1 |
STOCKER T F, QIN D, G-K PLATTNER, et al. Climate change 2013: the physical science basis[R]. New York: Intergovernmental Panel on Climate Change, 2014.
|
2 |
OLAH George A. Beyond oil and gas: the methanol economy[J]. Angewandte Chemie International Edition, 2005, 44(18): 2636-2639.
|
3 |
SHIH Choon Fong, ZHANG Tao, LI Jinghai, et al. Powering the future with liquid sunshine[J]. Joule, 2018, 2(10): 1925-1949.
|
4 |
ZHANG Jian, WANG Tao, LIU Pan, et al. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics[J]. Nature Communications, 2017, 8: 15437.
|
5 |
ZHANG Jian, WANG Tao, LIU Pan, et al. Engineering water dissociation sites in MoS2 nanosheets for accelerated electrocatalytic hydrogen production[J]. Energy & Environmental Science, 2016, 9(9): 2789-2793.
|
6 |
ZHANG Zhicheng, LIU Guigao, CUI Xiaoya, et al. Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution[J]. Advanced Materials, 2018, 30(30): e1801741.
|
7 |
YE Sheng, DING Chunmei, LIU Mingyao, et al. Water oxidation catalysts for artificial photosynthesis[J]. Advanced Materials, 2019, 31(50): e1902069.
|
8 |
ZOU Xiaoxin, ZHANG Yu. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180.
|
9 |
KING Laurie A, HUBERT McKenzie A, CAPUANO Christopher, et al. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser[J]. Nature Nanotechnology, 2019, 14(11): 1071-1074.
|
10 |
LI Ailong, KONG Shuang, GUO Chenxi, et al. Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid[J]. Nature Catalysis, 2022, 5(2): 109-118.
|
11 |
何泽兴, 史成香, 陈志超, 等. 质子交换膜电解水制氢技术的发展现状及展望[J]. 化工进展, 2021, 40(9): 4762-4773.
|
|
HE Zexing, SHI Chengxiang, CHEN Zhichao, et al. Development status and prospects of proton exchange membrane water electrolysis[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4762-4773.
|
12 |
LI Ailong, SUN Yimeng, YAO Tingting, et al. Earth-abundant transition-metal-based electrocatalysts for water electrolysis to produce renewable hydrogen[J]. Chemistry, 2018, 24(69): 18334-18355.
|
13 |
NAKAMURA J, CHOI Y, FUJITANI T. On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts[J]. Topics in Catalysis, 2003, 22(3/4): 277-285.
|
14 |
KUNKES Edward L, STUDT Felix, Frank ABILD-PEDERSEN, et al. Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: is there a common intermediate or not? [J]. Journal of Catalysis, 2015, 328: 43-48.
|
15 |
FICHTL Matthias B, SCHLERETH David, JACOBSEN Nikolas, et al. Kinetics of deactivation on Cu/ZnO/Al2O3 methanol synthesis catalysts[J]. Applied Catalysis A: General, 2015, 502: 262-270.
|
16 |
WANG Jijie, LI Guanna, LI Zelong, et al. A highly selective and stable ZnO-ZrO2 solid solution catalyst for CO2 hydrogenation to methanol[J]. Science Advances, 2017, 3(10): e1701290.
|
17 |
WANG Jijie, TANG Chizhou, LI Guanna, et al. High-performance MaZrO x (Ma = Cd, Ga) solid-solution catalysts for CO2 hydrogenation to methanol[J]. ACS Catalysis, 2019, 9(11): 10253-10259.
|
18 |
YE Jingyun, LIU Changjun, GE Qingfeng. DFT study of CO2 adsorption and hydrogenation on the In2O3 surface[J]. The Journal of Physical Chemistry C, 2012, 116(14): 7817-7825.
|
19 |
YE Jingyun, LIU Changjun, MEI Donghai, et al. Active oxygen vacancy site for methanol synthesis from CO2 hydrogenation on In2O3(110): a DFT study[J]. ACS Catalysis, 2013, 3(6): 1296-1306.
|
20 |
SUN Kaihang, FAN Zhigang, YE Jingyun, et al. Hydrogenation of CO2 to methanol over In2O3 catalyst[J]. Journal of CO2 Utilization, 2015, 12: 1-6.
|
21 |
MARTIN Oliver, MARTÍN Antonio J, MONDELLI Cecilia, et al. Indium oxide as a superior catalyst for methanol synthesis by CO2 hydrogenation[J]. Angewandte Chemie International Edition, 2016, 55(21): 6261-6265.
|
22 |
JIANG Xiao, NIE Xiaowa, GUO Xinwen, et al. Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis[J]. Chemical Reviews, 2020, 120(15): 7984-8034.
|
23 |
KATTEL Shyam, RAMÍREZ Pedro J, CHEN Jingguang, et al. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts[J]. Science, 2017, 355(6331): 1296-1299.
|
24 |
KATTEL Shyam, RAMÍREZ Pedro J, CHEN Jingguang, et al. Response to comment on “active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts”[J]. Science, 2017, 357(6354): eaan8210.
|
25 |
BEHRENS Malte, STUDT Felix, KASATKIN Igor, et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts[J]. Science, 2012, 336(6083): 893-897.
|
26 |
LUNKENBEIN Thomas, SCHUMANN Julia, BEHRENS Malte, et al. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong metal-support interactions[J]. Angewandte Chemie International Edition, 2015, 54(15): 4544-4548.
|
27 |
NAKAMURA Junji, FUJITANI Tadahiro, KULD Sebastian, et al. Comment on “active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts”[J]. Science, 2017, 357(6354): eaan8074.
|
28 |
BANSODE Atul, TIDONA Bruno, ROHR Philipp Rudolf VON, et al. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure[J]. Catalysis Science & Technology, 2013, 3(3): 767-778.
|
29 |
BAN Hongyan, LI Congming, ASAMI Kenji, et al. Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2 [J]. Catalysis Communications, 2014, 54: 50-54.
|
30 |
NOMURA Naofumi, TAGAWA Tomohiko, GOTO Shigeo. Effect of acid-base properties on copper catalysts for hydrogenation of carbon dioxide[J]. Reaction Kinetics and Catalysis Letters, 1998, 63(1): 21-25.
|
31 |
PHONGAMWONG Thanaree, CHANTAPRASERTPORN Usanee, WITOON Thongthai, et al. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts: effects of SiO2 contents[J]. Chemical Engineering Journal, 2017, 316: 692-703.
|
32 |
ARENA F, MEZZATESTA G, ZAFARANA G, et al. How oxide carriers control the catalytic functionality of the Cu-ZnO system in the hydrogenation of CO2 to methanol[J]. Catalysis Today, 2013, 210: 39-46.
|
33 |
Mei Kee KOH, KHAVARIAN Mehrnoush, CHAI Siang Piao, et al. The morphological impact of siliceous porous carriers on copper-catalysts for selective direct CO2 hydrogenation to methanol[J]. International Journal of Hydrogen Energy, 2018, 43(19): 9334-9342.
|
34 |
WANG Guannan, CHEN Limin, SUN Yuhai, et al. Carbon dioxide hydrogenation to methanol over Cu/ZrO2/CNTs: effect of carbon surface chemistry[J]. RSC Advances, 2015, 5(56): 45320-45330.
|
35 |
TISSERAUD Céline, COMMINGES Clément, HABRIOUX Aurélien, et al. Cu-ZnO catalysts for CO2 hydrogenation to methanol: morphology change induced by ZnO lixiviation and its impact on the active phase formation[J]. Molecular Catalysis, 2018, 446: 98-105.
|
36 |
LI Molly M J, CHEN Chunping, Ayvalı TUĞÇE, et al. CO2 hydrogenation to methanol over catalysts derived from single cationic layer CuZnGa LDH precursors[J]. ACS Catalysis, 2018, 8(5): 4390-4401.
|
37 |
ZHANG Chen, YANG Haiyan, GAO Peng, et al. Preparation and CO2 hydrogenation catalytic properties of alumina microsphere supported Cu-based catalyst by deposition-precipitation method[J]. Journal of CO2 Utilization, 2017, 17: 263-272.
|
38 |
BEHRENS Malte. Coprecipitation: an excellent tool for the synthesis of supported metal catalysts—From the understanding of the well known recipes to new materials[J]. Catalysis Today, 2015, 246: 46-54.
|
39 |
FREI M S, CAPDEVILA-CORTADA M, GARCÍA-MUELAS R, et al. Mechanism and microkinetics of methanol synthesis via CO2 hydrogenation on indium oxide[J]. Journal of Catalysis, 2018, 361: 313-321.
|
40 |
DANG Shanshan, QIN Bin, YANG Yong, et al. Rationally designed indium oxide catalysts for CO2 hydrogenation to methanol with high activity and selectivity[J]. Science Advances, 2020, 6(25): eaaz2060.
|
41 |
TSOUKALOU Athanasia, ABDALA Paula M, STOIAN Dragos, et al. Structural evolution and dynamics of an In2O3 catalyst for CO2 hydrogenation to methanol: an operando XAS-XRD and in situ TEM study[J]. Journal of the American Chemical Society, 2019, 141(34): 13497-13505.
|
42 |
RUI Ning, WANG Zongyuan, SUN Kaihang, et al. CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy[J]. Applied Catalysis B: Environmental, 2017, 218: 488-497.
|
43 |
YE Jingyun, LIU Changjun, MEI Donghai, et al. Methanol synthesis from CO2 hydrogenation over a Pd4/In2O3 model catalyst: a combined DFT and kinetic study[J]. Journal of Catalysis, 2014, 317: 44-53.
|
44 |
HAN Zhe, TANG Chizhou, WANG Jijie, et al. Atomically dispersed Pt n + species as highly active sites in Pt/In2O3 catalysts for methanol synthesis from CO2 hydrogenation[J]. Journal of Catalysis, 2021, 394: 236-244.
|
45 |
SUN Kaihang, RUI Ning, ZHANG Zhitao, et al. A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability[J]. Green Chemistry, 2020, 22(15): 5059-5066.
|
46 |
WANG Jing, SUN Kaihang, JIA Xinyu, et al. CO2 hydrogenation to methanol over Rh/In2O3 catalyst[J]. Catalysis Today, 2021, 365: 341-347.
|
47 |
RUI Ning, ZHANG Feng, SUN Kaihang, et al. Hydrogenation of CO2 to methanol on a Au δ +-In2O3- x catalyst[J]. ACS Catalysis, 2020, 10(19): 11307-11317.
|
48 |
JIA Xinyu, SUN Kaihang, WANG Jing, et al. Selective hydrogenation of CO2 to methanol over Ni/In2O3 catalyst[J]. Journal of Energy Chemistry, 2020, 50: 409-415.
|
49 |
BAVYKINA Anastasiya, YARULINA Irina, ABDULGHANI Abdullah J AL, et al. Turning a methanation Co catalyst into an In-Co methanol producer[J]. ACS Catalysis, 2019, 9(8): 6910-6918.
|
50 |
HAN Zhe, TANG Chizhou, SHA Feng, et al. CO2 hydrogenation to methanol on ZnO-ZrO2 solid solution catalysts with ordered mesoporous structure[J]. Journal of Catalysis, 2021, 396: 242-250.
|
51 |
HALPER Mark. Forget storing carbon; re-use it: a company in Iceland is turning CO2 into methanol to power cars[J]. Renewable Energy Focus, 2011, 12(1): 56-58.
|
52 |
SINGH Surinder P, HAO Pingjiao, LIU Xiao, et al. Large-scale affordable CO2 capture is possible by 2030[J]. Joule, 2019, 3(9): 2154-2164.
|
53 |
姬加良. 煤与不同原料重整气化制甲醇对CO2排放的影响[J]. 能源科技, 2020, 18(2): 62-66.
|
|
JI Jialiang. Effect of reforming gasification to methanol by coal and different raw materials on carbon dioxide emission[J]. Energy Science and Technology, 2020, 18(2): 62-66.
|