, 李俊杰, 陈颖. 分液冷凝器及其空调/热泵系统的研究进展[J]. 制冷与空调, 2020, 20(6): 58-67, 89. |
CHEN Jianyong, LI Junjie, CHEN Ying. Research status of liquid-separation condenser and its implementations in air-conditioning/heat pump system[J]. Refrigeration and Air-Conditioning, 2020, 20(6): 58-67, 89. | |
21 | HUA Nan, XI Huan, XU Rong ji, et al. Numerical simulation of multi-pass parallel flow condensers with liquid-vapor separation[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118469. |
22 | LI Yifan, LUO Xianglong, WANG Zhibin, et al. Numerical simulation on the header-orifice structure-based liquid-vapor separator used in liquid-separation condenser[J]. Chemical Engineering Science, 2021, 235: 116475. |
23 | ZHANG Xuan, JIA Li, PENG Qi, et al. Experimental study of condensation heat transfer in a condenser with a liquid-vapor separator[J]. Applied Thermal Engineering, 2019, 152: 196-203. |
24 | LIU Yuan, WU Lijun, TIAN Mengyu. Experimental and numerical investigation on U-shaped tube liquid-separation plate condenser[J]. Applied Thermal Engineering, 2022, 211: 118518. |
25 | CAO Shuang, JI Xianbing, XU Jinliang. R245fa condensation heat transfer in a phase separation condenser[J]. Experimental Thermal and Fluid Science, 2018, 98: 346-361. |
26 | CHEN Hongxia, XU Jinliang, LI Zijin, et al. Stratified two-phase flow pattern modulation in a horizontal tube by the mesh pore cylinder surface[J]. Applied Energy, 2013, 112: 1283-1290. |
27 | MO Songping, CHEN Xueqing, CHEN Ying, et al. Passive control of gas-liquid flow in a separator unit using an apertured baffle in a parallel-flow condenser[J]. Experimental Thermal and Fluid Science, 2014, 53: 127-135. |
28 | 陈雪清, 陈颖, 莫松平. 多孔隔板气液分离联箱的实验研究[J]. 广东工业大学学报, 2014, 31(1): 12-17. |
CHEN Xueqing, CHEN Ying, MO Songping. An experimental study of gas-liquid separation headers with porous baffle[J]. Journal of Guangdong University of Technology, 2014, 31(1): 12-17. | |
29 | KIM Sung Min, MUDAWAR Issam. Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows[J]. International Journal of Heat and Mass Transfer, 2014, 77: 627-652. |
30 | SONG Mengjie, DENG Shiming, DANG Chaobin, et al. Review on improvement for air source heat pump units during frosting and defrosting[J]. Applied Energy, 2018, 211: 1150-1170. |
31 | ELBEL Stefan, HRNJAK Pega. Flash gas bypass for improving the performance of transcritical R744 systems that use microchannel evaporators[J]. International Journal of Refrigeration, 2004, 27(7): 724-735. |
32 | FAN Chaochao, YAN Gang, HAN Binglong, et al. Experimental study on an inverter heat pump air conditioner with a vapor-bypassed evaporator[J]. International Journal of Refrigeration, 2020, 109: 180-187. |
33 | Hanfei TUO, HRNJAK Pega. Flash gas bypass in mobile air conditioning system with R134a[J]. International Journal of Refrigeration, 2012, 35(7): 1869-1877. |
34 | SHIKAZONO Naoki, AZUMA Ryuhei, SAMESHIMA Tomoaki, et al. Development of compact gas-liquid separator using surface tension[C]//International Symposium on Next generation Air Conditioning and Refrigeration Technology. Proc. 2010 Intern. Symp. Tokyo, Japan: NEDO, 2010: NS11. |
35 | FAN Chaochao, YAN Gang, XIONG Tong, et al. Simulation study on the performance of a vapor-bypassed evaporator for heat pump applications[J]. International Journal of Refrigeration, 2021, 122: 47-58. |
36 | 王昕. 冷库氨制冷系统的应用研究[D]. 北京: 北京工业大学, 2014. |
WANG Xin. Feasibility investigation of ammonia refrigeration system in cold storage[D]. Beijing: Beijing University of Technology, 2014. | |
37 | 孙炳岩, 张文科, 姚海清, 等. 不同制冷系统应用于冷库的探讨[J]. 制冷与空调, 2021, 21(11): 11-15, 19. |
SUN Bingyan, ZHANG Wenke, YAO Haiqing, et al. Discussion on application of different refrigeration systems in cold storage[J]. Refrigeration and Air-Conditioning, 2021, 21(11): 11-15, 19. | |
38 | 董浩. 蒸发面积对重力再循环间接冷却制冷系统效率的影响研究[D]. 天津: 天津商业大学, 2021. |
DONG Hao. Research on effect of evaporation area on indirect cooling and refrigeration efficiency of gravity feeder[D]. Tianjin: Tianjin University of Commerce, 2021. | |
39 | 赵东, 臧润清, 吴腾飞. 重力再循环供液制冷系统气液分离器的试验研究[J]. 低温与超导, 2015, 43(1): 59-63. |
ZHAO Dong, ZANG Runqing, WU Tengfei. Experimental study on gas-liquid separators of gravity feeding refrigeration system[J]. Cryogenics & Superconductivity, 2015, 43(1): 59-63. | |
40 | 张秋玉, 臧润清, 阮建文, 等. 不同制冷剂在重力再循环制冷系统中的应用研究[J]. 低温与超导, 2018, 46(2): 70-74, 80. |
ZHANG Qiuyu, ZANG Runqing, RUAN Jianwen, et al. Research on gravity-recirculation refrigeration system using different refrigerants[J]. Cryogenics & Superconductivity, 2018, 46(2): 70-74, 80. | |
41 | 刘鹏鹏, 盛伟, 焦中彦, 等. 自复叠制冷技术发展现状[J]. 制冷学报, 2015, 36(4): 45-51. |
LIU Pengpeng, SHENG Wei, JIAO Zhongyan, et al. Development status of auto-cascade refrigeration technology[J]. Journal of Refrigeration, 2015, 36(4): 45-51. | |
42 | ZHANG Li, XU Shiming, DU Ping, et al. Experimental and theoretical investigation on the performance of CO2/propane auto-cascade refrigerator with a fractionation heat exchanger[J]. Applied Thermal Engineering, 2015, 87: 669-677. |
43 | SOBIERAJ Michał, Marian ROSIŃSKI. High phase-separation efficiency auto-cascade system working with a blend of carbon dioxide for low-temperature isothermal refrigeration[J]. Applied Thermal Engineering, 2019, 161: 114149. |
44 | WANG Qin, CUI Kang, SUN Tengfei, et al. Performance of a single-stage auto-cascade refrigerator operating with a rectifying column at the temperature level of -60 ℃[J]. Journal of Zhejiang University-SCIENCE A, 2011, 12(2): 139-145. |
45 | WANG Qin, LIU Rui, WANG Jiangpu, et al. An investigation of the mixing position in the recuperators on the performance of an auto-cascade refrigerator operating with a rectifying column[J]. Cryogenics, 2012, 52(11): 581-589. |
46 | SU Wen, HWANG Yunho, ZHENG Nan, et al. Experimental study on the constituent separation performance of binary zeotropic mixtures in horizontal branch T-junctions[J]. International Journal of Heat and Mass Transfer, 2018, 127: 76-87. |
47 | YANG Bin, SU Wen, DENG Shuai, et al. State-of-art of impacting T-junction: phase separation, constituent separation and applications[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119067. |
48 | SU Dandan, ZHAO Li, ZHAO Ruikai, et al. Numerical simulation on constituent separation and mass transfer of binary zeotropic mixtures in a branching T-junction[J]. International Journal of Refrigeration, 2022, 135: 198-207. |
49 | LIU Jiarui, LIU Ye, YAN Gang, et al. Thermodynamic analysis on a modified auto-cascade refrigeration cycle with a self-recuperator[J]. International Journal of Refrigeration, 2022, 137: 117-128. |
50 | CHEN Qi, YAN Gang, YU Jianlin. Experimental research on the concentration distribution characteristics of dual-temperature refrigeration system using R290/R600a based on separation condensation[J]. International Journal of Refrigeration, 2021, 131: 244-253. |
51 | YAN Gang, HU Hui, YU Jianlin. Performance evaluation on an internal auto-cascade refrigeration cycle with mixture refrigerant R290/R600a[J]. Applied Thermal Engineering, 2015, 75: 994-1000. |
52 | LIU Xiaoqin, YU Jianlin, YAN Gang. Theoretical investigation on an ejector-expansion refrigeration cycle using zeotropic mixture R290/R600a for applications in domestic refrigerator/freezers[J]. Applied Thermal Engineering, 2015, 90: 703-710. |
53 | SUN Wei, HE Guogeng, NING Qian, et al. Performance investigation and optimization analysis for vapor injection rotary compressor oriented to circular end-plate injection port without check valve[J]. Applied Thermal Engineering, 2021, 183: 116196. |
54 | ZHANG Xinxin, SU Lin, LI Kang. A study of a low pressure ratio vapor injection scroll compressor for electric vehicles under low ambient conditions[J]. International Journal of Refrigeration, 2021, 131: 186-196. |
55 | XU Xing, HWANG Yunho, RADERMACHER Reinhard. Refrigerant injection for heat pumping/air conditioning systems: literature review and challenges discussions[J]. International Journal of Refrigeration, 2011, 34(2): 402-415. |
56 | Jaehyeok HEO, JEONG Min Woo, KIM Yongchan. Effects of flash tank vapor injection on the heating performance of an inverter-driven heat pump for cold regions[J]. International Journal of Refrigeration, 2010, 33(4): 848-855. |
57 | ZHANG Long, JIANG Yiqiang, DONG Jiankai, et al. Advances in vapor compression air source heat pump system in cold regions: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 353-365. |
58 | Jaehyeok HEO, JEONG Min Woo, BAEK Changhyun, et al. Comparison of the heating performance of air-source heat pumps using various types of refrigerant injection[J]. International Journal of Refrigeration, 2011, 34(2): 444-453. |
59 | MAHMOOD Raid Ahmed. CFD assessment and experimental investigation of the liquid separation efficiency enhancements in a vertical gravity separator[J]. International Journal of Air-Conditioning and Refrigeration, 2020, 28(3): 2050021. |
60 | MAHMOOD Raid Ahmed. Experimental and computational investigation of gravity separation in a vertical flash tank separator[D]. Queensland: University of Southern Queensland, 2018. |
61 | ZHANG Zhenying, FENG Xu, TIAN Dingzhu, et al. Progress in ejector-expansion vapor compression refrigeration and heat pump systems[J]. Energy Conversion and Management, 2020, 207: 112529. |
62 | BAI Tao, YAN Gang, YU Jianlin. Influence of internal heat exchanger position on the performance of ejector-enhanced auto-cascade refrigeration cycle for the low-temperature freezer[J]. Energy, 2022, 238: 121803. |
63 | AMEUR K, AIDOUN Z. Two-phase ejector enhanced carbon dioxide transcritical heat pump for cold climate[J]. Energy Conversion and Management, 2021, 243: 114421. |
64 | 槐艳双. 气液分离器对两相流引射制冷系统性能影响的研究[D]. 天津: 天津商业大学, 2017. |
HUAI Yanshuang. Investigation on influence of gas-liquid separator on performance of two-phase flow ejector refrigeration system[D]. Tianjin: Tianjin University of Commerce, 2017. | |
65 | LIN Chen, XU Chengmao, YUE Bao, et al. Experimental study on the separator in ejector-expansion refrigeration system[J]. International Journal of Refrigeration, 2019, 100: 307-314. |
66 | MINETTO Silvia, BRIGNOLI Riccardo, BANASIAK Krzysztof, et al. Performance assessment of an off-the-shelf R744 heat pump equipped with an ejector[J]. Applied Thermal Engineering, 2013, 59(1/2): 568-575. |
67 | FAN Chaochao, XIONG Tong, YAN Gang, et al. Retarding frosting of an air source heat pump by using vapor-bypassed evaporation technique[J]. International Journal of Refrigeration, 2021, 127: 69-77. |
68 | HAN Binglong, XIONG Tong, XU Shijie, et al. Parametric study of a room air conditioner during defrosting cycle based on a modified defrosting model[J]. Energy, 2022, 238: 121658. |
69 | MA Longxia, WANG Fenghao, WANG Zhihua, et al. Experimental investigation on an air source heat pump system with coupled liquid-storage gas-liquid separator regarding heating and defrosting performance[J]. International Journal of Refrigeration, 2022, 134: 176-188. |
70 | QIN Yanbin, LI Nanxi, ZHANG Hua, et al. Energy and exergy performance evaluation of a three-stage auto-cascade refrigeration system using low-GWP alternative refrigerants[J]. International Journal of Refrigeration, 2021, 126: 66-75. |
71 | LIU Jiarui, LIU Ye, YAN Gang, et al. Theoretical study on a modified single-stage autocascade refrigeration cycle with auxiliary phase separator[J]. International Journal of Refrigeration, 2021, 122: 181-191. |
72 | WANG Xiao, YU Jianlin, XING Meibo. Performance analysis of a new ejector enhanced vapor injection heat pump cycle[J]. Energy Conversion and Management, 2015, 100: 242-248. |
73 | ZHU Yinhai, HUANG Yulei, LI Conghui, et al. Experimental investigation on the performance of transcritical CO2 ejector-expansion heat pump water heater system[J]. Energy Conversion and Management, 2018, 167: 147-155. |
[1] | 沈天绪, 沈来宏. 基于3kW塔式串行流化床差异燃料的化学链燃烧解析[J]. 化工进展, 2023, 42(1): 138-147. |
[2] | 杨志方, 杜峰, 于清江, 郭璐玥, 张萍萍. 78.5升气升式环流反应器内构件优化[J]. 化工进展, 2015, 34(3): 659-663. |
[3] | 韩柏1,刘永飞2,金有海2. 侧缝抽气对多管式分离器性能和流场的影响[J]. 化工进展, 2014, 33(02): 323-327. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |