化工进展 ›› 2022, Vol. 41 ›› Issue (9): 5074-5084.DOI: 10.16085/j.issn.1000-6613.2021-2371
收稿日期:
2021-11-18
修回日期:
2022-02-07
出版日期:
2022-09-25
发布日期:
2022-09-27
通讯作者:
陈滢
作者简介:
杨程嵛(1998—),男,硕士研究生,研究方向为污水处理。E-mail:374424355@qq.com。
基金资助:
YANG Chengyu(), LIU Min, YUAN Lin, HU Xuan, CHEN Ying()
Received:
2021-11-18
Revised:
2022-02-07
Online:
2022-09-25
Published:
2022-09-27
Contact:
CHEN Ying
摘要:
通过优化制备条件,将竹基纤维素纳米纤丝(cellulose nanofibrils,CNFs)与聚酰胺环氧氯丙烷树脂(polyamide epichlorohydrin resin,PAE)进行交联,随后负载Fe(OH)3,得到了吸附废水中低浓度磷的新型复合材料CNFs-PAE-Fe。与其他交联剂相比,竹基纤维素纳米纤丝与PAE交联并负载后展现出更好的机械强度和吸附性能。通过BET比表面积测量、热重分析、FTIR、扫描电镜、XPS能谱分析,探究了交联负载Fe(OH)3前后材料的孔径、热稳定性、表面形貌、元素组成等。CNFs-PAE-Fe对磷的吸附符合准二级动力学模型和Langmuir等温吸附模型,这表明改性材料对磷的吸附过程是以化学吸附为主的单分子层吸附。CNFs-PAE-Fe在较宽的pH范围下对低浓度磷都保持着较好的吸附性能,当pH=4.0时吸附容量最高,达到9.11mg/g。对吸附饱和的改性材料进行再生研究,洗脱液V(NaCl)∶V(NaOH)配比为3∶2时再生效果最好。解吸后的材料经冷冻干燥,重复利用5次,仍保持较好的强度和完整的形貌。
中图分类号:
杨程嵛, 刘敏, 袁林, 胡璇, 陈滢. 竹基纤维素纳米纤丝交联改性后对水体中低浓度磷的吸附[J]. 化工进展, 2022, 41(9): 5074-5084.
YANG Chengyu, LIU Min, YUAN Lin, HU Xuan, CHEN Ying. Adsorption of low-concentration phosphorus after cross-linked modification of bamboo-based cellulose nanofibrils[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 5074-5084.
准一级 | 准二级 | Elovich | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
q1 | k1 | R2 | q2 | k2 | R2 | a | b | R2 | ||
7.97 | 0.005 | 0.989 | 9.70 | 5.589 | 0.995 | 0.11 | 0.47 | 0.993 |
表1 准一级、准二级与Elovich模型拟合参数
准一级 | 准二级 | Elovich | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
q1 | k1 | R2 | q2 | k2 | R2 | a | b | R2 | ||
7.97 | 0.005 | 0.989 | 9.70 | 5.589 | 0.995 | 0.11 | 0.47 | 0.993 |
第一阶段 | 第二阶段 | 第三阶段 | |||||
---|---|---|---|---|---|---|---|
k1 | R2 | k2 | R2 | k3 | R2 | ||
0.534 | 0.977 | 0.241 | 0.995 | 0.017 | 0.726 |
表2 颗粒内扩散模型拟合参数
第一阶段 | 第二阶段 | 第三阶段 | |||||
---|---|---|---|---|---|---|---|
k1 | R2 | k2 | R2 | k3 | R2 | ||
0.534 | 0.977 | 0.241 | 0.995 | 0.017 | 0.726 |
Langmuir | Freundlich | Temkin | Toth |
---|---|---|---|
qm=15.90 | Kf=6.22 | KT =7.33 | T=0.92 |
KL=1.00 | 1/nf=0.36 | bT =682.21 | bT =0.77 |
R2=0.998 | R2=0.961 | R2=0.978 | R2=0.983 |
表3 等温吸附模型拟合参数
Langmuir | Freundlich | Temkin | Toth |
---|---|---|---|
qm=15.90 | Kf=6.22 | KT =7.33 | T=0.92 |
KL=1.00 | 1/nf=0.36 | bT =682.21 | bT =0.77 |
R2=0.998 | R2=0.961 | R2=0.978 | R2=0.983 |
吸附材料 | C0/mg·L-1 | qe/mg·g-1 | 参考文献 |
---|---|---|---|
Al2O3/PVA改性材料 | 2.5 | 0.54~0.56 | [ |
Al2O3/CA改性材料 | 2.5 | 2.00~2.40 | [ |
Fe/Mn改性生物炭 | 0.5 | 0.91~0.94 | [ |
FeZr改性生物炭 | 10.0 | 7.50~10.00 | [ |
改性煤矸石 | 50.0 | 6.00~17.00 | [ |
CNFs-PAE-Fe | 1.0 10.0 50.0 | 5.59~8.68 14.76~15.83 32.36~47.20 | 本研究 |
表4 不同改性吸附材料在溶液pH=6.0~9.0时对磷的吸附容量
吸附材料 | C0/mg·L-1 | qe/mg·g-1 | 参考文献 |
---|---|---|---|
Al2O3/PVA改性材料 | 2.5 | 0.54~0.56 | [ |
Al2O3/CA改性材料 | 2.5 | 2.00~2.40 | [ |
Fe/Mn改性生物炭 | 0.5 | 0.91~0.94 | [ |
FeZr改性生物炭 | 10.0 | 7.50~10.00 | [ |
改性煤矸石 | 50.0 | 6.00~17.00 | [ |
CNFs-PAE-Fe | 1.0 10.0 50.0 | 5.59~8.68 14.76~15.83 32.36~47.20 | 本研究 |
1 | 马鑫雨, 杨盼, 张曼, 等. 湖泊沉积物磷钝化材料的研究进展[J]. 湖泊科学, 2022, 34(1): 1-17. |
MA Xinyu, YANG Pan, ZHANG Man, et al. Advances in researches on phosphorous inactivation materials in lake sediment[J]. Journal of Lake Sciences, 2022, 34(1): 1-17. | |
2 | WU Baile, FANG Liping, FORTNER John D, et al. Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4 nanocomposites[J]. Water Research, 2017, 126: 179-188. |
3 | 胡晓雅. 开发去除水体中低浓度磷的复合吸附材料[D]. 泉州: 华侨大学, 2018. |
HU Xiaoya. Development of composite adsorbents to remove low concentration of phosphorus in water[D]. Quanzhou: Huaqiao University, 2018. | |
4 | YAN Yubo, SUN Xiuyun, MA Fangbian, et al. Removal of phosphate from wastewater using alkaline residue[J]. Journal of Environmental Sciences, 2014, 26(5): 970-980. |
5 | 刘宁, 陈小光, 崔彦召, 等. 化学除磷工艺研究进展[J]. 化工进展, 2012, 31(7): 1597-1603. |
LIU Ning, CHEN Xiaoguang, CUI Yanzhao, et al. Research progress of chemical dephosphorization process[J]. Chemical Industry and Engineering Progress, 2012, 31(7): 1597-1603. | |
6 | 王文超, 张华, 张欣. 化学除磷在城市污水处理中的应用[J]. 水科学与工程技术, 2008(1): 14-16. |
WANG Wenchao, ZHANG Hua, ZHANG Xin. Chemical phosphorus removal in municipal wastewater[J]. Water Sciences and Engineering Technology, 2008(1): 14-16. | |
7 | 徐丰果, 罗建中, 凌定勋. 废水化学除磷的现状与进展[J]. 工业水处理, 2003, 23(5): 18-20. |
XU Fengguo, LUO Jianzhong, LING Dingxun. Present and prospects of the removal of phosphorus from wastewater chemically[J]. Industrial Water Treatment, 2003, 23(5): 18-20. | |
8 | SEO Byung Soo, PARK Chong Min, SONG Unsook, et al. Nitrate and phosphate removal potentials of three willow species and a bald cypress from eutrophic aquatic environment[J]. Landscape and Ecological Engineering, 2010, 6(2): 211-217. |
9 | SHI Jing, PODOLA Björn, MELKONIAN Michael. Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study[J]. Journal of Applied Phycology, 2007, 19(5): 417-423. |
10 | 李小林. La(OH)3负载的磁性阳离子水凝胶对水中低浓度磷的吸附特征及其放大制备研究[D]. 北京: 北京林业大学,2020 . |
LI Xiaolin. Study on the low concentration phosphate adsorption in aqueous solution by La(OH)3 loaded magnetic cationic hydrogel: performance, mechanism and adsorbent scale-up preparation[D]. Beijing: Beijing Forestry University, 2020 . | |
11 | GENZ Arne, Anja KORNMÜLLER, JEKEL Martin. Advanced phosphorus removal from membrane filtrates by adsorption on activated aluminium oxide and granulated ferric hydroxide[J]. Water Research, 2004, 38(16): 3523-3530. |
12 | 王秀云. 废水除磷技术的研究进展[J]. 安徽农学通报, 2009, 15(16): 92-93, 129. |
WANG Xiuyun. Study progress of phosphorus removal from wastewater[J]. Anhui Agricultural Science Bulletin, 2009, 15(16): 92-93, 129. | |
13 | 戴晓婧, 覃柳琪, 张杉杉, 等. 竹基纳米纤维素晶体稳定的Pickering乳液制备及其形态和稳定性研究[J]. 纤维素科学与技术, 2018, 26(4): 52-59. |
DAI Xiaojing, QIN Liuqi, ZHANG Shanshan, et al. Investigation of the morphology and stability of Pickering emulsion stabilized by bamboo cellulose nanocrystal[J]. Journal of Cellulose Science and Technology, 2018, 26(4): 52-59. | |
14 | 王汉坤. 竹基纳米纤维素的制备、表征及应用[D]. 北京: 中国林业科学研究院, 2013. |
WANG Hankun. Preparation, characterization and application of nano cellulose fibrils from bamboo[D]. Beijing: Chinese Academy of Forestry, 2013. | |
15 | 覃发梅, 邱学青, 孙川, 等. 纳米纤维素去除水体系重金属离子的研究进展[J]. 化工进展, 2019, 38(7): 3390-3401. |
QIN Famei, QIU Xueqing, SUN Chuan, et al. Research progress in nanocellulose for the removal of heavy metal ions in water[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3390-3401. | |
16 | TANG Juntao, SONG Yang, ZHAO Feiping, et al. Compressible cellulose nanofibril (CNF) based aerogels produced via a bio-inspired strategy for heavy metal ion and dye removal[J]. Carbohydrate Polymers, 2019, 208: 404-412. |
17 | CUI Guirong, LIU Min, CHEN Ying, et al. Synthesis of a ferric hydroxide-coated cellulose nanofiber hybrid for effective removal of phosphate from wastewater[J]. Carbohydrate Polymers, 2016, 154: 40-47. |
18 | 王婷庭, 刘敏, 崔桂榕, 等. 五种改性纳米纤维素吸附剂的制备及除磷性能比较[J]. 化工进展, 2017, 36(11): 4279-4285. |
WANG Tingting, LIU Min, CUI Guirong, et al. Preparation of several modified cellulose nanofiber hybrid adsorbents and performance comparison of phosphate removals[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4279-4285. | |
19 | LUO Ying, LIU Min, CHEN Ying, et al. Preparation and regeneration of iron-modified nanofibres for low-concentration phosphorus-containing wastewater treatment[J]. Royal Society Open Science, 2019, 6(9): 190764. |
20 | 董凤霞, 戴磊. 纤维素纳米纤丝基水凝胶及其在废水处理中的应用进展[J]. 中国造纸, 2020, 39(5): 63-69. |
DONG Fengxia, DAI Lei. Research progress on cellulose nanofibrils-based hydrogel and its application in wastewater treatment[J]. China Pulp & Paper, 2020, 39(5): 63-69. | |
21 | ZHANG Wei, ZHANG Yaan, LU Canhui, et al. Aerogels from crosslinked cellulose nano/micro-fibrils and their fast shape recovery property in water[J]. Journal of Materials Chemistry, 2012, 22(23): 11642-11650. |
22 | XU Zhaoyang, JIANG Xiangdong, ZHOU Huan, et al. Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)-cellulose nanofiber (CNF) aerogels as effective oil absorbents[J]. Cellulose, 2018, 25(2): 1217-1227. |
23 | 宋飞宇, 魏琪, 马浩, 等. 羧甲基半纤维素的制备及其与湿强剂PAE的联用[J]. 中国造纸, 2019, 38(3): 9-15. |
SONG Feiyu, WEI Qi, MA Hao, et al. Preparation of carboxymethyl hemicellulose and its application with polyamide epichlorohydrin resin as wet strength additive[J]. China Pulp & Paper, 2019, 38(3): 9-15. | |
24 | 关莹. 竹材半纤维素基软材料的制备及性能研究[D]. 北京: 北京林业大学, 2015. |
GUAN Ying. Preparation and properties of bamboo hemicellulose-based soft materials[D]. Beijing: Beijing Forestry University, 2015. | |
25 | LU Lanxin, LIU Min, CHEN Ying, et al. Effective removal of tetracycline antibiotics from wastewater using practically applicable iron(Ⅲ)-loaded cellulose nanofibres[J]. Royal Society Open Science, 2021, 8(8): 210336. |
26 | ZHANG Xiaofang, LU Zhixing, ZHAO Jiangqi, et al. Exfoliation/dispersion of low-temperature expandable graphite in nanocellulose matrix by wet co-milling[J]. Carbohydrate Polymers, 2017, 157: 1434-1441. |
27 | LI Qingye, XUE Zhouhang, ZHAO Jiangqi, et al. Mass production of high thermal conductive boron nitride/nanofibrillated cellulose composite membranes[J]. Chemical Engineering Journal, 2020, 383: 123101. |
28 | ZHANG Xiaofang, ZHAO Jiangqi, HE Xu, et al. Mechanically robust and highly compressible electrochemical supercapacitors from nitrogen-doped carbon aerogels[J]. Carbon, 2018, 127: 236-244. |
29 | 宋飞宇. 羧甲基半纤维素的制备及其与PAE湿强剂联用作用机制研究[D]. 广州: 华南理工大学, 2019. |
SONG Feiyu. Study on the preparation of carboxymethyl hemicellulose and the mechanism of its combination with PAE agent[D]. Guangzhou: South China University of Technology, 2019. | |
30 | AFRIDI Muhammad Naveed, LEE Won Hee, KIM Jong Oh. Application of synthesized bovine serum albumin-magnetic iron oxide for phosphate recovery[J]. Journal of Industrial and Engineering Chemistry, 2020, 86: 113-122. |
31 | MAHMOUD Esawy, BAROUDY Ahmed EL, Nehal ALI, et al. Spectroscopic studies on the phosphorus adsorption in salt-affected soils with or without nano-biochar additions[J]. Environmental Research, 2020, 184: 109277. |
32 | KIM Ju Hyeong, PARK Gi Dae, YANG Su Hyun, et al. Uniquely structured iron hydroxide-carbon nanospheres with yolk-shell and hollow structures and their excellent lithium-ion storage performances[J]. Applied Surface Science, 2021, 542: 148637. |
33 | LIU Fuyang, LI Junjia, LI Qiliang, et al. High pressure synthesis, structure, and multiferroic properties of two perovskite compounds Y2FeMnO6 and Y2CrMnO6 [J]. Dalton Transactions, 2014, 43(4): 1691-1698. |
34 | XIA Wenjing, GUO Lixin, YU Linqian, et al. Phosphorus removal from diluted wastewaters using a La/C nanocomposite-doped membrane with adsorption-filtration dual functions[J]. Chemical Engineering Journal, 2021, 405: 126924. |
35 | DENG Shubo, LIU Han, ZHOU Wei, et al. Mn-Ce oxide as a high-capacity adsorbent for fluoride removal from water[J]. Journal of Hazardous Materials, 2011, 186(2/3): 1360-1366. |
36 | JANG Hyun Min, YOO Seunghyun, CHOI Yong Keun, et al. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar[J]. Bioresource Technology, 2018, 259: 24-31. |
37 | 仇付国, 陈丽霞, 孙瑶, 等. 含铝活性炭污泥对磷的吸附特性研究[J]. 环境污染与防治, 2016, 38(5): 1-5, 11. |
QIU Fuguo, CHEN Lixia, SUN Yao, et al. Study of adsorption characteristics of phosphorus by aluminium-containing activated carbon sludge[J]. Environmental Pollution & Control, 2016, 38(5): 1-5, 11. | |
38 | 孙婷婷, 高菲, 林莉, 等. 复合金属改性生物炭对水体中低浓度磷的吸附性能[J]. 环境科学, 2020, 41(2): 784-791. |
SUN Tingting, GAO Fei, LIN Li, et al. Adsorption of low-concentration phosphorus from water by composite metal modified biochar[J]. Environmental Science, 2020, 41(2): 784-791. | |
39 | 郑宁捷, 唐登勇, 胡洁丽, 等. 混合改性芦苇生物炭对水中磷酸盐的吸附特性研究[J]. 中国农村水利水电, 2018(6): 97-101, 107. |
ZHENG Ningjie, TANG Dengyong, HU Jieli, et al. Study on the adsorption characteristics of mixed modified reed biochar on phosphate in water[J]. China Rural Water and Hydropower, 2018(6): 97-101, 107. | |
40 | 张梦瑶. 改性煤矸石吸附剂的制备及其去除水中磷的研究[D]. 成都: 西南交通大学, 2020. |
ZHANG Mengyao. Preparation of modified coal gangue adsorbent and study on phosphorus removal in water[D]. Chengdu: Southwest Jiaotong University,2020 . | |
41 | NING Ping, BART Hans Jörg, LI Bing, et al. Phosphate removal from wastewater by model-La(Ⅲ) zeolite adsorbents[J]. Journal of Environmental Sciences, 2008, 20(6): 670-674. |
[1] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[2] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[3] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[4] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[5] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[6] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[7] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[8] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[9] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[10] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[11] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[12] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[13] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[14] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[15] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |