化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2526-2536.DOI: 10.16085/j.issn.1000-6613.2021-1241
熊路1(), 石磊1, 王闻宇1(), 金欣2, 牛家嵘1, 朱正涛1,3, 林童1,4
收稿日期:
2021-06-15
修回日期:
2021-07-24
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
王闻宇
作者简介:
熊路(1996—),女,硕士研究生,主要研究方向为单向导水/导油材料。E-mail: 基金资助:
XIONG Lu1(), SHI Lei1, WANG Wenyu1(), JIN Xin2, NIU Jiarong1, ZHU Zhengtao1,3, LIN Tong1,4
Received:
2021-06-15
Revised:
2021-07-24
Online:
2022-05-05
Published:
2022-05-24
Contact:
WANG Wenyu
摘要:
近年来,具有独特的自发性液体运动的单向导水/油材料已成为研究热点。单向导水/油多孔材料是一种可用于雾水收集、油水分离、微流体传输以及功能织物等各种领域的新型材料。与普通的均匀润湿性多孔材料相比,具有单向液体传输特性的三维多孔材料通过表面和厚度方向的润湿性梯度精确设计,可以提供驱动力,促进液体的定向输送,提高液体传输效率,且能减少能源消耗。本文主要从化学梯度的调控、粗糙度梯度的构造、孔径梯度的设计这三种思路出发,按八种不同制备方法详细介绍了基于润湿性梯度的单向导水/油多孔材料的制备、输送液体的类型以及单向传输特性,同时概述了单向导水/油多孔材料在吸湿排汗纺织品、雾收集、油水分离等方面的实际应用,并提出了单向导水/油多孔材料在设计和使用方面所面临的挑战和未来发展前景。
中图分类号:
熊路, 石磊, 王闻宇, 金欣, 牛家嵘, 朱正涛, 林童. 基于润湿性梯度设计的单向导水/油多孔材料研究进展[J]. 化工进展, 2022, 41(5): 2526-2536.
XIONG Lu, SHI Lei, WANG Wenyu, JIN Xin, NIU Jiarong, ZHU Zhengtao, LIN Tong. Progress in unidirectional water/oil transport porous materials based on design of wettability gradient[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2526-2536.
1 | PARKER A R, LAWRENCE C R. Water capture by a desert beetle[J]. Nature, 2001, 414(6859): 33-34. |
2 | LIU M J, WANG S T, WEI Z X, et al. Bioinspired design of a superoleophobic and low adhesive water/solid interface[J]. Advanced Materials, 2009, 21(6): 665-669. |
3 | JU J, BAI H, ZHENG Y M, et al. A multi-structural and multi-functional integrated fog collection system in cactus[J]. Nature Communications, 2012, 3: 1247. |
4 | CHEN H W, ZHANG P F, ZHANG L W, et al. Continuous directional water transport on the peristome surface of Nepenthes alata [J]. Nature, 2016, 532(7597): 85-89. |
5 | ZHENG Y M, BAI H, HUANG Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. |
6 | JU J, XIAO K, YAO X, et al. Bioinspired conical copper wire with gradient wettability for continuous and efficient fog collection[J]. Advanced Materials, 2013, 25(41): 5937-5942. |
7 | WHITE B, SARKAR A, KIETZIG A M. Fog-harvesting inspired by the Stenocara beetle—An analysis of drop collection and removal from biomimetic samples with wetting contrast[J]. Applied Surface Science, 2013, 284: 826-836. |
8 | LI K, JU J, XUE Z X, et al. Structured cone arrays for continuous and effective collection of micron-sized oil droplets from water[J]. Nature Communications, 2013, 4: 2276. |
9 | MIAO D Y, HUANG Z, WANG X F, et al. Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles[J]. Small, 2018, 14(32): 1801527. |
10 | ZHOU H, WANG H X, NIU H T, et al. One-way water-transport cotton fabrics with enhanced cooling effect[J]. Advanced Materials Interfaces, 2016, 3(17): 1600283. |
11 | GUPTA P, KANDASUBRAMANIAN B. Directional fluid gating by Janus membranes with heterogeneous wetting properties for selective oil-water separation[J]. ACS Applied Materials & Interfaces, 2017, 9(22): 19102-19113. |
12 | WANG H X, ZHOU H, NIU H T, et al. Dual-layer superamphiphobic/superhydrophobic-oleophilic nanofibrous membranes with unidirectional oil-transport ability and strengthened oil-water separation performance[J]. Advanced Materials Interfaces, 2015, 2(4): 1400506. |
13 | DU M, ZHAO Y, TIAN Y, et al. Electrospun multiscale structured membrane for efficient water collection and directional transport[J]. Small, 2016, 12(8): 1000-1005. |
14 | BUCHBERGER G, HISCHEN F, COMANNS P, et al. Bio-inspired microfluidic devices for passive, directional liquid transport: model-based adaption for different materials[J]. Procedia Engineering, 2015, 120: 106-111. |
15 | CAO M Y, LI K, DONG Z C, et al. Superhydrophobic “pump”: continuous and spontaneous antigravity water delivery[J]. Advanced Functional Materials, 2015, 25(26): 4114-4119. |
16 | ZENG C, WANG H X, ZHOU H, et al. Directional water transport fabrics with durable ultra-high one-way transport capacity[J]. Advanced Materials Interfaces, 2016, 3(14): 1600036. |
17 | ZHAO Y, WANG H X, ZHOU H, et al. Directional fluid transport in thin porous materials and its functional applications[J]. Small, 2017, 13(4): 1601070. |
18 | SU B, TIAN Y, JIANG L. Bioinspired interfaces with superwettability: from materials to chemistry[J]. Journal of the American Chemical Society, 2016, 138(6): 1727-1748. |
19 | WEN L P, TIAN Y, JIANG L. Bioinspired super-wettability from fundamental research to practical applications[J]. Angewandte Chemie International Edition, 2015, 54(11):3387-3399. |
20 | WANG H X, DING J, DAI L M, et al. Directional water-transfer through fabrics induced by asymmetric wettability[J]. Journal of Materials Chemistry, 2010, 20(37): 7938-7940. |
21 | KONG Y, LIU Y Y, XIN J H. Fabrics with self-adaptive wettability controlled by “light-and-dark”[J]. Journal of Materials Chemistry, 2011, 21(44): 17978-17987. |
22 | ZHU R F, LIU M M, HOU Y Y, et al. Biomimetic fabrication of Janus fabric with asymmetric wettability for water purification and hydrophobic/hydrophilic patterned surfaces for fog harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 50113-50125. |
23 | ZHOU H, WANG H X, NIU H T, et al. Superphobicity/philicity Janus fabrics with switchable, spontaneous, directional transport ability to water and oil fluids[J]. Scientific Reports, 2013, 3: 2964. |
24 | WANG H X, ZHOU H, YANG W D, et al. Selective, spontaneous one-way oil-transport fabrics and their novel use for gauging liquid surface tension[J]. ACS Applied Materials & Interfaces, 2015, 7(41): 22874-22880. |
25 | FU S D, ZHOU H, WANG H X, et al. Superhydrophilic, underwater directional oil-transport fabrics with a novel oil trapping function[J]. ACS Applied Materials & Interfaces, 2019, 11(30): 27402-27409. |
26 | WANG Z C, YANG J L, DAI X D, et al. An integrated Janus porous membrane with controllable under-oil directional water transport and fluid gating property for oil/water emulsion separation[J]. Journal of Membrane Science, 2021, 627: 119229. |
27 | SENTHILKUMAR P, KARTHIK T. Effect of Argon plasma treatment variables on wettability and antibacterial properties of polyester fabrics[J]. Journal of the Institution of Engineers (India): Series E, 2016, 97(1): 19-29. |
28 | WANG C X, REN Y, LYU J C, et al. In situ synthesis of silver nanoparticles on the cotton fabrics modified by plasma induced vapor phase graft polymerization of acrylic acid for durable multifunction[J]. Applied Surface Science, 2017, 396: 1840-1848. |
29 | TIAN X L, JIN H, SAINIO J, et al. Droplet and fluid gating by biomimetic Janus membranes[J]. Advanced Functional Materials, 2014, 24(38): 6023-6028. |
30 | SUN F X, CHEN Z Q, ZHU L C, et al. Directional trans-planar and different in-plane water transfer properties of composite structured bifacial fabrics modified by a facile three-step plasma treatment[J]. Coatings, 2017, 7(8): 132. |
31 | XU J H, XIN B J, WANG C, et al. Tailoring double-layered fibrous mat of modified polypropylene/cotton fabric for the function of directional moisture transport[J]. Journal of Applied Polymer Science, 2020, 137(47): 49530. |
32 | SEDDON A M, CASEY D, LAW R V, et al. Drug interactions with lipid membranes[J]. Chemical Society Reviews, 2009, 38(9): 2509-2519. |
33 | CHENG Z J, WANG B H, LAI H, et al. Janus copper mesh film with unidirectional water transportation ability toward high efficiency oil/water separation[J]. Chemistry - an Asian Journal, 2017, 12(16): 2085-2092. |
34 | SI Y F, CHEN L W, YANG F C, et al. Stable Janus superhydrophilic/hydrophobic nickel foam for directional water transport[J]. Journal of Colloid and Interface Science, 2018, 509: 346-352. |
35 | YANG X B, WANG Z X, SHAO L. Construction of oil-unidirectional membrane for integrated oil collection with lossless transportation and oil-in-water emulsion purification[J]. Journal of Membrane Science, 2018, 549: 67-74. |
36 | YANG X B, YAN L L, RAN F T, et al. Interface-confined surface engineering constructing water-unidirectional Janus membrane[J]. Journal of Membrane Science, 2019, 576: 9-16. |
37 | WANG Z J, WANG Y, LIU G J. Rapid and efficient separation of oil from oil-in-water emulsions using a Janus cotton fabric[J]. Angewandte Chemie, 2016, 128(4): 1313-1316. |
38 | ZHANG C, HE S, WANG D F, et al. Facile fabricate a bioinspired Janus membrane with heterogeneous wettability for unidirectional water transfer and controllable oil-water separation[J]. Journal of Materials Science, 2018, 53(20): 14398-14411. |
39 | XU J H, ZHANG F L, XIN B J, et al. Application of surface wettability modified polypropylene nonwoven in Janus composite fibrous mats for the function of directional water transport[J]. Polymers for Advanced Technologies, 2019, 30(12): 3038-3048. |
40 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
41 | KIM J H, SUNG S J, HWANG D K. Electrospray coating of a TiO2 electrode for dye-sensitized solar cells by a post-treatment method[J]. Applied Mechanics and Materials, 2014, 705: 51-55. |
42 | ISLAM S, JADHAV A, FANG J, et al. Surface deposition of chitosan on wool substrate by electrospraying[J]. Advanced Materials Research, 2011, 331: 165-170. |
43 | LIU H, HUANG J Y, LI F Y, et al. Multifunctional superamphiphobic fabrics with asymmetric wettability for one-way fluid transport and templated patterning[J]. Cellulose, 2017, 24(2): 1129-1141. |
44 | WANG H J, WANG W Y, WANG H, et al. One-way water transport fabrics based on roughness gradient structure with no low surface energy substances[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32792-32800. |
45 | LI Y R, JIN X, ZHENG Y D, et al. Tunable water delivery in carbon-coated fabrics for high-efficiency solar vapor generation[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 46938-46946. |
46 | WANG H X, NIU H T, ZHOU H, et al. Multifunctional directional water transport fabrics with moisture sensing capability[J]. ACS Applied Materials & Interfaces, 2019, 11(25): 22878-22884. |
47 | YIN K, YANG S, DONG X R, et al. Robust laser-structured asymmetrical PTFE mesh for underwater directional transportation and continuous collection of gas bubbles[J]. Applied Physics Letters, 2018, 112(24): 243701. |
48 | JIAO Y L, LI C Z, WU S Z, et al. Switchable underwater bubble wettability on laser-induced titanium multiscale micro-/nanostructures by vertically crossed scanning[J]. ACS Applied Materials & Interfaces, 2018, 10(19): 16867-16873. |
49 | YIN K, DU H F, DONG X R, et al. A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection[J]. Nanoscale, 2017, 9(38): 14620-14626. |
50 | YIN K, YANG S, DONG X R, et al. Ultrafast achievement of a superhydrophilic/hydrophobic Janus foam by femtosecond laser ablation for directional water transport and efficient fog harvesting[J]. ACS Applied Materials & Interfaces, 2018, 10(37): 31433-31440. |
51 | TIAN X L, LI J, WANG X. Anisotropic liquid penetration arising from a cross-sectional wettability gradient[J]. Soft Matter, 2012, 8(9): 2633. |
52 | SHOU D H, FAN J T. Design of nanofibrous and microfibrous channels for fast capillary flow[J]. Langmuir, 2018, 34(4): 1235-1241. |
53 | WU J, WANG N, WANG L, et al. Unidirectional water-penetration composite fibrous film via electrospinning[J]. Soft Matter, 2012, 8(22): 5996. |
54 | WU J, ZHOU H, WANG H X, et al. Novel water harvesting fibrous membranes with directional water transport capability[J]. Advanced Materials Interfaces, 2019, 6(5): 1801529. |
55 | DONG Y L, KONG J H, PHUA S L, et al. Tailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push–pull effects for moisture wicking[J]. ACS Applied Materials & Interfaces, 2014, 6(16): 14087-14095. |
56 | YAN W A, MIAO D Y, AHMED BABAR A, et al. Multi-scaled interconnected inter- and intra-fiber porous Janus membranes for enhanced directional moisture transport[J]. Journal of Colloid and Interface Science, 2020, 565: 426-435. |
57 | AHMED BABAR A, MIAO D Y, ALI N, et al. Breathable and colorful cellulose acetate-based nanofibrous membranes for directional moisture transport[J]. ACS Applied Materials & Interfaces, 2018, 10(26): 22866-22875. |
58 | AHMED BABAR A, ZHAO X L, WANG X F, et al. One-step fabrication of multi-scaled, inter-connected hierarchical fibrous membranes for directional moisture transport[J]. Journal of Colloid and Interface Science, 2020, 577: 207-216. |
59 | ZHANG Y, LI T T, REN H T, et al. Fabrication of polyacrylonitrile/polyvinyl alcohol-TPU with highly breathable, permeable performances for directional water transport Janus fibrous membranes by sandwich structural design[J]. Journal of Sandwich Structures & Materials, 2021, 23(7): 2817-2831. |
60 | MCCULLOH K A, SPERRY J S, ADLER F R. Water transport in plants obeys Murray’s law[J]. Nature, 2003, 421(6926): 939-942. |
61 | WANG X F, HUANG Z, MIAO D Y, et al. Biomimetic fibrous Murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2019, 13(2): 1060-1070. |
62 | JIA M, LIU H C, YANG G, et al. Biomimetic porous nanofiber-based oil pump for spontaneous oil directional transport and collection[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16887-16894. |
63 | ZHAO C Q, ZHANG P C, GU Z D, et al. Superspreading-based fabrication of asymmetric porous PAA-g-PVDF membranes for efficient water flow gating[J]. Advanced Materials Interfaces, 2016, 3(20): 1600615. |
[1] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[2] | 张哲, 郎元路, 陈佳楠, 吴巧燕, 计宏伟, 李星泊, 马妍, 陶柳倩, 王瑾悦. 固体表面温度对冻结液滴的相变过程与表面润湿特性的影响[J]. 化工进展, 2022, 41(9): 4605-4617. |
[3] | 孙娜娜, 孙会娜, 沈莉莎, 苏瑞宇, 赵超. 磁性纳米颗粒-微波辐射对稠油O/W乳状液的协同破乳[J]. 化工进展, 2022, 41(6): 3127-3137. |
[4] | 张石重, 陈占秀, 刘峰瑞, 庞润宇, 王清. 纳米结构表面液体沸腾传热的分子动力学模拟[J]. 化工进展, 2022, 41(5): 2311-2321. |
[5] | 山林娜, 杨振生, 燕国飞, 李春利, 李浩, 王志英. 基于多巴胺亲水改性下Janus膜的制备及其油水乳液分离[J]. 化工进展, 2022, 41(12): 6500-6510. |
[6] | 杨鹏, 胡士松, 刘广飞, 张伟, 孙东亮, 宇波. Ni/Ag微纳结构强化顶部连通型微通道沸腾换热[J]. 化工进展, 2021, 40(5): 2526-2535. |
[7] | 洪文鹏, 兰景瑞, 李浩然, 陈小龙, 李艳. 十四酸铜超疏水表面的溶剂热法制备及其润湿性[J]. 化工进展, 2021, 40(12): 6574-6580. |
[8] | 刘紫洋, 秦振平, 崔素萍, 贾萌萌, 安全福, 王乃鑫, 刘燕, 郭红霞. 有机溶剂纳滤膜的润湿性对渗透和分离性能的影响[J]. 化工进展, 2020, 39(7): 2715-2723. |
[9] | 苗瑞灿, 张石重, 陈占秀, 杨历. 受限纳米通道内气泡核化的分子动力学模拟[J]. 化工进展, 2020, 39(5): 1641-1648. |
[10] | 刘晓真, 张泰, 肖长发. 疏水亲油分离膜的润湿性研究进展[J]. 化工进展, 2020, 39(11): 4516-4528. |
[11] | 张石重, 陈占秀, 杨历, 苗瑞灿, 张子剑. 不同润湿表面液体沸腾的分子动力学模拟[J]. 化工进展, 2020, 39(10): 3892-3899. |
[12] | 于樱迎,唐瑾晨,胡学功. 电场对竖直矩形微槽群润湿及表面温度的影响[J]. 化工进展, 2020, 39(1): 26-33. |
[13] | 窦梦迪,丁雪洁,刘雯欣,张伟,鲁墨弘,李明时,朱劼. 表面润湿性可控的碳纳米管负载钯催化剂及其在1,8-二硝基萘选择性加氢中的催化性能[J]. 化工进展, 2020, 39(1): 181-189. |
[14] | 李原,狄勤丰,华帅,张景楠,叶峰,王文昌. 纳米流体对储层润湿性反转提高石油采收率研究进展[J]. 化工进展, 2019, 38(08): 3612-3620. |
[15] | 何雨, 周文斌, 胡学功, 张桂英. 超亲水微纳复合结构表面热沉强化润湿与传热实验[J]. 化工进展, 2019, 38(06): 2641-2648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |