化工进展 ›› 2023, Vol. 42 ›› Issue (12): 6157-6170.DOI: 10.16085/j.issn.1000-6613.2023-0045
• 化工过程与装备 • 上一篇
收稿日期:
2023-01-10
修回日期:
2023-05-05
出版日期:
2023-12-25
发布日期:
2024-01-08
通讯作者:
罗小平
作者简介:
罗小平(1967—),教授,博士生导师,主要研究方向为微通道换热器相变传热、EHD强化沸腾传热及其控制。E-mail:mmxpluo@scut.edu.cn。
基金资助:
LUO Xiaoping(), ZHOU Jiayu, LI Guizhong
Received:
2023-01-10
Revised:
2023-05-05
Online:
2023-12-25
Published:
2024-01-08
Contact:
LUO Xiaoping
摘要:
为探究相分离结构对微细通道流动沸腾压降的影响,利用数控技术加工了相分离结构微细通道实验段。以质量分数为30%的甘油水溶液作为实验工质,在工质入口温度为70℃、质量流率为121.25kg/(m2·s)、热流密度为76.61~150.70kW/m2的工况下分析了两种(多孔/少孔)相分离结构和无排气孔的普通微细通道的压降变化,同时对通道内气泡行为进行了可视化研究,引入气相分离系数对受限气泡在通道内的生长行为进行定量分析。实验结果表明,相分离结构可以改善通道内两相总压降,在多孔、少孔和普通微细通道中,微细通道的气相转移面积越大,气相分离系数越大,通道内受限气泡长径比越小,两相总压降损失越小。此外,通过对相邻通道增加压差,调整合适的压力切换周期,可以进一步改善相分离膜的气相转移速率,减缓通道内两相总压降。
中图分类号:
罗小平, 周家玉, 李桂中. 相分离结构微细通道流动沸腾压降分析与可视化[J]. 化工进展, 2023, 42(12): 6157-6170.
LUO Xiaoping, ZHOU Jiayu, LI Guizhong. Analysis and visualization of flow boiling pressure drop in microchannels with phase separation structure[J]. Chemical Industry and Engineering Progress, 2023, 42(12): 6157-6170.
物性 | 数值 |
---|---|
气相密度/kg·m-3 | 0.60 |
液相密度/kg·m-3 | 1027 |
饱和温度/℃ | 102.4 |
表面张力/mN·m-1 | 59.92 |
液相比热容/J·kg-1·K-1 | 3640 |
气化潜热/J·kg-1 | 2304 |
液相黏度/Pa·s | 0.00053 |
表1 实验工质(质量分数为30%的甘油水溶液)物理特性
物性 | 数值 |
---|---|
气相密度/kg·m-3 | 0.60 |
液相密度/kg·m-3 | 1027 |
饱和温度/℃ | 102.4 |
表面张力/mN·m-1 | 59.92 |
液相比热容/J·kg-1·K-1 | 3640 |
气化潜热/J·kg-1 | 2304 |
液相黏度/Pa·s | 0.00053 |
长度L/mm | 宽度W/mm | 高H/mm | 单条通道宽度Wch/mm | 单条通道高度Hch/mm | 肋厚Ww/mm | 平行通道数量N/条 |
---|---|---|---|---|---|---|
220 | 66 | 10 | 2 | 2 | 2 | 12 |
表2 微细通道热沉设计参数
长度L/mm | 宽度W/mm | 高H/mm | 单条通道宽度Wch/mm | 单条通道高度Hch/mm | 肋厚Ww/mm | 平行通道数量N/条 |
---|---|---|---|---|---|---|
220 | 66 | 10 | 2 | 2 | 2 | 12 |
型号 | La/mm | Lb/mm | Ld/mm | Lw/mm | Ll/mm | Hsp/mm | Nps(导气道条数)/条 |
---|---|---|---|---|---|---|---|
LPC-1 | 5.7 | 3.6 | 0.6 | 22.2 | 216.4 | 3 | 4 |
LPC-2 | 5.7 | 4.1 | 0.6 | 23.7 | 165.2 | 3 | 4 |
LPC-3 | 5.7 | 4.6 | 0.6 | 20.6 | 111.4 | 3 | 3 |
LPC-4 | 5.7 | 5.1 | 0.6 | 21.6 | 64.6 | 3 | 3 |
表3 膜固定腔参数
型号 | La/mm | Lb/mm | Ld/mm | Lw/mm | Ll/mm | Hsp/mm | Nps(导气道条数)/条 |
---|---|---|---|---|---|---|---|
LPC-1 | 5.7 | 3.6 | 0.6 | 22.2 | 216.4 | 3 | 4 |
LPC-2 | 5.7 | 4.1 | 0.6 | 23.7 | 165.2 | 3 | 4 |
LPC-3 | 5.7 | 4.6 | 0.6 | 20.6 | 111.4 | 3 | 3 |
LPC-4 | 5.7 | 5.1 | 0.6 | 21.6 | 64.6 | 3 | 3 |
型号 | N1/个 | N2/个 | N3/个 | N4/个 | Ntot/个 | 固定孔尺寸 /mm | 排气孔尺寸 /mm |
---|---|---|---|---|---|---|---|
SPP-1 | 8 | 8 | 6 | 6 | 336 | 1.2 | 0.6 |
SPP-2 | 4 | 4 | 2 | 2 | 144 | 1.2 | 0.6 |
SPP-3 | 0 | 0 | 0 | 0 | 0 | 1.2 | 0.6 |
表4 不同结构热沉排气孔设计参数
型号 | N1/个 | N2/个 | N3/个 | N4/个 | Ntot/个 | 固定孔尺寸 /mm | 排气孔尺寸 /mm |
---|---|---|---|---|---|---|---|
SPP-1 | 8 | 8 | 6 | 6 | 336 | 1.2 | 0.6 |
SPP-2 | 4 | 4 | 2 | 2 | 144 | 1.2 | 0.6 |
SPP-3 | 0 | 0 | 0 | 0 | 0 | 1.2 | 0.6 |
图4 实验系统简图1—注液装置;2—储液罐;3-1、3-2—变频器;4-1、4-2—磁力泵;5-1、5-2—过滤器;6—预热水箱;7-1~7-12—手动调节阀;8-1、8-2—转子流量计;9-1、9-2—压力换向装置;10-1、10-2—止回阀;11—实验段;12—高速摄像机;13—高压直流电场发生器;14—工控机;15—减压装置;16—冷凝器;17—冷却水箱;18—工业冷水机组;19—真空表;20-1、20-2—单向针阀
测量参数 | 测量仪器 | 型号 | 量程 | 精度 |
---|---|---|---|---|
压力 | 压力传感器 | HY-131 | 0~100kPa | 0.2% |
压差 | 压差传感器 | HY-3351 | 0~10kPa | 0.2% |
温度 | 热电偶 | PT-100 | 0~1200℃ | 0.1℃ |
流量 | 转子流量计 | LZB-WS-10 | 6~60L/h | 2.5% |
表5 主要仪表型号及精度
测量参数 | 测量仪器 | 型号 | 量程 | 精度 |
---|---|---|---|---|
压力 | 压力传感器 | HY-131 | 0~100kPa | 0.2% |
压差 | 压差传感器 | HY-3351 | 0~10kPa | 0.2% |
温度 | 热电偶 | PT-100 | 0~1200℃ | 0.1℃ |
流量 | 转子流量计 | LZB-WS-10 | 6~60L/h | 2.5% |
测量参数 | 最大不确定度/% | 测量参数 | 最大不确定度/% |
---|---|---|---|
G | 2.50 | ∆Psp,f | 3.72 |
qeff | 3.31 | ∆Ptp,grav | 3.21 |
Lsp | 2.76 | ∆Ptp,a | 3.41 |
xe,out | 7.31 | ∆Ptp,f | 6.59 |
∆Psp,grav | 2.76 |
表6 主要参数的最大相对不确定度
测量参数 | 最大不确定度/% | 测量参数 | 最大不确定度/% |
---|---|---|---|
G | 2.50 | ∆Psp,f | 3.72 |
qeff | 3.31 | ∆Ptp,grav | 3.21 |
Lsp | 2.76 | ∆Ptp,a | 3.41 |
xe,out | 7.31 | ∆Ptp,f | 6.59 |
∆Psp,grav | 2.76 |
1 | Yuanzheng LYU, XIA Guodong, CHENG Lixin, et al. Experimental investigation into unstable two phase flow phenomena during flow boiling in multi-microchannels[J]. International Journal of Thermal Sciences, 2021, 166: 106985. |
2 | AHMED Naveed, DARWISH Saied, ALAHMARI Abdulrahman M. Experimental investigation of dimensional variation in laser-machined micro-channels produced in titanium alloy[J]. Journal of Laser Micro/Nanoengineering, 2016, 11(2): 210-226. |
3 | KINGSTON Todd A, WEIBEL Justin A, GARIMELLA Suresh V. High-frequency thermal-fluidic characterization of dynamic microchannel flow boiling instabilities: Part 1-Rapid-bubble-growth instability at the onset of boiling[J]. International Journal of Multiphase Flow, 2018, 106: 179-188. |
4 | CHENG Lixin. Fundamental issues of critical heat flux phenomena during flow boiling in microscale-channels and nucleate pool boiling in confined spaces[J]. Heat Transfer Engineering, 2013, 34(13): 1016-1043. |
5 | KARAYIANNIS T G, MAHMOUD M M. Flow boiling in microchannels: Fundamentals and applications[J]. Applied Thermal Engineering, 2017, 115: 1372-1397. |
6 | CHEN Hongxia, XU Jinliang, LI Zijin, et al. Flow pattern modulation in a horizontal tube by the passive phase separation concept[J]. International Journal of Multiphase Flow, 2012, 45: 12-23. |
7 | JIANG K, DICKINSON J E, GALVIN K P. Maximizing bubble segregation at high liquid fluxes[J]. Advanced Powder Technology, 2014, 25(4): 1205-1211. |
8 | LI Jun, HRNJAK Pega. Separation in condensers as a way to improve efficiency[J]. International Journal of Refrigeration, 2017, 79: 1-9. |
9 | KAMALI M R, VAN DEN AKKER H E A. Simulating gas-liquid flows by means of a pseudopotential lattice Boltzmann method[J]. Industrial & Engineering Chemistry Research, 2013, 52(33): 11365-11377. |
10 | BUSCHER Susanne. Visualization and modelling of flow pattern transitions in a cross-corrugated plate heat exchanger channel with uniform two-phase distribution[J]. International Journal of Heat and Mass Transfer, 2019, 144: 118643. |
11 | DAVID Milnes P, MILER Josef, STEINBRENNER Julie E, et al. Hydraulic and thermal characteristics of a vapor venting two-phase microchannel heat exchanger[J]. International Journal of Heat and Mass Transfer, 2011, 54(25/26): 5504-5516. |
12 | SALAKIJ Saran, LIBURDY James A, PENCE Deborah V, et al. Modeling in situ vapor extraction during convective boiling in fractal-like branching microchannel networks[J]. International Journal of Heat and Mass Transfer, 2013, 60: 700-712. |
13 | DERAMI Hamed Gholami, VUNDAVILLI Ravindra, DARABI Jeff. Experimental and computational study of gas bubble removal in a microfluidic system using nanofibrous membranes[J]. Microsystem Technologies, 2017, 23(7): 2685-2698. |
14 | TSURU Toshinori. Inorganic porous membranes for liquid phase separation[J]. Separation and Purification Methods, 2001, 30(2): 191-220. |
15 | AHMAD N A, LEO C P, AHMAD A L, et al. Membranes with great hydrophobicity: A review on preparation and characterization[J]. Separation & Purification Reviews, 2015, 44(2): 109-134. |
16 | LI Hongwei, ZHANG Chengzhen, YANG Di, et al. Experimental investigation on flow boiling heat transfer characteristics of R141b refrigerant in parallel small channels filled with metal foam[J]. International Journal of Heat and Mass Transfer, 2019, 133: 21-35. |
17 | NASCIMENTO Francisco Júlio DO, MOREIRA Tiago Augusto, RIBATSKI Gherhardt. Flow boiling critical heat flux of DI-water and nanofluids inside smooth and nanoporous round microchannels[J]. International Journal of Heat and Mass Transfer, 2019, 139: 240-253. |
18 | VAJC Viktor, Radek ŠULC, Martin DOSTÁL. Pool boiling heat transfer coefficients in mixtures of water and glycerin[J]. Processes, 2021, 9(5): 830. |
19 | XU Guoqiang, FU Jian, QUAN Yongkai, et al. Experimental investigation on heat transfer characteristics of hexamethyldisiloxane (MM) at supercritical pressures for medium/high temperature ORC applications[J]. International Journal of Heat and Mass Transfer, 2020, 156: 119852. |
20 | LI Yun, WU Huiying. Experiment investigation on flow boiling heat transfer in a bidirectional counter-flow microchannel heat sink[J]. International Journal of Heat and Mass Transfer, 2022, 187: 122500. |
21 | LEE Hyoungsoon, PARK Ilchung, MUDAWAR Issam, et al. Micro-channel evaporator for space applications—1. Experimental pressure drop and heat transfer results for different orientations in earth gravity[J]. International Journal of Heat and Mass Transfer, 2014, 77: 1213-1230. |
22 | HABIBISHANDIZ M, SAGHIR M Z. A critical review of heat transfer enhancement methods in the presence of porous media, nanofluids, and microorganisms[J]. Thermal Science and Engineering Progress, 2022, 30: 101267. |
23 | KAWAHARA Akimaro, MANSOUR Mohamed H, SADATOMI Michio, et al. Characteristics of gas-liquid two-phase flows through a sudden contraction in rectangular microchannels[J]. Experimental Thermal and Fluid Science, 2015, 66: 243-253. |
24 | TUCKERMAN D B, PEASE R F W. High-performance heat sinking for VLSI[J]. IEEE Electron Device Letters, 1981, 2(5): 126-129. |
25 | MANCIN Simone, ZILIO Claudio, CAVALLINI Alberto, et al. Pressure drop during air flow in aluminum foams[J]. International Journal of Heat and Mass Transfer, 2010, 53(15/16): 3121-3130. |
26 | STEINKE Mark E, KANDLIKAR Satish G. Single-phase liquid friction factors in microchannels[J]. International Journal of Thermal Sciences, 2006, 45(11): 1073-1083. |
27 | 罗小平, 彭子哲, 刘倩, 等. 电场对微细通道内R141b制冷剂流动沸腾压降的影响[J]. 农业工程学报, 2020, 36(1): 257-265. |
LUO Xiaoping, PENG Zizhe, LIU Qian, et al. Effect of electric field on flow boiling pressure drop characteristics of R141b in microchannel[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 257-265. | |
28 | LOYOLA LAVÍN Francisco, KANIZAWA Fabio Toshio, RIBATSKI Gherhardt. Analyses of the effects of channel inclination and rotation on two-phase flow characteristics and pressure drop in a rectangular channel[J]. Experimental Thermal and Fluid Science, 2019, 109: 109850. |
29 | ZOU Yang, HRNJAK Pega S. Single-phase and two-phase flow pressure drop in the vertical header of microchannel heat exchanger[J]. International Journal of Refrigeration, 2014, 44: 12-22. |
30 | ZHANG Zhiqing, Jiaqiang E, CHEN Jingwei, et al. Effects of boiling heat transfer on the performance enhancement of a medium speed diesel engine fueled with diesel and rapeseed methyl ester[J]. Applied Thermal Engineering, 2020, 169: 114984. |
31 | MENG Dennis Desheng, CUBAUD Thomas, Chih-Ming HO, et al. A methanol-tolerant gas-venting microchannel for a microdirect methanol fuel cell[J]. Journal of Microelectromechanical Systems, 2007, 16(6): 1403-1410. |
[1] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[2] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[3] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[4] | 杨园园, 雷婷, 秦青青, 武晓, 李剑, 秦舒浩, 李嘉乐, 张兵兵, 任露露. PEO改性PVDF/SMA膜结构和性能[J]. 化工进展, 2023, 42(3): 1515-1526. |
[5] | 罗小平, 樊鹏, 周建阳, 王梦圆. 不同波纹壁面微细通道沸腾曲线及沸腾起始点研究[J]. 化工进展, 2023, 42(3): 1228-1239. |
[6] | 尹晓云, 付林浩, 李佳忆, 程思杰, 敬加强, MASTOBAEV Boris N, 孙杰. 稠油水环输送管道再启动压降特性分析[J]. 化工进展, 2023, 42(11): 5669-5679. |
[7] | 贾文龙, 孙溢彬, 汤丁, 陈家文, 雷思罗, 李长俊. 基于支持向量机的输气管道泄漏压降信号智能识别方法[J]. 化工进展, 2022, 41(9): 4713-4722. |
[8] | 冯龙龙, 钟珂, 张羽森, 商庆春, 贾洪伟. 水平管内R1234yf的流动沸腾换热特性[J]. 化工进展, 2022, 41(7): 3502-3509. |
[9] | 毛纪金, 张东辉, 孙利利, 雷钦晖, 屈健. 两种烧结通道的沸腾传热和阻力特性对比[J]. 化工进展, 2022, 41(7): 3483-3492. |
[10] | 梅响, 姚元鹏, 吴慧英. 连通微通道内过冷流动沸腾传热强化机理分析[J]. 化工进展, 2022, 41(6): 2884-2892. |
[11] | 高博, 冯旭东, 李春. 可视化高通量检测天冬氨酸转氨甲酰酶活性的方法[J]. 化工进展, 2022, 41(4): 2054-2059. |
[12] | 曾最, 罗凯, 叶伟梁, 费华, 王艳, 刘景滔. 十二水磷酸氢二钠相变储能材料研究进展[J]. 化工进展, 2022, 41(2): 827-836. |
[13] | 余杨, 何艳萍, 罗诗钰, 韩万青, 李贵营, 司甜, 祝琳华, 朱远蹠. 二元溶剂体系对泡沫传输制备聚苯乙烯微球的影响[J]. 化工进展, 2022, 41(1): 320-326. |
[14] | 张爽, 赵立新, 刘洋, 宋民航, 刘琳. 脱气除油旋流系统流场分布及分离特性[J]. 化工进展, 2022, 41(1): 75-85. |
[15] | 张东辉, 陈一, 毛纪金, 孙利利, 江卫玉. 泡沫铜孔隙率和孔密度对流动与沸腾换热特性的影响[J]. 化工进展, 2021, 40(S1): 69-74. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |