化工进展 ›› 2022, Vol. 41 ›› Issue (8): 4357-4366.DOI: 10.16085/j.issn.1000-6613.2021-2101
杨瑜锴(), 夏永鹏, 徐芬(), 孙立贤(), 管彦洵, 廖鹿敏, 李亚莹, 周天昊, 劳剑浩, 王瑜, 王颖晶
收稿日期:
2021-10-11
修回日期:
2021-11-28
出版日期:
2022-08-25
发布日期:
2022-08-22
通讯作者:
徐芬,孙立贤
作者简介:
杨瑜锴(1997—),男,硕士研究生,研究方向为相变储热材料。E-mail:基金资助:
YANG Yukai(), XIA Yongpeng, XU Fen(), SUN Lixian(), GUAN Yanxun, LIAO Lumin, LI Yaying, ZHOU Tianhao, LAO Jianhao, WANG Yu, WANG Yingjing
Received:
2021-10-11
Revised:
2021-11-28
Online:
2022-08-25
Published:
2022-08-22
Contact:
XU Fen,SUN Lixian
摘要:
赤藓糖醇具有较高的相变焓、无毒以及优异的热稳定性,作为综合性能较好的中温相变储能材料被广泛研究。但是,赤藓糖醇在相变过程中存在易泄漏、过冷度大以及导热性能较差的缺点,导致其热能的利用效率不高,极大地限制了其作为储热材料的应用。本文综述了近年来在解决赤藓糖醇相变储热材料易泄漏、过冷度高和热导率低等问题的研究进展。赤藓糖醇定型复合相变储热材料的制备方法主要有共混压制法、静电纺丝法、微胶囊法及多孔材料吸附法等,可根据不同制备方法采取相应复合策略以达到对其封装定型、降低过冷度和提高热导率的目的。最后认为未来对赤藓糖醇复合相变储热材料的研究除了解决其本身存在的热性能问题,还需对其进行功能化,以拓展其应用前景。
中图分类号:
杨瑜锴, 夏永鹏, 徐芬, 孙立贤, 管彦洵, 廖鹿敏, 李亚莹, 周天昊, 劳剑浩, 王瑜, 王颖晶. 赤藓糖醇相变储热材料研究进展[J]. 化工进展, 2022, 41(8): 4357-4366.
YANG Yukai, XIA Yongpeng, XU Fen, SUN Lixian, GUAN Yanxun, LIAO Lumin, LI Yaying, ZHOU Tianhao, LAO Jianhao, WANG Yu, WANG Yingjing. Research progress of erythritol phase change materials for thermal storage[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4357-4366.
相变材料 | 熔点 /℃ | 过冷度 /℃ | 结晶焓 /J·g-1 | 熔融焓 /J·g-1 | 参考 文献 |
---|---|---|---|---|---|
赤藓糖醇四肉豆蔻酸酯 | 20.88 | 3.82 | 201 | 200 | [ |
赤藓糖醇四月桂酸酯 | 30.35 | 1.55 | 207 | 208 | [ |
赤藓糖醇四棕榈酸酯 | 21.93 | 3.14 | 200.7 | 201.1 | [ |
赤藓糖醇四硬脂酸酯 | 30.35 | 1.56 | 207.1 | 208.8 | [ |
表1 酯化法制得赤藓糖醇复合PCMs的热力学性能
相变材料 | 熔点 /℃ | 过冷度 /℃ | 结晶焓 /J·g-1 | 熔融焓 /J·g-1 | 参考 文献 |
---|---|---|---|---|---|
赤藓糖醇四肉豆蔻酸酯 | 20.88 | 3.82 | 201 | 200 | [ |
赤藓糖醇四月桂酸酯 | 30.35 | 1.55 | 207 | 208 | [ |
赤藓糖醇四棕榈酸酯 | 21.93 | 3.14 | 200.7 | 201.1 | [ |
赤藓糖醇四硬脂酸酯 | 30.35 | 1.56 | 207.1 | 208.8 | [ |
相变材料 | 熔点/℃ | 过冷度/℃ | 结晶焓/J·g-1 | 熔融焓/J·g-1 | 参考文献 |
---|---|---|---|---|---|
赤藓糖醇(Ery) | 122.8 | 90.3 | 224.2 | 349.9 | [ |
Ery/15% 膨胀石墨 | 98 | 28 | — | 198.3 | [ |
Ery/2% 纳米GO | 118.95 | 68.61 | 207.4 | 305.3 | [ |
Ery/2% 纳米SiO2 | 120.25 | 63.20 | 220.30 | 297.30 | [ |
Ery/1% HPN-20E | 120.97 | 52.3 | 192.8 | 288.3 | [ |
Ery/1% CaPi | 124.38 | 52.08 | 202.7 | 288.7 | [ |
Ery/1% TMB-5 | 118.33 | 59.25 | 185.3 | 254.7 | [ |
Ery/36.3% 聚硅氧烷/1.5% CMC/3% 纳米α-Al2O3 | 121.2 | 15.8 | 213.3 | 206.9 | [ |
Ery/36% 海泡石/8% 石墨烯纳米片 | — | 32 | 167 | 168 | [ |
Ery/1% 石墨烯纳米颗粒 | 120.01 | 56.97 | 252.8 | 338.6 | [ |
Ery/6% 三维金属石墨烯网络 | 118.31 | 54 | — | 302 | [ |
Ery/35.3% ORCF | 118.8 | 26.7 | — | — | [ |
Ery/0.5% 酸处理MWCNTs | 120 | 59 | 265 | 350 | [ |
Ery/38% 碳泡沫 | 98 | 54 | — | 217.2 | [ |
表2 非均相成核法制得的赤藓糖醇复合PCMs的热力学性能
相变材料 | 熔点/℃ | 过冷度/℃ | 结晶焓/J·g-1 | 熔融焓/J·g-1 | 参考文献 |
---|---|---|---|---|---|
赤藓糖醇(Ery) | 122.8 | 90.3 | 224.2 | 349.9 | [ |
Ery/15% 膨胀石墨 | 98 | 28 | — | 198.3 | [ |
Ery/2% 纳米GO | 118.95 | 68.61 | 207.4 | 305.3 | [ |
Ery/2% 纳米SiO2 | 120.25 | 63.20 | 220.30 | 297.30 | [ |
Ery/1% HPN-20E | 120.97 | 52.3 | 192.8 | 288.3 | [ |
Ery/1% CaPi | 124.38 | 52.08 | 202.7 | 288.7 | [ |
Ery/1% TMB-5 | 118.33 | 59.25 | 185.3 | 254.7 | [ |
Ery/36.3% 聚硅氧烷/1.5% CMC/3% 纳米α-Al2O3 | 121.2 | 15.8 | 213.3 | 206.9 | [ |
Ery/36% 海泡石/8% 石墨烯纳米片 | — | 32 | 167 | 168 | [ |
Ery/1% 石墨烯纳米颗粒 | 120.01 | 56.97 | 252.8 | 338.6 | [ |
Ery/6% 三维金属石墨烯网络 | 118.31 | 54 | — | 302 | [ |
Ery/35.3% ORCF | 118.8 | 26.7 | — | — | [ |
Ery/0.5% 酸处理MWCNTs | 120 | 59 | 265 | 350 | [ |
Ery/38% 碳泡沫 | 98 | 54 | — | 217.2 | [ |
相变材料 | 熔融焓 /J·g-1 | 热导率 /W·m-1·K-1 | 参考 文献 |
---|---|---|---|
赤藓糖醇(Ery) | 340 | 0.73 | [ |
Ery/20% 蛭石/10% 石墨 | 216.7 | 1.31 | [ |
Ery/15% 膨胀石墨 | 198.3 | 15.01 | [ |
Ery/10% PVA/4% 纳米SiO2 | 250.1 | 1.55 | [ |
Ery/1% 石墨烯纳米颗粒 | 338.6 | 1.122 | [ |
Ery/2.6% UGF-CNT | — | 4.09 | [ |
Ery/6% 三维金属石墨烯网络 | 302 | 3.2 | [ |
Ery/0.5% A-MWCNTs | 360 | 0.98 | [ |
Ery/40% 镍粉 | — | 4.09 | [ |
Ery/13% 甘露醇/10% 膨胀石墨 | 257.5 | 1.66 | [ |
Ery/42.2% 铝 | — | 30 | [ |
Ery/15% 多孔镍 | 389 | 11.6 | [ |
Ery/10% 短碳纤维 | 340 | 3.92 | [ |
Ery/25% 石墨烯泡沫 | 251 | 3.77 | [ |
Ery/14.4% 碳纤维片 | 283.1 | 24.4 | [ |
表3 赤藓糖醇基复合PCMs的导热性
相变材料 | 熔融焓 /J·g-1 | 热导率 /W·m-1·K-1 | 参考 文献 |
---|---|---|---|
赤藓糖醇(Ery) | 340 | 0.73 | [ |
Ery/20% 蛭石/10% 石墨 | 216.7 | 1.31 | [ |
Ery/15% 膨胀石墨 | 198.3 | 15.01 | [ |
Ery/10% PVA/4% 纳米SiO2 | 250.1 | 1.55 | [ |
Ery/1% 石墨烯纳米颗粒 | 338.6 | 1.122 | [ |
Ery/2.6% UGF-CNT | — | 4.09 | [ |
Ery/6% 三维金属石墨烯网络 | 302 | 3.2 | [ |
Ery/0.5% A-MWCNTs | 360 | 0.98 | [ |
Ery/40% 镍粉 | — | 4.09 | [ |
Ery/13% 甘露醇/10% 膨胀石墨 | 257.5 | 1.66 | [ |
Ery/42.2% 铝 | — | 30 | [ |
Ery/15% 多孔镍 | 389 | 11.6 | [ |
Ery/10% 短碳纤维 | 340 | 3.92 | [ |
Ery/25% 石墨烯泡沫 | 251 | 3.77 | [ |
Ery/14.4% 碳纤维片 | 283.1 | 24.4 | [ |
1 | MIN P, LIU J, LI X F, et al. Thermally conductive phase change composites featuring anisotropic graphene aerogels for real-time and fast-charging solar-thermal energy conversion[J]. Advanced Functional Materials, 2018, 28(51): 1805365. |
2 | CHEN X, GAO H Y, TANG Z D, et al. Optimization strategies of composite phase change materials for thermal energy storage, transfer, conversion and utilization[J]. Energy & Environmental Science, 2020, 13(12): 4498-4535. |
3 | LEFEBVRE D, TEZEL F H. A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications[J]. Renewable and Sustainable Energy Reviews, 2017, 67: 116-125. |
4 | CHEN X, GAO H Y, HAI G T, et al. Carbon nanotube bundles assembled flexible hierarchical framework based phase change material composites for thermal energy harvesting and thermotherapy[J]. Energy Storage Materials, 2020, 26: 129-137. |
5 | CHEN X, TANG Z D, GAO H Y, et al. Phase change materials for electro-thermal conversion and storage: from fundamental understanding to engineering design[J]. iScience, 2020, 23(6): 101208. |
6 | LI Z X, AL-RASHED A A A A, ROSTAMZADEH M, et al. Heat transfer reduction in buildings by embedding phase change material in multi-layer walls: effects of repositioning, thermophysical properties and thickness of PCM[J]. Energy Conversion and Management, 2019, 195: 43-56. |
7 | ALVA G, LIN Y X, FANG G Y. An overview of thermal energy storage systems[J]. Energy, 2018, 144: 341-378. |
8 | QIU J C, HUO D, XIA Y N. Phase-change materials for controlled release and related applications[J]. Advanced Materials, 2020, 32(25): e2000660. |
9 | CHEN X, TANG Z D, LIU P P, et al. Smart utilization of multifunctional metal oxides in phase change materials[J]. Matter, 2020, 3(3): 708-741. |
10 | WU S F, YAN T, KUAI Z H, et al. Thermal conductivity enhancement on phase change materials for thermal energy storage: a review[J]. Energy Storage Materials, 2020, 25: 251-295. |
11 | PEREIRA DA CUNHA J, EAMES P. Thermal energy storage for low and medium temperature applications using phase change materials—A review[J]. Applied Energy, 2016, 177: 227-238. |
12 | 周四丽, 张正国, 方晓明. 固-固相变储热材料的研究进展[J]. 化工进展, 2021, 40(3): 1371-1383. |
ZHOU Sili, ZHANG Zhengguo, FANG Xiaoming. Research progress of solid-solid phase change materials for thermal energy storage[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1371-1383. | |
13 | AFTAB W, HUANG X Y, WU W H, et al. Nanoconfined phase change materials for thermal energy applications[J]. Energy & Environmental Science, 2018, 11(6): 1392-1424. |
14 | 林文珠, 凌子夜, 方晓明, 等. 相变储热的传热强化技术研究进展[J]. 化工进展, 2021, 40(9): 5166-5179. |
LIN Wenzhu, LING Ziye, FANG Xiaoming, et al. Research progress on heat transfer of phase change material heat storage technology[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 5166-5179. | |
15 | XUE F, QI X D, HUANG T, et al. Preparation and application of three-dimensional filler network towards organic phase change materials with high performance and multi-functions[J]. Chemical Engineering Journal, 2021, 419: 129620. |
16 | SHARMA R K, GANESAN P, TYAGI V V, et al. Developments in organic solid-liquid phase change materials and their applications in thermal energy storage[J]. Energy Conversion and Management, 2015, 95: 193-228. |
17 | ZHANG N, YUAN Y P, CAO X L, et al. Latent heat thermal energy storage systems with solid-liquid phase change materials: a review[J]. Advanced Engineering Materials, 2018, 20(6): 1700753. |
18 | WEI G S, WANG G, XU C, et al. Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2018, 81: 1771-1786. |
19 | PIELICHOWSKA K, PIELICHOWSKI K. Phase change materials for thermal energy storage[J]. Progress in Materials Science, 2014, 65: 67-123. |
20 | YANG L, JIN X, ZHANG Y, et al. Recent development on heat transfer and various applications of phase-change materials[J]. Journal of Cleaner Production, 2021, 287: 124432. |
21 | DIARCE G, GANDARIAS I, CAMPOS-CELADOR Á, et al. Eutectic mixtures of sugar alcohols for thermal energy storage in the 50—90℃ temperature range[J]. Solar Energy Materials and Solar Cells, 2015, 134: 215-226. |
22 | NAKANO K, MASUDA Y, DAIGUJI H. Crystallization and melting behavior of erythritol in and around two-dimensional hexagonal mesoporous silica[J]. The Journal of Physical Chemistry C, 2015, 119(9): 4769-4777. |
23 | 马超, 王静, 冀志江, 等. 赤藓糖醇基复合相变材料的研究进展[J]. 材料导报, 2021, 35(11): 11180-11187, 11208. |
MA Chao, WANG Jing, JI Zhijiang, et al. A review of erythritol-based composite phase change materials[J]. Materials Reports, 2021, 35(11): 11180-11187, 11208. | |
24 | CHEN X, CHENG P, TANG Z D, et al. Carbon-based composite phase change materials for thermal energy storage, transfer, and conversion[J]. Advanced Science, 2021, 8(9): 2001274. |
25 | CHAI S Y, SUN K Y, ZHAO D H, et al. Form-stable erythritol/HDPE composite phase change material with flexibility, tailorability, and high transition enthalpy[J]. ACS Applied Polymer Materials, 2020, 2(11): 4464-4471. |
26 | SHKATULOV A, RYU J, KATO Y, et al. Composite material “Mg(OH)2/vermiculite”: a promising new candidate for storage of middle temperature heat[J]. Energy, 2012, 44(1): 1028-1034. |
27 | LENG G H, QIAO G, XU G Z, et al. Erythritol-Vermiculite form-stable phase change materials for thermal energy storage[J]. Energy Procedia, 2017, 142: 3363-3368. |
28 | YUAN M D, REN Y X, XU C, et al. Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage[J]. Renewable Energy, 2019, 136: 211-222. |
29 | KE H Z, GHULAM M U H, LI Y G, et al. Ag-coated polyurethane fibers membranes absorbed with quinary fatty acid eutectics solid-liquid phase change materials for storage and retrieval of thermal energy[J]. Renewable Energy, 2016, 99: 1-9. |
30 | CHE H S, CHEN Q Q, ZHONG Q, et al. The effects of nanoparticles on morphology and thermal properties of erythritol/polyvinyl alcohol phase change composite fibers[J]. e-Polymers, 2018, 18(4): 321-329. |
31 | ZHANG J, NARH C, LYU P, et al. Preparation of novel form-stable composite phase change materials with porous silica nanofibrous mats for thermal storage/retrieval[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 570: 1-10. |
32 | NIU Z X, YUAN W Z. Smart nanocomposite nonwoven wearable fabrics embedding phase change materials for highly efficient energy conversion-storage and use as a stretchable conductor[J]. ACS Applied Materials & Interfaces, 2021, 13(3): 4508-4518. |
33 | CHEN C Z, WANG L G, HUANG Y. Morphology and thermal properties of electrospun fatty acids/polyethylene terephthalate composite fibers as novel form-stable phase change materials[J]. Solar Energy Materials and Solar Cells, 2008, 92(11): 1382-1387. |
34 | GRAHAM M, SMITH J, BILTON M, et al. Highly stable energy capsules with nano-SiO2 Pickering shell for thermal energy storage and release[J]. ACS Nano, 2020, 14(7): 8894-8901. |
35 | WANG Y, QIN Z Y, ZHANG T, et al. Effect of encapsulation and additives doping on the thermophysical properties of erythritol for thermal energy storage[J]. Journal of Renewable and Sustainable Energy, 2020, 12(2): 024103. |
36 | HUANG X B, CHEN X, LI A, et al. Shape-stabilized phase change materials based on porous supports for thermal energy storage applications[J]. Chemical Engineering Journal, 2019, 356: 641-661. |
37 | GAO H Y, WANG J J, CHEN X, et al. Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: a review[J]. Nano Energy, 2018, 53: 769-797. |
38 | LYU J, LI G Y, LIU M N, et al. Aerogel-directed energy-storage films with thermally stimulant multiresponsiveness[J]. Langmuir, 2019, 35(4): 943-949. |
39 | ZHOU X F, XIAO H N, FENG J, et al. Preparation, properties and thermal control applications of silica aerogel infiltrated with solid-liquid phase change materials[J]. Journal of Experimental Nanoscience, 2012, 7(1): 17-26. |
40 | NOMURA T, OKINAKA N, AKIYAMA T. Impregnation of porous material with phase change material for thermal energy storage[J]. Materials Chemistry and Physics, 2009, 115(2/3): 846-850. |
41 | FENG N R, KANG Z, HU D Y. Shape-stabilized and antibacterial composite phase change materials based on wood-based cellulose micro-framework, erythritol-urea or erythritol-thiourea for thermal energy storage[J]. Solar Energy, 2021, 223: 19-32. |
42 | QIN X, FENG N R, KANG Z, et al. Construction of wood-based cellulose micro-framework composite form-stable multifunctional materials with thermal and electrical response via incorporating erythritol-urea (thiourea)-carbon nanotubes[J]. International Journal of Biological Macromolecules, 2021, 184: 538-550. |
43 | ADACHI T, DAUDAH D, TANAKA G. Effects of supercooling degree and specimen size on supercooling duration of erythritol[J]. ISIJ International, 2014, 54(12): 2790-2795. |
44 | PALOMO DEL BARRIO E, CADORET R, DARANLOT J, et al. New sugar alcohols mixtures for long-term thermal energy storage applications at temperatures between 70℃ and 100℃[J]. Solar Energy Materials and Solar Cells, 2016, 155: 454-468. |
45 | DIARCE G, QUANT L, CAMPOS-CELADOR Á, et al. Determination of the phase diagram and main thermophysical properties of the erythritol-urea eutectic mixture for its use as a phase change material[J]. Solar Energy Materials and Solar Cells, 2016, 157: 894-906. |
46 | SARI A, KARAIPEKLI A, EROĞLU R, et al. Erythritol tetra myristate and erythritol tetra laurate as novel phase change materials for low temperature thermal energy storage[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2013, 35(14): 1285-1295. |
47 | SARI A, KARAIPEKLI A. Fatty acid esters-based composite phase change materials for thermal energy storage in buildings[J]. Applied Thermal Engineering, 2012, 37: 208-216. |
48 | YANG B, WANG N, SONG Y W, et al. Study on the improvement of supercooling and thermal properties of erythritol-based phase change energy storage materials[J]. Renewable Energy, 2021, 175: 80-97. |
49 | 舒梨. 赤藓糖醇基复合相变材料的制备及性能研究[D]. 长沙: 长沙理工大学, 2019: 15-19. |
SHU Li. Preparation and properties research of erythritol based composite phase change materials[D]. Changsha: Changsha University of Science and Technology, 2019: 15-19. | |
50 | ZENG J L, ZHOU L, ZHANG Y F, et al. Effects of some nucleating agents on the supercooling of erythritol to be applied as phase change material[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(3): 1291-1299. |
51 | CUI W L, YUAN Y P, SUN L L, et al. Experimental studies on the supercooling and melting/freezing characteristics of nano-copper/sodium acetate trihydrate composite phase change materials[J]. Renewable Energy, 2016, 99: 1029-1037. |
52 | USHAK S, GUTIERREZ A, BARRENECHE C, et al. Reduction of the subcooling of bischofite with the use of nucleatings agents[J]. Solar Energy Materials and Solar Cells, 2016, 157: 1011-1018. |
53 | WANG Y, LI S, ZHANG T, et al. Supercooling suppression and thermal behavior improvement of erythritol as phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2017, 171: 60-71. |
54 | TAN N, XIE T, FENG Y, et al. Preparation and characterization of erythritol/sepiolite/exfoliated graphite nanoplatelets form-stable phase change material with high thermal conductivity and suppressed supercooling[J]. Solar Energy Materials and Solar Cells, 2020, 217: 110726. |
55 | VIVEKANANTHAN M, AMIRTHAM V A. Characterisation and thermophysical properties of graphene nanoparticles dispersed erythritol PCM for medium temperature thermal energy storage applications[J]. Thermochimica Acta, 2019, 676: 94-103. |
56 | KHOLMANOV I, KIM J, OU E, et al. Continuous carbon nanotube-ultrathin graphite hybrid foams for increased thermal conductivity and suppressed subcooling in composite phase change materials[J]. ACS Nano, 2015, 9(12): 11699-11707. |
57 | HEU C S, KIM S W, LEE K S, et al. Fabrication of three-dimensional metal-graphene network phase change composite for high thermal conductivity and suppressed subcooling phenomena[J]. Energy Conversion and Management, 2017, 149: 608-615. |
58 | LI X X, ZHANG J Y, FU B W, et al. Erythritol impregnated within surface-roughened hydrophilic metal foam for medium-temperature solar-thermal energy harvesting[J]. Energy Conversion and Management, 2020, 222: 113241. |
59 | SHEN S L, TAN S J, WU S, et al. The effects of modified carbon nanotubes on the thermal properties of erythritol as phase change materials[J]. Energy Conversion and Management, 2018, 157: 41-48. |
60 | LI J F, LU W, LUO Z P, et al. Thermal performance enhancement of erythritol/carbon foam composites via surface modification of carbon foam[J]. IOP Conference Series: Materials Science and Engineering, 2017, 182: 012009. |
61 | NOMURA T, TABUCHI K, ZHU C Y, et al. High thermal conductivity phase change composite with percolating carbon fiber network[J]. Applied Energy, 2015, 154: 678-685. |
62 | NARENDRAN S, MYLAVARAPU N, REDDY P B, et al. Enhancement of thermal conductivity using nickel powder in artificial sweetener as phase change material[J]. AIP Conference Proceedings, 2019, 2161(1): 020011. |
63 | ZENG J L, CHEN Y H, SHU L, et al. Preparation and thermal properties of exfoliated graphite/erythritol/mannitol eutectic composite as form-stable phase change material for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2018, 178: 84-90. |
64 | NOMURA T, ZHU C Y, NAN S, et al. High thermal conductivity phase change composite with a metal-stabilized carbon-fiber network[J]. Applied Energy, 2016, 179: 1-6. |
65 | LIU L K, SU D, TANG Y J, et al. Thermal conductivity enhancement of phase change materials for thermal energy storage: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 305-317. |
66 | CHENG P, CHEN X, GAO H Y, et al. Different dimensional nanoadditives for thermal conductivity enhancement of phase change materials: fundamentals and applications[J]. Nano Energy, 2021, 85: 105948. |
67 | ZHANG P, XIAO X, MA Z W. A review of the composite phase change materials: fabrication, characterization, mathematical modeling and application to performance enhancement[J]. Applied Energy, 2016, 165: 472-510. |
68 | ZHANG L, ZHOU K C, WEI Q, et al. Thermal conductivity enhancement of phase change materials with 3D porous diamond foam for thermal energy storage[J]. Applied Energy, 2019, 233/234: 208-219. |
69 | SHENG N, DONG K X, ZHU C Y, et al. Thermal conductivity enhancement of erythritol phase change material with percolated aluminum filler[J]. Materials Chemistry and Physics, 2019, 229: 87-91. |
70 | XIAO X, ZHANG P, LI M. Preparation and thermal characterization of paraffin/metal foam composite phase change material[J]. Applied Energy, 2013, 112: 1357-1366. |
71 | OYA T, NOMURA T, OKINAKA N, et al. Phase change composite based on porous nickel and erythritol[J]. Applied Thermal Engineering, 2012, 40: 373-377. |
72 | TONG X, LI N Q, ZENG M, et al. Organic phase change materials confined in carbon-based materials for thermal properties enhancement: recent advancement and challenges[J]. Renewable and Sustainable Energy Reviews, 2019, 108: 398-422. |
73 | LEE S Y, SHIN H K, PARK M, et al. Thermal characterization of erythritol/expanded graphite composites for high thermal storage capacity[J]. Carbon, 2014, 68: 67-72. |
74 | LI B X, NIE S B, HAO Y G, et al. Stearic-acid/carbon-nanotube composites with tailored shape-stabilized phase transitions and light-heat conversion for thermal energy storage[J]. Energy Conversion and Management, 2015, 98: 314-321. |
75 | 沈世乐. 赤藓糖醇复合相变材料的制备与性能研究[D]. 南京: 南京航空航天大学, 2018: 25-40. |
SHEN Shile. The preparation and research of erythritol composite phase change material[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018: 25-40. | |
76 | LI G Y, HONG G, DONG D P, et al. Multiresponsive graphene-aerogel-directed phase-change smart fibers[J]. Advanced Materials, 2018, 30(30): e1801754. |
77 | UMAIR M M, ZHANG Y A, ZHANG S F, et al. A novel flexible phase change composite with electro-driven shape memory, energy conversion/storage and motion sensing properties[J]. Journal of Materials Chemistry A, 2019, 7(46): 26385-26392. |
78 | YU S, JEONG S G, CHUNG O, et al. Bio-based PCM/carbon nanomaterials composites with enhanced thermal conductivity[J]. Solar Energy Materials and Solar Cells, 2014, 120: 549-554. |
79 | ZHANG Q, LUO Z L, GUO Q L, et al. Preparation and thermal properties of short carbon fibers/erythritol phase change materials[J]. Energy Conversion and Management, 2017, 136: 220-228. |
80 | KARTHIK M, FAIK A, BLANCO-RODRÍGUEZ P, et al. Preparation of erythritol-graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications[J]. Carbon, 2015, 94: 266-276. |
81 | DONG K X, SHENG N, ZOU D Q, et al. A high-thermal-conductivity, high-durability phase-change composite using a carbon fibre sheet as a supporting matrix[J]. Applied Energy, 2020, 264: 114685. |
[1] | 于治国. 基于定型结构相变储热模块小区供热的智慧控制系统[J]. 化工进展, 2022, 41(S1): 168-176. |
[2] | 张瑞瑞, 王宁, 高志, 于晓慧, 杨宾. 赤藻糖醇/甘露醇过冷特性分析[J]. 化工进展, 2022, 41(6): 2959-2966. |
[3] | 张文杰, 吴畏, 李松泽, 张子健, 衣雪梅. 温室用Na2SO4·10H2O-Na2HPO4·12H2O复合定形相变材料制备及性能[J]. 化工进展, 2022, 41(2): 920-929. |
[4] | 蒯子函, 闫霆, 吴韶飞, 周宇翔, 潘卫国. 硬脂醇/膨胀石墨复合相变材料的制备及储热性能[J]. 化工进展, 2021, 40(S1): 301-310. |
[5] | 周四丽, 张正国, 方晓明. 固-固相变储热材料的研究进展[J]. 化工进展, 2021, 40(3): 1371-1383. |
[6] | 汪翔,章学来,华维三,郑灵钰,刘璐,喻彩梅. Na2HPO4•12H2O相变储能复合材料制备及热物性[J]. 化工进展, 2019, 38(12): 5457-5464. |
[7] | 周鑫晨,章学来,华维三,郑钦月. 增稠剂对NH4Al(SO4)2·12H2O蓄放热性能的影响[J]. 化工进展, 2019, 38(10): 4520-4533. |
[8] | 张永一川, 章学来, 徐笑锋, 刘璐. Na2S2O3·5H2O复合材料的制备及循环稳定性能[J]. 化工进展, 2019, 38(07): 3304-3310. |
[9] | 张秀, 谢锐, 汪伟, 巨晓洁, 刘壮, 褚良银. 豆荚结构聚乙烯醇缩丁醛/氧化铝复合相变纤维的制备及性能[J]. 化工进展, 2019, 38(02): 993-999. |
[10] | 康培, 胡翠英, 鞠鑫, 姚雪梅, 陈佳佳, 郭伟强, 李良智. 铜离子与葡萄糖协同补料对球头三型孢菌产赤藓糖醇的影响[J]. 化工进展, 2018, 37(12): 4830-4836. |
[11] | 韩兴超, 章学来, 华维三, 袁维烨, 汪翔. 成核剂对相变材料Ba(OH)2·8H2O储热特性的影响[J]. 化工进展, 2018, 37(07): 2727-2733. |
[12] | 刘圣春, 姜婷婷, 董紫腾. 纯水和氯化钠溶液凝固过程的实验研究[J]. 化工进展, 2016, 35(S2): 68-74. |
[13] | 吴崇珍, 高书亚, 张丽. 聚氨酯预聚体增韧改性酚醛泡沫塑料[J]. 化工进展, 2016, 35(04): 1144-1148. |
[14] | 温国清, 谢锐, 巨晓洁, 汪伟, 刘壮, 褚良银. 多壁碳纳米管/聚乙烯醇缩丁醛复合相变纤维的制备与性能[J]. 化工进展, 2015, 34(10): 3688-3692,3718. |
[15] | 盛青青,章学来,葛轶群. 十二水磷酸氢二钠的相变性能 [J]. 化工进展, 2008, 27(6): 900-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |