化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2511-2525.DOI: 10.16085/j.issn.1000-6613.2021-1106
方宇飞1(), 丁冬海1(), 肖国庆1, 付鹏程1, 种小川1, 朱现峰2
收稿日期:
2021-05-25
修回日期:
2021-08-17
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
丁冬海
作者简介:
方宇飞(1997—),男,硕士研究生,研究方向为结构陶瓷。E-mail:基金资助:
FANG Yufei1(), DING Donghai1(), XIAO Guoqing1, FU Pengcheng1, ZHONG Xiaochuan1, ZHU Xianfeng2
Received:
2021-05-25
Revised:
2021-08-17
Online:
2022-05-05
Published:
2022-05-24
Contact:
DING Donghai
摘要:
深层、低渗透、高闭合压力储层将是未来油气田水力压裂的主要区域,陶粒支撑剂因在水力压裂作业中起到支撑裂缝、提高导流率、增加油气产量的作用而备受关注。随着高品位铝矾土资源日渐枯竭,低铝质原料成为制备陶粒支撑剂的主要原料,目前主要包括低品位铝矾土、硅铝质固体废弃物以及其他材料。本文在总结大量文献的基础上,阐述了低铝质原料制备陶粒支撑剂所具有的优势以及存在强度不足的缺陷。之后针对这一问题,文章提出了覆膜增强和添加剂增强两种增强方式,系统讨论了预固化覆膜增强、可固化覆膜增强、液相助熔增强和畸化晶格增强对陶粒支撑剂强度的影响,总结出针对于不同原料制备、不同应用环境下的陶粒支撑剂最佳的增强方式。最后对陶粒支撑剂未来潜在发展方向进行了展望。
中图分类号:
方宇飞, 丁冬海, 肖国庆, 付鹏程, 种小川, 朱现峰. 陶粒支撑剂的研究及应用进展[J]. 化工进展, 2022, 41(5): 2511-2525.
FANG Yufei, DING Donghai, XIAO Guoqing, FU Pengcheng, ZHONG Xiaochuan, ZHU Xianfeng. Progress in academic and application researches on ceramic proppant[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2511-2525.
69 | TIAN Yuming, ZHU Baoshun, LI Guomin, et al. Influence of coal gangue amount on properties of ceramic proppants[J]. Journal of the Chinese Ceramic Society, 2019, 47(3): 365-369. |
70 | 翟冠杰, 陈杰, 娄永国. 高掺量粉煤灰烧结陶粒的试制[J]. 粉煤灰, 2008, 20(1): 42-43. |
ZHAI Guanjie, CHEN Jie, LOU Yongguo. Development of sintered ceamisite with high volume fly ash[J]. Coal Ash China, 2008, 20(1): 42-43. | |
71 | 贾旭楠. 支撑剂的研究现状及展望[J]. 石油化工应用, 2017, 36(9): 1-6. |
JIA Xunan. Overview of the proppant development and prospect[J]. Petrochemical Industry Application, 2017, 36(9): 1-6. | |
72 | 汪婧. 树脂覆膜的支撑剂的专利发展情况[J]. 广东化工, 2015, 42(12): 126-127. |
WANG Jing. Patents technical review of resin coated proppants[J]. Guangdong Chemical Industry, 2015, 42(12): 126-127. | |
73 | 李小刚, 廖梓佳, 杨兆中, 等. 表面改性技术在压裂支撑剂领域的应用[J]. 硅酸盐通报, 2018, 37(9): 2841-2844. |
LI Xiaogang, LIAO Zijia, YANG Zhaozhong, et al. Research on surface modified fracturing proppants[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(9): 2841-2844. | |
74 | ZOVEIDAVIANPOOR M, GHARIBI A. Application of polymers for coating of proppant in hydraulic fracturing of subterraneous formations: a comprehensive review[J]. Journal of Natural Gas Science and Engineering, 2015, 24: 197-209. |
75 | ZHU Z Y, XIANG K L, ZHAO Y Z, et al. Research on a coated method for ceramic proppant[J]. Materials Science Forum, 2016, 847: 527-531. |
76 | 程倩倩, 李娜, 张琳羚, 等. 新型覆膜支撑剂研究进展[J]. 热固性树脂, 2020, 35(6): 66-70. |
1 | QUEIPO N V, VERDE A J, CANELÓN J, et al. Efficient global optimization for hydraulic fracturing treatment design[J]. Journal of Petroleum Science and Engineering, 2002, 35(3/4): 151-166. |
2 | DAVIES R J, MATHIAS S A, MOSS J, et al. Hydraulic fractures: how far can they go?[J]. Marine and Petroleum Geology, 2012, 37(1): 1-6. |
3 | REINICKE A, RYBACKI E, STANCHITS S, et al. Hydraulic fracturing stimulation techniques and formation damage mechanisms—Implications from laboratory testing of tight sandstone-proppant systems[J]. Geochemistry, 2010, 70: 107-117. |
4 | AL-MUNTASHERI G A. A critical review of hydraulic-fracturing fluids for moderate to ultralow-permeability formations over the last decade[J]. SPE Production Operations, 2014, 29(4): 243-260 |
5 | 邹才能, 翟光明, 张光亚, 等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1): 13-25. |
ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1): 13-25. | |
6 | 邹才能, 杨智, 张国生, 等. 常规-非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发, 2014, 41(1): 14-25. |
ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Conventional and unconventional petroleum “orderly accumulation”: concept and practical significance[J]. Petroleum Exploration and Development, 2014, 41(1): 14-25. | |
7 | 张雪芬, 陆现彩, 张林晔, 等. 页岩气的赋存形式研究及其石油地质意义[J]. 地球科学进展, 2010, 25(6): 597-604. |
ZHANG Xuefen, LU Xiancai, ZHANG Linye, et al. Occurrences of shale gas and their petroleum geological significance[J]. Advances in Earth Science, 2010, 25(6): 597-604. | |
8 | LIANG F, SAYED M, AL-MUNTASHERI G A, et al. A comprehensive review on proppant technologies[J]. Petroleum, 2016, 2(1): 26-39. |
9 | HELLMANN J R, SCHEETZ B E, LUSCHER W G, et al. Proppants for shale gas and oil recovery: engineering ceramics for stimulation of unconventional energy resources[J]. American Ceramic Society Bulletin, 2014, 93(1): 28-35. |
10 | LUTYŃSKI M, JANUS D, ZIMNY M. Comparison of selected properties of natural and ceramic proppants used in hydraulic fracturing technologies[J]. Inzynieria Mineralna, 2015, 2015(2): 299-303. |
11 | KULKARNI M C, OCHOA O O. Mechanics of light weight proppants: a discrete approach[J]. Composites Science and Technology, 2012, 72(8): 879-885. |
12 | 杨双春, 佟双鱼, 李东胜, 等. 低密度支撑剂研究进展[J]. 化工进展, 2019, 38(9): 4264-4274. |
YANG Shuangchun, TONG Shuangyu, LI Dongsheng, et al. Advances in low-density proppant research[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4264-4274. | |
13 | REN Y H, REN Q, WU X L, et al. Mechanism of low temperature sintered high-strength ferric-rich ceramics using bauxite tailings[J]. Materials Chemistry and Physics, 2019, 238: 121929. |
14 | JI H P, FANG M H, HUANG Z H, et al. Effect of La2O3 additives on the strength and microstructure of mullite ceramics obtained from coal gangue and γ-Al2O3 [J]. Ceramics International, 2013, 39(6): 6841-6846. |
15 | ZHANG Y Y, XU L, SEETHARAMAN S, et al. Effects of chemistry and mineral on structural evolution and chemical reactivity of coal gangue during calcination: towards efficient utilization[J]. Materials and Structures, 2015, 48(9): 2779-2793. |
16 | MA S H, WEN Z G, CHEN J N, et al. An environmentally friendly design for low-grade diasporic-bauxite processing[J]. Minerals Engineering, 2009, 22(9/10): 793-798. |
17 | 曾凡辉, 郭建春, 刘恒, 等. 北美页岩气高效压裂经验及对中国的启示[J]. 西南石油大学学报(自然科学版), 2013, 35(6): 90-98. |
ZENG Fanhui, GUO Jianchun, LIU Heng, et al. Experience of efficient fracturing of shale gas in North America and enlightenment to China[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(6): 90-98. | |
18 | 吴振东, 叶建东. 添加剂对氧化铝陶瓷的烧结和显微结构的影响[J]. 兵器材料科学与工程, 2002, 25(1): 68-72. |
WU Zhendong, YE Jiandong. Effects of additives on sintering behavior and microstructure of Al2O3 [J]. Ordnance Material Science and Engineering, 2002, 25(1): 68-72. | |
19 | 郭子娴, 陈前林, 喻芳芳. 高强度低密度陶粒支撑剂的研究[J]. 中国陶瓷, 2013, 49(3): 44-47. |
GUO Zixian, CHEN Qianlin, YU Fangfang. Research on high-strength light-weight ceramic proppant[J]. China Ceramics, 2013, 49(3): 44-47. | |
20 | 中国石化集团胜利石油管理局. 压裂支撑剂性能指标及测试方法: Q/ [S]. 2013. |
Sinopec Shengli Oilfield Administration. Fracturing proppant performance indicators and measurements: Q/ [S]. 2013. | |
21 | 赵金洲, 彭瑀, 李勇明, 等. 高排量反常砂堵现象及对策分析[J]. 天然气工业, 2013, 33(4): 56-60. |
ZHAO Jinzhou, PENG Yu, LI Yongming, et al. Abnormal sand plug phenomenon at a high injection rate and relevant solutions[J]. Natural Gas Industry, 2013, 33(4): 56-60. | |
22 | 光新军, 王敏生, 韩福伟, 等. 压裂支撑剂新进展与发展方向[J]. 钻井液与完井液, 2019, 36(5): 529-533, 541. |
76 | CHENG Qianqian, LI Na, ZHANG Linling, et al. Research progress of new coated proppants[J]. Thermosetting Resin, 2020, 35(6): 66-70. |
77 | SHINBACH M P, CULLER S R, THURBER E L, et al. Low density proppant particles and use thereof: US7845409[P]. 2010-12-07. |
22 | GUANG Xinjun, WANG Minsheng, HAN Fuwei, et al. Proppants for fracturing fluids: new progress made and direction of future development[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 529-533, 541. |
23 | 曲占庆, 曹彦超, 郭天魁, 等. 一种超低密度支撑剂的可用性评价[J]. 石油钻采工艺, 2016, 38(3): 372-377. |
QU Zhanqing, CAO Yanchao, GUO Tiankui, et al. Evaluation on applicability of an ultra-low-density proppant[J]. Oil Drilling & Production Technology, 2016, 38(3): 372-377. | |
24 | 张伟民, 李宗田, 李庆松, 等. 高强度低密度树脂覆膜陶粒研究[J]. 油田化学, 2013, 30(2): 189-192, 220. |
ZHANG Weimin, LI Zongtian, LI Qingsong, et al. Study on high strength and low density resin coated ceramic proppants[J]. Oilfield Chemistry, 2013, 30(2): 189-192, 220. | |
25 | 李小刚, 杨兆中, 梁知, 等. 深埋煤层气藏水力压裂增产技术探讨[J]. 天然气与石油, 2011, 29(6): 46-48. |
LI Xiaogang, YANG Zhaozhong, LIANG Zhi, et al. Discussion on hydraulic fracturing for deep buried CBM[J]. Natural Gas and Oil, 2011, 29(6): 46-48. | |
26 | 何满潮, 谢和平, 彭苏萍, 等. 深部开采岩体力学研究[J]. 岩石力学与工程学报, 2005, 24(16): 2803-2813. |
HE Manchao, XIE Heping, PENG Suping, et al. Study on rock mechanics in deep mining engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(16): 2803-2813. | |
27 | COULTER G R, WELLS R D. The advantages of high proppant concentration in fracture stimulation[J]. Journal of Petroleum Technology, 1972, 24(6): 643-650. |
28 | 梁天成, 才博, 蒙传幼, 等. 水力压裂支撑剂性能对导流能力的影响[J]. 断块油气田, 2021, 28(3): 403-407. |
LIANG Tiancheng, CAI Bo, MENG Chuanyou, et al. The effect of proppant performance of hydraulic fracturing on conductivity[J]. Fault-Block Oil & Gas Field, 2021, 28(3): 403-407. | |
29 | 俞绍诚. 陶粒支撑剂和兰州压裂砂长期裂缝导流能力的评价[J]. 石油钻采工艺, 1987, 9(5): 93-100. |
YU Shaocheng. Evaluation of long-term fracture conductivity of ceramic proppant and Lanzhou fracturing sand[J]. Oil Drilling & Production Technology, 1987, 9(5): 93-100. | |
78 | 谢晓康, 牛三鑫, 张涛, 等. 以ZnO作添加剂覆膜陶粒支撑剂的制备与性能研究[J]. 应用化工, 2020, 49(5): 1179-1182. |
XIE Xiaokang, NIU Sanxin, ZHANG Tao, et al. Preparation and properties of ceramic proppant with ZnO as additive[J]. Applied Chemical Industry, 2020, 49(5): 1179-1182. | |
79 | 范承贵, 解发生, 马建民. 树脂涂层砂在压裂上的应用[J]. 石油钻采工艺, 1989, 11(3): 93-98. |
FAN Chenggui, XIE Fasheng, MA Jianmin. Application of resin coated sand in fracturing[J]. Oil Drilling & Production Technology, 1989, 11(3): 93-98. | |
80 | 郭宗艳, 姚晓, 马雪. 多孔莫来石基低密度高强度支撑剂的制备及性能[J]. 石油钻探技术, 2013, 41(2): 39-43. |
GUO Zongyan, YAO Xiao, MA Xue. Preparation and properties of porous mullite base low-density high-strength proppants[J]. Petroleum Drilling Techniques, 2013, 41(2): 39-43. | |
81 | 海书杰. 油页岩渣制备石油支撑剂的研究[D]. 武汉: 中国地质大学, 2010. |
Shujie HAI. Preparation of petroleum proppant from oil-shale-dreg[D]. Wuhan: China University of Geosciences, 2010. | |
82 | 谭晓华, 丁磊, 胥伟冲, 等. 覆膜支撑剂导气阻水效果可视化试验研究[J]. 石油钻探技术, 2021, 49(3): 117-123. |
TAN Xiaohua, DING Lei, XU Weichong, et al. Research on visualization experiment of the gas conduction and water blocking effects of coated proppants[J]. Petroleum Drilling Techniques, 2021, 49(3): 117-123. | |
83 | AZEEZ A A, RHEE K Y, PARK S J, et al. Epoxy clay nanocomposites-processing, properties and applications: a review[J]. Composites Part B: Engineering, 2013, 45(1): 308-320. |
84 | BHATTACHARYA M. Polymer nanocomposites—A comparison between carbon nanotubes, graphene, and clay as nanofillers[J]. Materials, 2016, 9(4): 262. |
85 | KAUSAR A. Advances in polymer/fullerene nanocomposite: a review on essential features and applications[J]. Polymer-Plastics Technology and Engineering, 2017, 56(6): 594-605. |
86 | LEE D, SONG S H, HWANG J, et al. Enhanced mechanical properties of epoxy nanocomposites by mixing noncovalently functionalized boron nitride nanoflakes[J]. Small, 2013, 9(15): 2602-2610. |
87 | 辛军, 郭建春, 赵金洲, 等. 控制支撑剂回流技术新进展[J]. 断块油气田, 2008, 15(5): 99-102. |
XIN Jun, GUO Jianchun ZHAO Jinzhou, et al. New progress in technology of controlling proppant flowback[J]. Fault-Block Oil & Gas Field, 2008, 15(5): 99-102. | |
88 | CHEN X D, LI T H, REN Q, et al. Fabrication and morphology control of high strength lightweight mullite whisker network[J]. Journal of Alloys and Compounds, 2017, 729: 285-292. |
89 | KONG X C, TIAN Y M, CHAI Y S, et al. Effects of pyrolusite additive on the microstructure and mechanical strength of corundum-mullite ceramics[J]. Ceramics International, 2015, 41(3): 4294-4300. |
90 | MOLISANI A L, GOLDENSTEIN H, YOSHIMURA H N. The role of CaO additive on sintering of aluminum nitride ceramics[J]. Ceramics International, 2017, 43(18): 16972-16979. |
91 | 赵隽, 王文奇. 消除二次莫来石的关键仍在预烧[J]. 景德镇陶瓷, 1989(1): 22-25. |
ZHAO Jun, WANG Wenqi. The key to eliminate secondary mullite is still presintering [J]. Jingdezhen’s Ceramics, 1989(1): 22-25. | |
92 | 马雪, 姚晓, 华苏东, 等. MnO2和Fe2O3对氧化铝质压裂支撑剂微观结构和抗破碎能力的影响[J].硅酸盐学报, 2009(2): 280-284. |
MA Xue, YAO Xiao, HUA Sudong, et al. Effects of MnO2 and Fe2O3 on microstructure and crush resistance of alumina matrix fracturing proppant[J]. Journal of the Chinese Ceramic Society, 2009, 37(2): 280-284. | |
93 | KIM J M, KIM H S. Processing and properties of a glass-ceramic from coal fly ash from a thermal power plant through an economic process[J]. Journal of the European Ceramic Society, 2004, 24(9): 2825-2833. |
94 | TARTAJ J, MESSING G L. Effect of the addition of α-Fe2O3 on the microstructural development of boehmite-derived alumina[J]. Journal of Materials Science Letters, 1997, 16(2): 168-170. |
95 | TZING W H, TUAN W H. Exaggerated grain growth in Fe-doped Al2O3 [J]. Journal of Materials Science Letters, 1999, 18(14): 1115-1117. |
96 | ILIĆ S, ZEC S, MILJKOVIĆ M, et al. Sol-gel synthesis and characterization of iron doped mullite[J]. Journal of Alloys and Compounds, 2014, 612: 259-264. |
97 | HAN S C, YOON D Y, BRUN M K. Migration of grain boundaries in alumina induced by chromia addition[J]. Acta Metallurgica et Materialia, 1995, 43(3): 977-984. |
98 | HIRATA T, AKIYAMA K, YAMAMOTO H. Sintering behavior of Cr2O3-Al2O3 ceramics[J]. Journal of the European Ceramic Society, 2000, 20(2): 195-199. |
99 | PARTYKA J J. Wear resistance of crystals of corundum doped with Cr2O3, TiO2, and CoO[J]. Journal of the European Ceramic Society, 1997, 17(13): 1597-1612. |
100 | 高峰, 吴尧鹏, 刘军, 等. 铬铁矿掺杂对压裂支撑剂结构与性能的影响[J]. 无机材料学报, 2013, 28(9): 1019-1024. |
GAO Feng, WU Yaopeng, LIU Jun, et al. Effects of chromite additive on the microstructure and performance of bauxite-based fracturing proppant[J]. Journal of Inorganic Materials, 2013, 28(9): 1019-1024. | |
101 | WU T T, ZHOU J, WU B L. Effect of TiO2 content on the acid resistance of a ceramic proppant[J]. Corrosion Science, 2015, 98: 716-724. |
102 | 李凤友, 刘玉瑛, 张玲, 等. TiO2烧结助剂对纳米η-Al2O3制备氧化铝陶瓷的影响[J]. 人工晶体学报, 2019, 48(4): 699-704. |
LI Fengyou, LIU Yuying, ZHANG Ling, et al. Effect of TiO2 sintering additives on alumina ceramic prepared with nano-η-Al2O3 [J]. Journal of Synthetic Crystals, 2019, 48(4): 699-704. | |
103 | LI J H, MA H W, HUANG W H. Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite[J]. Journal of Hazardous Materials, 2009, 166(2/3): 1535-1539. |
104 | 陈耀斌, 岳俊磊, 武晓宇, 等. V2O5掺杂对莫来石晶须增强型陶粒支撑剂的性能影响[J]. 硅酸盐通报, 2017, 36(7): 2343-2347, 2353. |
CHEN Yaobin, YUE Junlei, WU Xiaoyu, et al. Effects of V2O5 doping on the properties of ceramic proppant reinforced by mullite whiskers[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(7): 2343-2347, 2353. | |
30 | 邹才能, 董大忠, 王社教, 等. 中国页岩气形成机理、地质特征及资源潜力[J]. 石油勘探与开发, 2010, 37(6): 641-653. |
ZOU Caineng, DONG Dazhong, WANG Shejiao, et al. Geological characteristics, formation mechanism and resource potential of shale gas in China[J]. Petroleum Exploration and Development, 2010, 37(6): 641-653. | |
31 | LIU Z L, ZHAO J Z, LI Y M, et al. Low-temperature sintering of bauxite-based fracturing proppants containing CaO and MnO2 additives[J]. Materials Letters, 2016, 171: 300-303. |
32 | ZHAO J Z, LIU Z L, LI Y M. Preparation and characterization of low-density mullite-based ceramic proppant by a dynamic sintering method[J]. Materials Letters, 2015, 152: 72-75. |
33 | 马俊伟, 吴国亮, 张建强. 铝土矿废石制备超低密度陶粒支撑剂的试验研究[J]. 矿产保护与利用, 2019, 39(3): 151-154, 159. |
MA Junwei, WU Guoliang, ZHANG Jianqiang. Experimental research on preparation of ultra-low-density ceramsite proppant with bauxite waste rock[J]. Conservation and Utilization of Mineral Resources, 2019, 39(3): 151-154, 159. | |
34 | 马海强, 田玉明, 马晓霞, 等. 烧结温度对添加固废陶粒制备支撑剂性能影响[J]. 太原科技大学学报, 2018, 39(1): 31-35. |
MA Haiqiang, TIAN Yuming, MA Xiaoxia, et al. Effects of sintering temperature on the properties of proppant synthesized by adding waste ceramic sands[J]. Journal of Taiyuan University of Science and Technology, 2018, 39(1): 31-35. | |
35 | 岳俊磊, 陈耀斌, 武晓宇, 等. 超低密压裂支撑剂的制备及性能研究[J]. 硅酸盐通报, 2017, 36(7): 2237-2242. |
YUE Junlei, CHEN Yaobin, WU Xiaoyu, et al. Preparation and properties of ultra-light weight fracturing proppants[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(7): 2237-2242. | |
36 | 贾勤长, 朱现峰. 一种高强度低密度陶粒支撑剂及其制备方法: CN202010299091.9[P]. 2020-09-03. |
JIA Q C, ZHU X F. A high strength and low density ceramic proppant and its preparation method: CN202010299091.9[P]. 2020-09-03. | |
37 | MOCCIARO A, LOMBARDI M B, SCIAN A N. Effect of raw material milling on ceramic proppants properties[J]. Applied Clay Science, 2018, 153: 90-94. |
38 | 国家能源局. 水力压裂和砾石充填作业用支撑剂性能测试方法: [S]. 北京: 石油工业出版社, 2015. |
National Energy Administration. Measurement of properties of proppants used in hydraulic fracturing and gravel-packing operations: [S]. Beijing: Petroleum Industry Press, 2015. | |
39 | 刘挺, 王菊侠, 曹义平, 等. 添加铁粉制备低密度中强度陶粒支撑剂及性能研究[J]. 陶瓷, 2017(1): 30-34. |
LIU Ting, WANG Juxia, CAO Yiping, et al. Preparation and mechanisms of light-weight middle-strength ceramisite proppant by iron powder additive[J]. Ceramics, 2017(1): 30-34. | |
40 | HAO J Y, MA H Q, FENG X, et al. Low-temperature sintering of ceramic proppants by adding solid wastes[J]. International Journal of Applied Ceramic Technology, 2018, 15(2): 563-568. |
41 | 吕宝强, 刘顺, 毕卫宇, 等. 低密度陶粒支撑剂的制备工艺研究[J]. 铸造技术, 2012, 33(7): 771-773. |
Baoqiang LYU, LIU Shun, BI Weiyu, et al. Study on preparation process for low density ceramisite proppant[J]. Foundry Technology, 2012, 33(7): 771-773. | |
42 | MA H Q, TIAN Y M, ZHOU Y, et al. Effective reduction of sintering temperature and breakage ratio for a low-cost ceramic proppant by feldspar addition[J]. International Journal of Applied Ceramic Technology, 2018, 15(1): 191-196. |
43 | 刘爱平, 田玉明, 孔祥辰, 等. 烧结温度对莫来石/石英质经济型陶粒支撑剂性能的影响[J]. 中国陶瓷, 2015, 51(2): 61-64. |
LIU Aiping, TIAN Yuming, KONG Xiangchen, et al. The effect of sintering temperature on mullite/quartz economical ceramic proppant[J]. China Ceramics, 2015, 51(2): 61-64. | |
44 | 力国民, 常鑫, 朱保顺, 等. 烧结温度对添加复合助剂制备莫来石-刚玉基陶粒支撑剂性能的影响[J]. 人工晶体学报, 2018, 47(9): 1850-1854. |
LI Guomin, CHANG Xin, ZHU Baoshun, et al. Influence of sintering temperature on performance of mullite-corundum proppant prepared by adding compound additive[J]. Journal of Synthetic Crystals, 2018, 47(9): 1850-1854. | |
45 | 刘作磊. 高强度低品位铝矾土基压裂支撑剂制备方法及机理研究[D]. 成都: 西南石油大学, 2016. |
LIU Zuolei. Preparation methods and mechanisms of high-strength low-grade bauxite based fracturing proppants[D]. Chengdu: Southwest Petroleum University, 2016. | |
46 | 赵紫石, 崔李鹏, 赵旭, 等. 利用固废煤矸石制备陶粒支撑剂的研究[J]. 山西煤炭, 2019, 39(1): 1-4. |
ZHAO Zishi, CUI Lipeng, ZHAO Xu, et al. Preparation of ceramic proppant using solid waste coal gangue[J]. Shanxi Coal, 2019, 39(1): 1-4. | |
47 | 何成, 杨永超, 曹建伟, 等. 粉煤灰陶粒石油压裂支撑剂的制备与表征[J]. 陶瓷学报, 2021, 42(1): 116-121. |
HE Cheng, YANG Yongchao, CAO Jianwei, et al. Preparation and characterization of fly ash ceramsite petroleum fracturing proppant[J]. Journal of Ceramics, 2021, 42(1): 116-121. | |
48 | 赵爽, 刘挺, 王超. 添加陶粒砂废料对制备支撑剂的影响[J]. 中国陶瓷工业, 2017, 24(2): 45-48. |
ZHAO Shuang, LIU Ting, WANG Chao. Effect of ceramsite tailing doping on preparation of proppant material[J]. China Ceramic Industry, 2017, 24(2): 45-48. | |
49 | 李灿然, 李向辉, 遆永周, 等. 压裂支撑剂研究进展及发展趋势[J]. 陶瓷学报, 2016, 37(6): 603-607. |
LI Canran, LI Xianghui, Yongzhou TI, et al. The development progress and trends of fracturing proppant[J]. Journal of Ceramics, 2016, 37(6): 603-607. | |
50 | REN Q, REN Y H, LI H H, et al. Preparation and characterization of high silicon ceramic proppants using low grade bauxite and fly ash[J]. Materials Chemistry and Physics, 2019, 230: 355-361. |
51 | WU X L, HUO Z Z, REN Q, et al. Preparation and characterization of ceramic proppants with low density and high strength using fly ash[J]. Journal of Alloys and Compounds, 2017, 702: 442-448. |
52 | HAO J Y, MA H Q, FENG X, et al. Microstructure and fracture mechanism of low density ceramic proppants[J]. Materials Letters, 2018, 213: 92-94. |
53 | 李丹丹. JG公司陶粒支撑剂项目可行性研究[D]. 济南: 齐鲁工业大学, 2017. |
LI Dandan. Feasibility study of ceramic proppants project in JG company[D]. Jinan: Qilu University of Technology, 2017. | |
54 | 杜杰, 唐一博, 王俊峰, 等. 煤层压裂支撑剂的制备及性能研究[J]. 煤矿安全, 2018, 49(10): 5-8, 12. |
DU Jie, TANG Yibo, WANG Junfeng, et al. Preparation and mechanisms of proppant for coal bed fracturing[J]. Safety in Coal Mines, 2018, 49(10): 5-8, 12. | |
55 | TIAN X R, WU B L, LI J. The exploration of making acidproof fracturing proppants using red mud[J]. Journal of Hazardous Materials, 2008, 160(2/3): 589-593. |
56 | 王晋槐, 赵友谊, 龚红宇, 等. 石油压裂陶粒支撑剂研究进展[J]. 硅酸盐通报, 2010, 29(3): 633-636. |
WANG Jinhuai, ZHAO Youyi, GONG Hongyu, et al. Advance of ceramic proppants for oil hydraulic fracture[J]. Bulletin of the Chinese Ceramic Society, 2010, 29(3): 633-636. | |
57 | 张龙. 支撑剂烧结废料综合回收利用研究[J]. 四川冶金, 2008, 30(2): 54-56. |
ZHANG Long. Research to the compositive recycling of clinkery waste of propping agent[J]. Sichuan Metallurgy, 2008, 30(2): 54-56. | |
58 | 张巍, 孙杰, 戴文勇. 红柱石加入量对焦宝石基浇注料性能的影响[J]. 矿冶工程, 2011, 31(4): 18-20, 24. |
ZHANG Wei, SUN Jie, DAI Wenyong. Effects of andalusite addition on properties of calcined flint clay based castable refractory[J]. Mining and Metallurgical Engineering, 2011, 31(4): 18-20, 24. | |
59 | 刘建博. 焦宝石制备轻质隔热耐火材料的微孔化设计及性能[D]. 武汉: 武汉科技大学, 2018. |
LIU Jianbo. Microporous design and property of lightweight insulation refractory materials prepared from calcined flint clay[D]. Wuhan: Wuhan University of Science and Technology, 2018. | |
60 | 冯伟乐, 田玉明, 白频波, 等. 利用焦宝石和钾长石制备低密高强陶粒支撑剂的研究[J]. 人工晶体学报, 2016, 45(1): 128-132. |
FENG Weile, TIAN Yuming, BAI Pinbo, et al. Preparation of low-density and high-strength ceramic proppant by using flint clay and K-feldspar[J]. Journal of Synthetic Crystals, 2016, 45(1): 128-132. | |
61 | 王晋槐. 利用焦宝石和煤矸石制备低密度陶粒支撑剂的研究[D]. 济南: 山东大学, 2016. |
WANG Jinhuai. Fabrication and research of low-density proppants using lint clay and coal gangue[D]. Jinan: Shandong University, 2016. | |
62 | 赵俊, 严春杰, 栾英伟, 等. 含焦宝石的陶瓷支撑剂的制备及性能[J]. 中国粉体技术, 2010, 16(3): 78-81. |
ZHAO Jun, YAN Chunjie, LUAN Yingwei, et al. Preparation of proppants with flint clay and their properties[J]. China Powder Science and Technology, 2010, 16(3): 78-81. | |
63 | 刘洪礼, 柴跃生, 周毅, 等. 紫砂土制备压裂支撑剂的研究[J]. 硅酸盐通报, 2016, 35(1): 97-100. |
LIU Hongli, CHAI Yuesheng, ZHOU Yi, et al. Preparation of fracturing proppant by purple sands[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 97-100. | |
64 | 牟军, 薛屺, 董朋朋, 等. 铝矾土空心陶粒支撑剂的制备及性能研究[J]. 人工晶体学报, 2017, 46(7): 1244-1249. |
MOU Jun, XUE Qi, DONG Pengpeng, et al. Preparation and performance of the hollow bauxite ceramic proppant[J]. Journal of Synthetic Crystals, 2017, 46(7): 1244-1249. | |
65 | 徐永驰. 低密度支撑剂的研制及性能评价[D]. 成都: 西南石油大学, 2016. |
XU Yongchi. Development and performance evaluation of low density proppant[D]. Chengdu: Southwest Petroleum University, 2016. | |
66 | 董朋朋. 低密度压裂支撑剂的制备及性能研究[D]. 成都: 西南石油大学, 2016. |
DONG Pengpeng. Preparation and properties of low density fracturing proppant[D]. Chengdu: Southwest Petroleum University, 2016. | |
67 | 李小刚, 廖梓佳, 杨兆中, 等. 压裂用支撑剂应用现状和研究进展[J]. 硅酸盐通报, 2018, 37(6): 1920-1923. |
LI Xiaogang, LIAO Zijia, YANG Zhaozhong, et al. Application and development of fracturing proppant[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(6): 1920-1923. | |
68 | 萧礼标, 薛群虎, 刘一军, 等. 二次莫来石化反应对陶瓷板性能的影响[J]. 建筑材料学报, 2018, 21(6): 933-938, 955. |
XIAO Libiao, XUE Qunhu, LIU Yijun, et al. Effect of secondary mullitization reaction on the properties of ceramic plates[J]. Journal of Building Materials, 2018, 21(6): 933-938, 955. | |
69 | 田玉明, 朱保顺, 力国民, 等. 煤矸石掺量对陶粒支撑剂性能的影响[J]. 硅酸盐学报, 2019, 47(3): 365-369. |
[1] | 向硕, 卢鹏, 石伟年, 杨鑫, 何燕, 朱立业, 孔祥微. 二维WS2纳米片的规模化可控制备及其摩擦学性能[J]. 化工进展, 2023, 42(9): 4783-4790. |
[2] | 杨凯璐, 陈明星, 王新亚, 张威, 肖长发. 染料废水处理用纳滤膜制备及改性研究进展[J]. 化工进展, 2023, 42(10): 5470-5486. |
[3] | 秦建, 刘天霞, 王建, 卢星. 油酸改性石墨烯/二硫化钼复合材料润滑添加剂的制备及摩擦学特性[J]. 化工进展, 2022, 41(9): 4973-4985. |
[4] | 张赛晖, 李校阳, 高慧, 王丽丽. 制备聚酰胺复合膜中界面聚合反应添加剂研究进展[J]. 化工进展, 2022, 41(9): 4884-4894. |
[5] | 胡华坤, 薛文东, 蒋朋, 李勇. 锂离子电池安全添加剂的研究进展[J]. 化工进展, 2022, 41(10): 5441-5455. |
[6] | 苏伟怡, 刘星, 郝琪, 郭攀, 郝红勋, 李春利. 添加剂对氨基酸多晶型溶液结晶过程影响的研究进展[J]. 化工进展, 2021, 40(8): 4463-4472. |
[7] | 张鹤, 邵国强, 史和邦, 吴昌梓, 吴昊, 陈敬波, 吕鹏鹏. 片状氧化铝的熔盐法制备关键参数[J]. 化工进展, 2021, 40(8): 4187-4195. |
[8] | 王晓达, 陈宇, 王清莲, 黄智贤, 杨臣, 王红星, 邱挺. 醚化反应精馏研究进展[J]. 化工进展, 2021, 40(4): 1797-1811. |
[9] | 孙玥, 刘玲玲, 李鑫泉, 潘建锋, 刘嘉斌. 添加剂对电解铜箔作用机理及作用效果的研究进展[J]. 化工进展, 2021, 40(11): 5861-5874. |
[10] | 张振国, 刘希涛, 赖玲, 冯秀娟. 机械化学法降解氯代有机污染物的研究进展[J]. 化工进展, 2021, 40(1): 487-504. |
[11] | 郑洋洋, 宋小三, 王三反, 张志华, 宋正平, 马林. 添加剂对单膜双室同槽电解膜电积工艺的影响[J]. 化工进展, 2020, 39(S2): 440-446. |
[12] | 马杨杨, 仲兆平, 赖旭东. 矿物添加剂对煤燃烧过程中重金属的富集[J]. 化工进展, 2020, 39(6): 2479-2486. |
[13] | 宋万仓,熊光,臧甲忠,于海斌,王祥生. 碱性添加剂在钛硅分子筛/H2O2催化丙烯环氧化反应中的作用[J]. 化工进展, 2020, 39(3): 1021-1028. |
[14] | 耿雪丽, 孟莹, 从海峰, 李洪, 高鑫, 李鑫钢. 聚甲氧基二甲醚合成工艺及产业化述评[J]. 化工进展, 2020, 39(12): 4993-5008. |
[15] | 代梦玲, 孙志高, 李娟, 李翠敏, 黄海峰. 水合物储气促进技术研究进展[J]. 化工进展, 2020, 39(10): 3975-3986. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |