化工进展 ›› 2022, Vol. 41 ›› Issue (S1): 282-292.DOI: 10.16085/j.issn.1000-6613.2021-2540
收稿日期:
2021-12-13
修回日期:
2022-01-26
出版日期:
2022-10-20
发布日期:
2022-11-10
通讯作者:
温芳
作者简介:
温芳(1986—)女,博士,讲师,研究方向为建筑照明、无障碍疏散技术。E-mail:fangwen@ncut.edu.cn。
基金资助:
Received:
2021-12-13
Revised:
2022-01-26
Online:
2022-10-20
Published:
2022-11-10
Contact:
WEN Fang
摘要:
视觉标识系统在体育场馆的应急疏散中起着关键的作用。在无源情况下能够自行发光的长余辉材料被认为是制作应急指示标识的理想材料。然而,长余辉材料大多为粉末颗粒,需要制成不同的应用形态以满足不同场景。本文对目前长余辉材料的应用形态进行梳理和总结,分别从长余辉荧光粉-玻璃复合材料、长余辉荧光粉-硅胶/聚合物复合材料、长余辉荧光粉-包覆材料和纳米长余辉荧光材料等方面阐述了不同材料形态的应用效果。文中指出,长余辉材料应用于应急标识的关键问题是通过包覆介质与外界环境隔绝。与此同时,应避免介质本身与长余辉材料起反应。另外,介质材料还应具有防火、防水和低成本等要求。未来,除了进一步拓展现有应用形态,如包覆并制成涂料、水泥沙浆,与聚合物、玻璃复合等,还应研究长余辉材料与介质的反应机理以及复合后的力学性能变化,并探索新型包覆介质。
中图分类号:
温芳, 张勃. 长余辉发光材料在应急疏散标识中的应用形态[J]. 化工进展, 2022, 41(S1): 282-292.
WEN Fang, ZHANG Bo. Review on application forms of persistent luminescence materials for emergency evacuation signage[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 282-292.
应用形式 | 结合材料种类 | 特点 | 应用场景 |
---|---|---|---|
长余辉荧光粉-包覆材料 | SiO2,Al2O3,TiO2,有机聚合物等 | 通过包覆提升余辉材料表面疏水性,解决余辉材料在特定环境下的分解和光衰问题;但是现有包覆工艺复杂,大多数产品只能实现中性环境下的性能稳定,无法满足实际应用中面临的极端条件 | 室内装饰建材或涂料;室外 夜间道路标记;水下装饰涂层 |
长余辉荧光粉-玻璃复合材料 | 各种透明玻璃基质 | 制备工艺简单,易于大面积推广使用,对荧光材料的抗热猝灭性能有很大提升;但是玻璃复合材料的内部气泡问题仍需投入更多努力 | 玻璃装饰材料以及指示性标记;信息存储;LED照明 |
长余辉荧光粉-硅胶/聚合物复合材料 | 常用的有硅胶、聚丙烯、织物纤维等 | 制备工艺简单,得到的产品具有优异的延展性,应用方向广阔;已有研究关于该类应用的探索目前仅限于实验室阶段,无法确定该类材料在湿热条件下的稳定性 | 信息存储;装饰标记;玩具、服装等 |
表1 几种长余辉荧光粉的应用形式及场景
应用形式 | 结合材料种类 | 特点 | 应用场景 |
---|---|---|---|
长余辉荧光粉-包覆材料 | SiO2,Al2O3,TiO2,有机聚合物等 | 通过包覆提升余辉材料表面疏水性,解决余辉材料在特定环境下的分解和光衰问题;但是现有包覆工艺复杂,大多数产品只能实现中性环境下的性能稳定,无法满足实际应用中面临的极端条件 | 室内装饰建材或涂料;室外 夜间道路标记;水下装饰涂层 |
长余辉荧光粉-玻璃复合材料 | 各种透明玻璃基质 | 制备工艺简单,易于大面积推广使用,对荧光材料的抗热猝灭性能有很大提升;但是玻璃复合材料的内部气泡问题仍需投入更多努力 | 玻璃装饰材料以及指示性标记;信息存储;LED照明 |
长余辉荧光粉-硅胶/聚合物复合材料 | 常用的有硅胶、聚丙烯、织物纤维等 | 制备工艺简单,得到的产品具有优异的延展性,应用方向广阔;已有研究关于该类应用的探索目前仅限于实验室阶段,无法确定该类材料在湿热条件下的稳定性 | 信息存储;装饰标记;玩具、服装等 |
图4 光信息存储的应用(a) 在PiG薄膜上记录和读取光学信息的示意图;(b) 自然光下的PiG-0 (Y3Al5O12:Ce3+,V3+)薄膜;(c),(d) PiG-0 (Y3Al5O12:Ce3+,V3+)薄膜在黑暗中加热到250℃后的发光图案; (e) PiG-0 (Y3Al5O12:Ce3+,V3+); (f) PiG-1 (Y3Al4GaO12:Ce3+,V3+); (g) PiG-2 (Y3Al3Ga2O12:Ce3+,V3+); (h) 808nm激光刺激下(e), (f), (g)和PiG-3 (Y3Al2Ga3O12:Ce3+,V3+)的发光图案
1 | 李道勇, 张勃. 基于风险防控的北京冬奥会无障碍设施建设的思考[J]. 建设科技, 2020(11): 12-16. |
LI Daoyong, ZHANG Bo. Considerations on the construction of barrier-free facilities for Beijing winter Olympic games based on risk prevention and control[J]. Construction Science and Technology, 2020(11): 12-16. | |
2 | 马晓辉, 周洁萍, 龚建华, 等. 面向室内应急疏散标识的VR眼动感知实验与布局评估[J]. 地球信息科学学报, 2019, 21(8): 1170-1182. |
MA Xiaohui, ZHOU Jieping, GONG Jianhua, et al. VR eye-tracking perception experiment and layout evaluation for indoor emergency evacuation signs[J]. Journal of Geo-Information Science, 2019, 21(8): 1170-1182. | |
3 | CAI Hao, SONG Zhen, LIU Quanlin. Infrared-photostimulable and long-persistent ultraviolet-emitting phosphor LiLuGeO4: Bi3+, Yb3+ for biophotonic applications[J]. Materials Chemistry Frontiers, 2021, 5(3): 1468-1476. |
4 | ZHANG Yi, CHEN Dongxun, WANG Weili, et al. Long-lasting ultraviolet-A persistent luminescence and photostimulated persistent luminescence in Bi3+-doped LiScGeO4 phosphor[J]. Inorganic Chemistry Frontiers, 2020, 7(17): 3063-3071. |
5 | YAN Shao, LIANG Yanjie, LIU Jingwei, et al. Development of ultraviolet-B long-lived persistent phosphors in Pr3+-doped garnets[J]. Journal of Materials Chemistry C, 2021, 9(41): 14730-14739. |
6 | ZHUANG Yixi, TU Dong, CHEN Changjian, et al. Force-induced charge carrier storage: a new route for stress recording[J]. Light: Science & Applications, 2020, 9: 182. |
7 | ZHUANG Yixi, WANG Le, Ying LYU, et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials[J]. Advanced Functional Materials, 2018, 28(8): 1705769. |
8 | SONG Zhen, WANG Zhizhen, HE Lizhu, et al. After-glow, luminescent thermal quenching, and energy band structure of Ce-doped yttrium aluminum-gallium garnets[J]. Journal of Luminescence, 2017, 192: 1278-1287. |
9 | 温芳, 张勃. 面向未来的德国城市全面无障碍化的思考与借鉴[J]. 建设科技, 2020(11): 59-63. |
WEN Fang, ZHANG Bo. Enlightenment of the future-oriented comprehensive barrier-free in German cities[J]. Construction Science and Technology, 2020(11): 59-63. | |
10 | 佟欣. 体育场馆无障碍通用化设计研究[D]. 哈尔滨: 哈尔滨工业大学, 2013. |
TONG Xin. On universal accessibility design of sports venues[D]. Harbin: Harbin Institute of Technology, 2013. | |
11 | 潘梅, 朱诚逸, 王政. 长余辉发光——闪耀人生的那颗夜明珠[J]. 发光学报, 2020, 41(9): 1087-1092. |
PAN Mei, ZHU Chengyi, WANG Zheng. Long persistence luminescence: shining pearl of life[J]. Chinese Journal of Luminescence, 2020, 41(9): 1087-1092. | |
12 | 王洪杰, 韩蒙, 朱重阳, 等. Nb5+、Sm3+共掺杂YTaO4的长余辉发光性质[J]. 发光学报, 2021, 42(1): 1-9. |
WANG Hongjie, HAN Meng, ZHU Chongyang, et al. Long-lasting phosphorescence in Nb5+ and Sm3+ codoped YTaO4 [J]. Chinese Journal of Luminescence, 2021, 42(1): 1-9. | |
13 | ZHANG Zhuanzhuan, LIANG Yanjie. Multicolor luminescent GdVO4: Ln3+ (Ln = Eu, Dy and Sm) nanophosphors prepared by a protected calcination method[J]. Optik, 2020, 207: 163825. |
14 | 闻军, 汪燕, 江贵生, 等. Sr2MgSi2O7中本征缺陷和镧系离子的热力学稳定性和转变能级[J]. 发光学报, 2020, 41(6): 655-663. |
WEN Jun, WANG Yan, JIANG Guisheng, et al. Thermodynamic stabilities and transition levels of native defects and lanthanide ions in Sr2MgSi2O7 [J]. Chinese Journal of Luminescence, 2020, 41(6): 655-663. | |
15 | YAMAMOTO H, MATSUZAWA T. Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+ [J]. Journal of Luminescence, 1997, 72/73/74: 287-289. |
16 | MATSUZAWA T, AOKI Y, TAKEUCHI N, et al. A new long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+ [J]. Journal of the Electrochemical Society, 2019, 143(8): 2670. |
17 | WANG Xiaoxin, ZHANG Zhongtai, TANG Zilong, et al. Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor[J]. Materials Chemistry and Physics, 2003, 80(1): 1-5. |
18 | CUI Dianpeng, XIANG Qianchuan, SONG Zhen, et al. The synthesis of narrow-band red-emitting SrLiAl3N4: Eu2+phosphor and improvement of its luminescence properties[J]. Journal of Materials Chemistry C, 2016, 4(30): 7332-7338. |
19 | LUO Hong, KIM J K, SCHUBERT E F, et al. Analysis of high-power packages for phosphor-based white-light-emitting diodes[J]. Applied Physics Letters, 2005, 86(24): 243505. |
20 | LIN Hang, HU Tao, CHENG Yao, et al. Glass ceramic phosphors: Towards long-lifetime high-power white light-emitting-diode applications-a review[J]. Laser & Photonics Reviews, 2018, 12(6): 1700344. |
21 | NAKANISHI T, TANABE S. Novel Eu2+-activated glass ceramics precipitated with green and red phosphors for high-power white LED[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(4): 1171-1176. |
22 | FUJITA S, SAKAMOTO A, TANABE S. Luminescence characteristics of YAG glass-ceramic phosphor for white LED[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(5): 1387-1391. |
23 | 王鹏飞, 隋萍, 林世盛, 等. Lu2SrAl4SiO12:Ce3+荧光玻璃陶瓷膜-蓝宝石复合材料及其激光照明应用[J]. 发光学报, 2021, 42(10): 1493-1501. |
WANG Pengfei, SUI Ping, LIN Shisheng, et al. Lu2SrAl4SiO12:Ce3+ phosphor in glass film-on-sapphire and its application to laser lighting[J]. Chinese Journal of Luminescence, 2021, 42(10): 1493-1501. | |
24 | YEH Chiaowen, LI Ye, WANG Jing, et al. Appropriate green phosphor of SrSi2O2N2:Eu2+,Mn2+ for AC LEDs[J]. Optics Express, 2012, 20(16): 18031-18043. |
25 | CHEN Lei, ZHANG Yao, LIU Fayong, et al. A new green phosphor of SrAl2O4: Eu2+, Ce3+, Li+ for alternating current driven light-emitting diodes[J]. Materials Research Bulletin, 2012, 47(12): 4071-4075. |
26 | LIN Hang, WANG Bo, XU Ju, et al. Phosphor-in-glass for high-powered remote-type white AC-LED[J]. ACS Applied Materials & Interfaces, 2014, 6(23): 21264-21269. |
27 | CHEN Daqin, ZHOU Yang, XU Wei, et al. Persistent and photo-stimulated luminescence in Ce3+/Cr3+ activated Y3Al2Ga3O12 phosphors and transparent phosphor-in-glass[J]. Journal of Materials Chemistry C, 2016, 4(48): 11457-11464. |
28 | LI Wuhui, ZHUANG Yixi, ZHENG Peng, et al. Tailoring trap depth and emission wavelength in Y3Al5- x Ga x O12: Ce3+, V3+ phosphor-in-glass films for optical information storage[J]. ACS Applied Materials & Interfaces, 2018, 10(32): 27150-27159. |
29 | LIN Shisheng, LIN Hang, HUANG Qingming, et al. A photostimulated BaSi2O5:Eu2+,Nd3+ phosphor-in-glass for erasable-rewritable optical storage medium[J]. Laser & Photonics Reviews, 2019, 13(4): 1900006. |
30 | ASAMI K, UEDA J, TANABE S. Long persistent luminescence and blue photochromism in Eu2+-Dy3+ co-doped barium silicate glass ceramic phosphor[J]. Journal of Luminescence, 2019, 207: 246-250. |
31 | CASTAING V, MONTEIRO C, SONTAKKE A D, et al. Hexagonal Sr1- x/2Al2- x Si x O4: Eu2+, Dy3+ transparent ceramics with tuneable persistent luminescence properties[J]. Dalton Transactions, 2020, 49(46): 16849-16859. |
32 | ZHANG Hao, ZHAO Lei, TIAN Shuyu, et al. Robust tri-color long persistent luminescence of phosphor-in-glass for outdoor application[J]. Journal of Non-Crystalline Solids, 2020, 533: 119830. |
33 | AN J M, ZHAO X, LI D S, et al. New insights into phosphorescence properties of LuAGG: long afterglow phosphor-in-glass for optical data storage[J]. Ceramics International, 2021, 47(3): 3185-3194. |
34 | KAYA S Y, KARASU B. Process parameters determination of phosphorescent pigment added, frit-based wall tiles vetrosa decorations[J]. Ceramics International, 2012, 38(4): 2757-2766. |
35 | TIAN Saiqi, WEN Jiating, FAN Haojun, et al. Sunlight-activated long persistent luminescent polyurethane incorporated with amino-functionalized SrAl2O4: Eu2+, Dy3+phosphor[J]. Polymer International, 2016, 65(10): 1238-1244. |
36 | EBRAHIMZADE A, RAHBAR R S, MOJTAHEDI M R M, et al. Probing the photoluminescence characteristics and dyeability of dyed luminous polypropylene fabric[J]. Fibers and Polymers, 2019, 20(12): 2529-2539. |
37 | KHATTAB T A, REHAN M, HAMDY Y, et al. Facile development of photoluminescent textile fabric via spray coating of Eu(Ⅱ)-doped strontium aluminate[J]. Industrial & Engineering Chemistry Research, 2018, 57(34): 11483-11492. |
38 | HAMEED A, ALJUHANI E, BAWAZEER T M, et al. Preparation of multifunctional long-persistent photoluminescence cellulose fibres[J]. Luminescence, 2021, 36(7): 1781-1792. |
39 | BARBOSA R, GUPTA S K, SRIVASTAVA B B, et al. Bright and persistent green and red light-emitting fine fibers: a potential candidate for smart textiles[J]. Journal of Luminescence, 2021, 231: 117760. |
40 | ZHENG Liubin, ZHU Yanan, PANG Zengyuan, et al. Preparation and characterization of new red luminescent fibers based on a multilayer structure[J]. Textile Research Journal, 2021, 91(17/18): 2125-2135. |
41 | SHI Chen, SHEN Xiuyu, ZHU Yanan, et al. Excitation wavelength-dependent dual-mode luminescence emission for dynamic multicolor anticounterfeiting[J]. ACS Applied Materials & Interfaces, 2019, 11(20): 18548-18554. |
42 | LYU T S, DORENBOS P. Towards information storage by designing both electron and hole detrapping processes in bismuth and lanthanide-doped LiRE(Si, Ge)O4 (RE=Y, Lu) with high charge carrier storage capacity[J]. Chemical Engineering Journal, 2020, 400: 124776. |
43 | WANG Chuanlong, JIN Yahong, Yang LYU, et al. Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4: Eu2+, Ho3+ and photostimulable luminescence for optical information storage[J]. Journal of Materials Chemistry C, 2018, 6(22): 6058-6067. |
44 | 马林, 胡建国, 王惠琴, 等. BAM荧光粉表面包膜处理及其发光性能[J]. 发光学报, 2003, 24(5): 523-526. |
MA Lin, HU Jianguo, WANG Huiqin, et al. Surface coating and luminescence performance of BAM phosphor[J]. Chinese Journal of Luminescence, 2003, 24(5): 523-526. | |
45 | WU Huajun, HAO Zhendong, PAN Guohui, et al. Phosphor-SiO2 composite films suitable for white laser lighting with excellent color rendering[J]. Journal of the European Ceramic Society, 2020, 40(6): 2439-2444. |
46 | ZHUANG Jiaqing, XIA Zhiguo, LIU Haikun, et al. The improvement of moisture resistance and thermal stability of Ca3SiO4Cl2: Eu2+ phosphor coated with SiO2 [J]. Applied Surface Science, 2011, 257(9): 4350-4353. |
47 | LIN Jing, HUANG Yang, ZHANG Jun, et al. Fabrication of BN nanosheets-coated SrAl2O4: Eu2+ as a new water-resistant phosphor by a one-pot method[J]. Materials Chemistry and Physics, 2008, 108(2/3): 440-444. |
48 | QI Tonggang, XIA Haofu, ZHANG Zhanhui, et al. Improved water resistance of SrAl2O4: Eu2+, Dy3+ phosphor directly achieved in a water-containing medium[J]. Solid State Sciences, 2017, 65: 88-94. |
49 | Lei LYU, CHEN Yuxian, YU Liting, et al. The improvement of moisture resistance and organic compatibility of SrAl2O4: Eu2+, Dy3+ persistent phosphors coated with silica-polymer hybrid shell[J]. Materials, 2020, 13(2): 426. |
50 | NAZAROV M. Artificial luminescence from the coral surface: study of a SrAl2O4: Eu2+, Dy3+-based phosphor[J]. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques, 2021, 15(5): 1102-1108. |
51 | WANG Wentong, SHA Aimin, LU Zhen, et al. Self-luminescent cement-based composite materials: properties and mechanisms[J]. Construction and Building Materials, 2021, 269: 121267. |
52 | WANG Wentong, SHA Aimin, LI Xinzhou, et al. Water resistance and luminescent thermal stability of SiO2 coated phosphor and self-luminous cement-based materials: view from the perspective of hydration balance[J]. Construction and Building Materials, 2022, 319: 126086. |
53 | WANG Wentong, SHA Aimin, LU Zhen, et al. Cement filled with phosphorescent materials for pavement: afterglow decay mechanism and properties[J]. Construction and Building Materials, 2021, 284: 122798. |
54 | SIKANDAR M A, AHMAD W, KHAN M H, et al. Effect of water resistant SiO2 coated SrAl2O4: Eu2+ Dy3+ persistent luminescence phosphor on the properties of Portland cement pastes[J]. Construction and Building Materials, 2019, 228: 116823. |
55 | MEI Yuehai, XU Hua, ZHANG Jiachi, et al. Design and spectral control of a novel ultraviolet emitting long lasting phosphor for assisting TiO2 photocatalysis: Zn2SiO4: Ga3+, Bi3+ [J]. Journal of Alloys and Compounds, 2015, 622: 908-912. |
56 | ZHANG Jian, LIU Zhiwu. Fabrication and characterization of Eu2+-doped lanthanum-magnesium-gallium/TiO2-based composition as photocatalytic materials for cement concrete-related methyl orange(MO) degradation[J]. Ceramics International, 2019, 45(8): 10342-10347. |
57 | HUANG Jinyong, QIN Ming, YU Juan, et al. La2MgTiO6: Eu2+/TiO2-based composite for methyl orange(MO) decomposition[J]. Applied Physics A, 2019, 125(12): 1-9. |
58 | ZHOU Juanjuan, HUANG Jian, XIA Yan, et al. Two-in-one ultraviolet persistent luminescent catalyst suitable for high concentration photodegradation[J]. Science of the Total Environment, 2020, 699: 134342. |
59 | DAI W B, LEI Y F, ZHOU J, et al. Near-infrared quantum-cutting and long-persistent phosphor Ca3Ga2Ge3O12: Pr3+, Yb3+ for application in in vivo bioimaging and dye-sensitized solar cells[J]. Journal of Alloys and Compounds, 2017, 726: 230-239. |
60 | PELLERIN M, GLAIS E, LECUYER T, et al. LaAlO3: Cr3+, Sm3+: Nano-perovskite with persistent luminescence for in vivo optical imaging[J]. Journal of Luminescence, 2018, 202: 83-88. |
61 | LI Zhanjun, HUANG Ling, ZHANG Yuanwei, et al. Near-infrared light activated persistent luminescence nanoparticles via upconversion[J]. Nano Research, 2017, 10(5): 1840-1846. |
62 | CHANG Chengkang, YUAN Zhaoxin, MAO Dali. Eu2+ activated long persistent strontium aluminate nano scaled phosphor prepared by precipitation method[J]. Journal of Alloys and Compounds, 2006, 415(1/2): 220-224. |
63 | ROJAS-HERNANDEZ R E, RUBIO-MARCOS F, RODRIGUEZ M Á, et al. Long lasting phosphors: SrAl2O4: Eu, Dy as the most studied material[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2759-2770. |
[1] | 陈培珠, 陈国华, 门金坤. 化工园区应急响应阶段应急救援与疏散双向路径规划[J]. 化工进展, 2022, 41(1): 503-512. |
[2] | 杨冬冬, 陈国明, 付建民, 师吉浩, 戴子良, 刘健. 海洋平台含硫化氢天然气泄漏爆炸连锁事故后果动态评估[J]. 化工进展, 2021, 40(11): 6393-6400. |
[3] | 杨丛林,沈湘黔,周建新 . 共沉淀–焙烧法制备球形铝酸锶粉体 [J]. 化工进展, 2006, 25(5): 573-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |