化工进展 ›› 2023, Vol. 42 ›› Issue (1): 445-456.DOI: 10.16085/j.issn.1000-6613.2022-0497
张金辉1(), 张焕1, 朱新锋1(), 宋忠贤1, 康海彦1, 刘红盼2, 邓炜3, 侯广超3, 李桂亭3, 黄真真1,4
收稿日期:
2022-03-28
修回日期:
2022-07-03
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
朱新锋
作者简介:
张金辉(1987—),男,博士,讲师,研究方向为金属有机骨架材料的制备及VOCs催化氧化。E-mail:jhzhang018@163.com。
基金资助:
ZHANG Jinhui1(), ZHANG Huan1, ZHU Xinfeng1(), SONG Zhongxian1, KANG Haiyan1, LIU Hongpan2, DENG Wei3, HOU Guangchao3, LI Guiting3, HUANG Zhenzhen1,4
Received:
2022-03-28
Revised:
2022-07-03
Online:
2023-01-25
Published:
2023-02-20
Contact:
ZHU Xinfeng
摘要:
UiO-66系列金属有机骨架(MOFs)材料因具有较高的比表面积、丰富的孔结构、优异的结构稳定性和类半导体特性而广泛应用于污染物的吸附和催化领域。文中指出:液相有机污染物主要通过物理吸附、静电、氢键、π-π相互作用被UiO-66基材料吸附去除,同时由于电性等性质差异,UiO-66基材料可从性质差异显著的多种有机污染物中选择性吸附污染物,而气相有机污染物主要通过氢键或UiO-66基材料孔道被吸附去除,同时环境中的水汽对污染物的吸附去除具有显著影响;针对光催化,由于载流子的快速复合,纯UiO-66基材料具有较低的光催化活性,通过与半导体材料复合可显著提高材料载流子分离速率,同时活性位点高度均匀分散在UiO-66基材料表面,利于光的激发及污染物与活性位点的充分接触,进而显著提高材料的光催化活性。与此同时,本文也提出了UiO-66基材料在有机污染物吸附和去除中的不足之处。最后展望了UiO-66基材料的发展前景。
中图分类号:
张金辉, 张焕, 朱新锋, 宋忠贤, 康海彦, 刘红盼, 邓炜, 侯广超, 李桂亭, 黄真真. UiO-66复合材料用于典型有机污染物吸附和光催化氧化的研究进展[J]. 化工进展, 2023, 42(1): 445-456.
ZHANG Jinhui, ZHANG Huan, ZHU Xinfeng, SONG Zhongxian, KANG Haiyan, LIU Hongpan, DENG Wei, HOU Guangchao, LI Guiting, HUANG Zhenzhen. Research progress of UiO-66 materials for adsorption and photocatalytic oxidation of typical organic compounds[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 445-456.
1 | DU C Y, ZHANG Z, YU G L, et al. A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis[J]. Chemosphere, 2021, 272: 129501. |
2 | CHAN S S, KHOO K S, CHEW K W, et al. Recent advances biodegradation and biosorption of organic compounds from wastewater: microalgae-bacteria consortium—A review[J]. Bioresource Technology, 2022, 344: 126159. |
3 | ZHANG J Y, TONG H J, PEI W K, et al. Integrated photocatalysis-adsorption-membrane separation in rotating reactor for synergistic removal of RhB[J]. Chemosphere, 2021, 270: 129424. |
4 | FAN W, ZHANG X, KANG Z, et al. Isoreticular chemistry within metal-organic frameworks for gas storage and separation[J]. Coordination Chemistry Reviews, 2021, 443: 213968. |
5 | ZHENG J, CUI X, YANG Q, et al. Shaping of ultrahigh-loading MOF pellet with a strongly anti-tearing binder for gas separation and storage[J]. Chemical Engineering Journal, 2018, 354: 1075-1082. |
6 | FALCARO P, RICCO R, YAZDI A, et al. Application of metal and metal oxide nanoparticles@MOFs[J]. Coordination Chemistry Reviews, 2016, 307: 237-254. |
7 | USMAN M, MENDIRATTA S, LU K L. Semiconductor metal-organic frameworks: Future low-bandgap materials[J]. Advanced Materials, 2017, 29(6): 1605071. |
8 | CHEN L, ZHANG X, CHENG X, et al. The function of metal-organic frameworks in the application of MOF-based composites[J]. Nanoscale Advances, 2020, 2(7): 2628-2647. |
9 | SHI D, YU X, FAN W, et al. Polycrystalline zeolite and metal-organic framework membranes for molecular separations[J]. Coordination Chemistry Reviews, 2021, 437: 213794. |
10 | SLATER A G, COOPER A I. Function-led design of new porous materials[J]. Science, 2015, 348(6238): aaa8075. |
11 | CAVKA J H, JAKOBSEN S, OLSBYE U, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
12 | YUAN S, FENG L, WANG K, et al. Stable metal-organic frameworks: design, synthesis, and applications[J]. Advanced Materials, 2018, 30(37): 1704303. |
13 | CAO Y, CHEN X, LI X, et al. Tuning surface functionalization and pore structure of UiO-66 metal-organic framework nanoparticles for organic pollutant elimination[J]. ACS Applied Nano Materials, 2021, 4(5): 5486-5495. |
14 | KIM J. Facile synthesis of magnetic framework composite MgFe2O4 @UiO-66 (Zr) and its applications in the adsorption-photocatalytic degradation of tetracycline[J]. Environmental Science and Pollution Research, 2021, 28(48): 68261-68275. |
15 | WANG P, SUN L, YE J, et al. Construction of crystal defect sites in UiO-66 for adsorption of dimethyl phthalate and phthalic acid[J]. Microporous and Mesoporous Materials, 2021, 312: 110778. |
16 | WANG H, WANG S, WANG S, et al. Adenosine-functionalized UiO-66-NH2 to efficiently remove Pb(Ⅱ) and Cr(Ⅵ) from aqueous solution: thermodynamics, kinetics and isothermal adsorption[J]. Journal of Hazardous Materials, 2022, 425: 127771. |
17 | OU R, ZHU W, LI L, et al. Boosted capture of volatile organic compounds in adsorption capacity and selectivity by rationally exploiting defect-engineering of UiO-66 (Zr)[J]. Separation and Purification Technology, 2021, 266: 118087. |
18 | ABDELHAMID H N. Solid acid zirconium oxo sulfate/carbon-derived UiO-66 for hydrogen production[J]. Energy & Fuels, 2021, 35(12): 10322-10326. |
19 | LING L L, YANG W, YAN P, et al. Light‐assisted CO2 hydrogenation over Pd3Cu@UiO-66 promoted by active sites in close proximity[J]. Angewandte Chemie International Edition, 2022, 61(12): e202116396. |
20 | LIU H, CHENG M, LIU Y, et al. Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues[J]. Coordination Chemistry Reviews, 2022, 458: 214428. |
21 | KATZ M J, BROWN Z J, COLÓN Y J, et al. A facile synthesis of UiO-66, UiO-67 and their derivatives[J]. Chemical Communications, 2013, 49(82): 9449-9451. |
22 | FREDERIK V, BART B, GAËLLE, et al. Synthesis modulation as a tool to increase the catalytic activity of metal-organic frameworks: the unique case of UiO-66 (Zr)[J]. Journal of the American Chemical Society, 2013, 135(31): 11465-11468. |
23 | GARIBAY S J, COHEN S M. Isoreticular synthesis and modification of frameworks with the UiO-66 topology[J]. Chemical Communications, 2010, 46(41): 7700-7702. |
24 | WANG R M, LIU L, SUBHAN S, et al. Engineering pH-switchable UiO-66 via in-situ amino acid doping for highly selective adsorption of anionic dyes[J]. Chemical Engineering Journal, 2020, 395: 124958. |
25 | HU P, WANG R M, GAO Z, et al. Improved interface compatibility of hollow H-Zr0.1Ti0.9O2 with UiO-66-NH2 via Zr-Ti bidirectional penetration to boost visible photocatalytic activity for acetaldehyde degradation under high humidity[J]. Applied Catalysis B: Environmental, 2021, 296: 120371. |
26 | YANG Q, XU Q, JIANG H L. Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis[J]. Chemical Society Reviews, 2017, 46(15): 4774-4808. |
27 | KANDIAH M, NILSEN M H, USSEGLIO S, et al. Synthesis and stability of tagged UiO-66 Zr-MOFs[J]. Chemistry of Materials, 2010, 22(24): 6632-6640. |
28 | LI S X, SUN S L, WU H Z, et al. Effects of electron-donating groups on the photocatalytic reaction of MOFs[J]. Catalysis Science & Technology, 2018, 8(6): 1696-1703. |
29 | AHMADIJOKANI F, MOHAMMADKHANI R, AHMADIPOUYA S, et al. Superior chemical stability of UiO-66 metal-organic frameworks (MOFs) for selective dye adsorption[J]. Chemical Engineering Journal, 2020, 399: 125346. |
30 | EMBABY M S, ELWANY S D, SETYNINGSIH W, et al. The adsorptive properties of UiO-66 towards organic dyes: a record adsorption capacity for the anionic dye Alizarin Red S[J]. Chinese journal of chemical engineering, 2018, 26(4): 731-739. |
31 | DINH H T, TRAN N T, TRINH D X. Investigation into the adsorption of methylene blue and methyl orange by UiO-66-NO2 nanoparticles[J]. Journal of Analytical Methods in Chemistry, 2021. DOI: /10.1155/2021/5512174 . |
32 | 杨光绪, 龚正刚, 罗小林, 等. 氯代 UiO-66吸附染色纸废水中罗丹明B和刚果红[J]. 化工进展, 2019, 38(7): 3434-3442. |
YANG G X, GONG Z G, LUO X L, Adsorption of Rhodamine B and Congo Red in dyeing paper wastewater by chlorine-substituted UiO-66 [J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3434-3442. | |
33 | FANG X, WU S, WU Y, et al. High-efficiency adsorption of norfloxacin using octahedral UiO-66-NH2 nanomaterials: dynamics, thermodynamics, and mechanisms[J]. Applied Surface Science, 2020, 518: 146226. |
34 | ZHUANG S, CHENG R, WANG J. Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks[J]. Chemical Engineering Journal, 2019, 359: 354-362. |
35 | LIU L, CUI W, LU C, et al. Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: functional groups dependence of adsorption performance and mechanisms[J]. Journal of Environmental Management, 2020, 268: 110630. |
36 | WANG K, WU J, ZHU M, et al. Highly effective pH-universal removal of tetracycline hydrochloride antibiotics by UiO-66-(COOH)2/GO metal-organic framework composites[J]. Journal of Solid State Chemistry, 2020, 284: 121200. |
37 | LI S M, FENG F, CHEN S, et al. Preparation of UiO-66-NH2 and UiO-66-NH2/sponge for adsorption of 2,4-dichlorophenoxyacetic acid in water[J]. Ecotoxicology and environmental safety, 2020, 194: 110440. |
38 | VO T K, LE V N, YOO K S, et al. Facile synthesis of UiO-66 (Zr) using a microwave-assisted continuous tubular reactor and its application for toluene adsorption[J]. Crystal Growth & Design, 2019, 19(9): 4949-4956. |
39 | VO T K, NGUYEN V C, SONG M, et al. Microwave-assisted continuous-flow synthesis of mixed-ligand UiO-66 (Zr) frameworks and their application to toluene adsorption[J]. Journal of Industrial and Engineering Chemistry, 2020, 86: 178-185. |
40 | VELLINGIRI K, KUMAR P, DEEP A, et al. Metal-organic frameworks for the adsorption of gaseous toluene under ambient temperature and pressure[J]. Chemical Engineering Journal, 2017, 307: 1116-1126. |
41 | HASAN Z, TONG M, JUNG B K, et al. Adsorption of pyridine over amino-functionalized metal-organic frameworks: attraction via hydrogen bonding versus base-base repulsion[J]. The Journal of Physical Chemistry C, 2014, 118(36): 21049-21056. |
42 | ZHOU L, ZHANG X, CHEN Y. Modulated synthesis of zirconium metal-organic framework UiO-66 with enhanced dichloromethane adsorption capacity[J]. Materials Letters, 2017, 197: 167-170. |
43 | ZHANG X, YANG Y, SONG L, et al. Enhanced adsorption performance of gaseous toluene on defective UiO-66 metal organic framework: equilibrium and kinetic studies[J]. Journal of hazardous materials, 2019, 365: 597-605. |
44 | ZHANG X, YANG Yu, LYU X, et al. Adsorption/desorption kinetics and breakthrough of gaseous toluene for modified microporous-mesoporous UiO-66 metal organic framework[J]. Journal of hazardous materials, 2019, 366: 140-150. |
45 | ZHANG X, LYU X, SHI X, et al. Enhanced hydrophobic UiO-66 (University of Oslo 66) metal-organic framework with high capacity and selectivity for toluene capture from high humid air[J]. Journal of colloid and interface science, 2019, 539: 152-160. |
46 | SHI X, ZHANG X, BI F, et al. Effective toluene adsorption over defective UiO-66-NH2: an experimental and computational exploration[J]. Journal of Molecular Liquids, 2020, 316: 113812. |
47 | ZHANG X, SHI X, CHEN J, et al. The preparation of defective UiO-66 metal organic framework using MOF-5 as structural modifier with high sorption capacity for gaseous toluene[J]. Journal of Environmental Chemical Engineering, 2019, 7(5): 103405. |
48 | HU P, LIANG X, YASEEN M, et al. Preparation of highly-hydrophobic novel N-coordinated UiO-66 (Zr) with dopamine via fast mechano-chemical method for (CHO-/Cl-)-VOCs competitive adsorption in humid environment[J]. Chemical Engineering Journal, 2018, 332: 608-618. |
49 | SUN D, ADIYALA P R, YIM S J, et al. Pore-surface engineering by decorating metal-oxo nodes with phenylsilane to give versatile super-hydrophobic metal-organic frameworks (MOFs)[J]. Angewandte Chemie, 2019, 131(22): 7483-7487. |
50 | JIN J C, YANG M, ZHANG Y L, et al. Integration of mixed ligand into a multivariate metal-organic framework for enhanced UV-light photocatalytic degradation of Rhodamine B[J]. Journal of the Taiwan Institute of Chemical Engineers, 2021, 129: 410-417. |
51 | MU X, JIANG J, CHAO F, et al. Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation[J]. Dalton Transactions, 2018, 47(6): 1895-1902. |
52 | BIBI R, SHEN Q, WEI L, et al. Hybrid BiOBr/UiO-66-NH2 composite with enhanced visible-light driven photocatalytic activity toward RhB dye degradation[J]. RSC advances, 2018, 8(4): 2048-2058. |
53 | LIANG Q, CUI S, LIU C, et al. Construction of CdS@UiO-66-NH2 core-shell nanorods for enhanced photocatalytic activity with excellent photostability[J]. Journal of colloid and interface science, 2018, 524: 379-387. |
54 | ABDI J, YAHYANEZHAD M, SAKHAIE S, et al. Synthesis of porous TiO2/ZrO2 photocatalyst derived from zirconium metal organic framework for degradation of organic pollutants under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2019, 7(3): 103096. |
55 | ZHANG C, APPEL E, QIAO Q. Heavy metal pollution in farmland irrigated with river water near a steel plant-magnetic and geochemical signature[J]. Geophysical Journal International, 2013, 192(3): 963-974. |
56 | SIN S N, CHUA H, LO W, et al. Assessment of heavy metal cations in sediments of Shing Mun River, Hong Kong[J]. Environment international, 2001, 26(5/6): 297-301. |
57 | ZENG H, YU Z, SHAO L, et al. Ag2CO3@UiO-66-NH2 embedding graphene oxide sheets photocatalytic membrane for enhancing the removal performance of Cr(Ⅵ) and dyes based on filtration[J]. Desalination, 2020,491: 114558. |
58 | ZHOU Y C, XU X Y, WANG P, et al. Facile fabrication and enhanced photocatalytic performance of visible light responsive UiO-66-NH2/Ag2CO3 composite[J]. Chinese Journal of Catalysis, 2019, 40(12): 1912-1923. |
59 | ZHAO C, ZHANG Y, JIANG H, et al. Combined effects of octahedron NH2-UiO-66 and flowerlike ZnIn2S4 microspheres for photocatalytic dye degradation and hydrogen evolution under visible light[J]. The Journal of Physical Chemistry C, 2019, 123(29): 18037-18049. |
60 | YANG Z, TONG X, FENG J, et al. Flower-like BiOBr/UiO-66-NH2 nanosphere with improved photocatalytic property for norfloxacin removal[J]. Chemosphere, 2019, 220: 98-106. |
61 | CAO J, YANG Z, XIONG W, et al. One-step synthesis of Co-doped UiO-66 nanoparticle with enhanced removal efficiency of tetracycline: Simultaneous adsorption and photocatalysis[J]. Chemical Engineering Journal, 2018, 353: 126-137. |
62 | WU J, FANG X, ZHU Y, et al. Well-designed TiO2@UiO-66-NH2 nanocomposite with superior photocatalytic activity for tetracycline under restricted space[J]. Energy & Fuels, 2020, 34(10): 12911-12917. |
63 | ZHAO C, LI Y, CHU H, et al. Construction of direct Z-scheme Bi5O7I/UiO-66-NH2 heterojunction photocatalysts for enhanced degradation of ciprofloxacin: mechanism insight, pathway analysis and toxicity evaluation[J]. Journal of Hazardous Materials, 2021, 419: 126466. |
64 | YAO P, LIU H, WANG D, et al. Enhanced visible-light photocatalytic activity to volatile organic compounds degradation and deactivation resistance mechanism of titania confined inside a metal-organic framework[J]. Journal of colloid and interface science, 2018, 522: 174-182. |
65 | 周易, 欧阳威龙, 王岳军, 等. 核壳结构 NH2-UiO-66@TiO2 的制备及其可见光下的甲苯降解性能研究[J]. 物理化学学报, 2021, 37(8): 101-108. |
ZHOU Y, OUYANG W L, WANG Y J, et al. Core-shell structured NH2-UiO-66@TiO2 photocatalyst for the degradation of toluene under visible light irradiation[J]. Acta Physico-Chimica Sinica, 2021, 37(8): 101-108. | |
66 | ZHANG J, HU Y, QIN J, et al. TiO2-UiO-66-NH2 nanocomposites as efficient photocatalysts for the oxidation of VOCs[J]. Chemical Engineering Journal, 2020, 385: 123814. |
67 | ZHANG J, GUO Z, YANG Z, et al. TiO2@UiO-66 composites with efficient adsorption and photocatalytic oxidation of VOCs: investigation of synergistic effects and reaction mechanism[J]. ChemCatChem, 2021, 13(2): 581-591. |
[1] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[8] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[9] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[10] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[11] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[12] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[13] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[14] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[15] | 郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |