1 |
黄强, 张立麒, 周栋, 等. 富氧燃烧烟气压缩净化的研究进展[J]. 化工进展, 2018, 37(3): 1152-1160.
|
|
HUANG Qiang, ZHANG Liqi, ZHOU Dong, et al. Research and development on the purification of oxy-fuel combustion flue gas in the process of compression[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 1152-1160.
|
2 |
朱晓宇, 杨卫娟, 张兴, 等. 带压环境中CO2/H2O/N2气体稀释对合成气层流火焰速度的影响[J]. 化工进展, 2020, 39(11): 4357-4366.
|
|
ZHU Xiaoyu, YANG Weijuan, ZHANG Xing, et al. Effect of CO2/H2O/N2 gas dilution on laminar flame speeds of syngas at elevated pressure[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4357-4366.
|
3 |
SAHA M, DALLY B B, CHINNICI A, et al. Effect of co-flow oxygen concentration on the MILD combustion of pulverised coal[J]. Fuel Processing Technology, 2019, 193: 7-18.
|
4 |
ZHANG Shuwei, LU Jianyi, LIU Chunjing, et al. Characterization of micro-crystalline structure and particle size distribution of soot generated from MILD-OCC flame[J]. Fuel, 2020, 267: 117259.
|
5 |
ZHANG Tingyao, HU Zhongfa, ZHOU Yuegui. Numerical analysis on the characteristic chemical time scale and combustion regime of natural gas MILD combustion[J]. Fuel, 2020, 282: 118811.
|
6 |
HUANG Mingming, LI Ruichuan, XU Jikang, et al. Effect of thermal input, excess air coefficient and combustion mode on natural gas MILD combustion in industrial-scale furnace[J]. Fuel, 2021, 302: 121179.
|
7 |
LI P, WANG F, TU Y, et al. Moderate or intense low-oxygen dilution oxy-combustion characteristics of light oil and pulverized coal in a pilot-scale furnace[J]. Energy & Fuels, 2014, 28(2): 1524-1535.
|
8 |
ZENG Zhukai, ZHANG Tingyao, ZHENG Shankai, et al. Ignition and combustion characteristics of coal particles under high-temperature and low-oxygen environments mimicking MILD oxy-coal combustion conditions[J]. Fuel, 2019, 253: 1104-1113.
|
9 |
宋民航, 黄云, 黄骞, 等. 旋流煤粉燃烧器低负荷稳燃技术探讨[J]. 中国电机工程学报, 2021, 41(13): 4552-4566.
|
|
SONG Minhang, HUANG Yun, HUANG Qian, et al. Discussion on low-load stable combustion technology of swirl pulverized-coal burner[J]. Proceedings of the CSEE, 2021, 41(13): 4552-4566.
|
10 |
KHALIL A E E, GUPTA A K. Fostering distributed combustion in a swirl burner using prevaporized liquid fuels[J]. Applied Energy, 2018, 211: 513-522.
|
11 |
KHALIL A E E, GUPTA A K. Towards colorless distributed combustion regime[J]. Fuel, 2017, 195: 113-122.
|
12 |
张扬, 张琦, 吴玉新, 等. 基于PSR的非绝热MILD燃烧研究[J]. 工程热物理学报, 2019, 40(1): 229-232.
|
|
ZHANG Yang, ZHANG Qi, WU Yuxin, et al. On non-adiabatic MILD combustion based on the PSR model[J]. Journal of Engineering Thermophysics, 2019, 40(1): 229-232.
|
13 |
EVANS M J, MEDWELL P R, WU H, et al. Classification and lift-off height prediction of non-premixed MILD and autoignitive flames[J]. Proceedings of the Combustion Institute, 2017, 36(3): 4297-4304.
|
14 |
FENG Lele, ZHANG Qi, WU Yuxin, et al. Theoretical analysis on the criteria of MILD coal combustion[J]. Energy & Fuels, 2019, 33(11): 11923-11931.
|
15 |
刘丽丽, 崔永安, 乔晓磊, 等. 低浓度瓦斯与煤粉耦合体系着火温度实验研究[J]. 热力发电, 2016, 45(10): 60-63, 69.
|
|
LIU Lili, CUI Yongan, QIAO Xiaolei, et al. Experimental study on ignition temperature of coupling system of low-concentration gas and pulverized coal[J]. Thermal Power Generation, 2016, 45(10): 60-63, 69.
|
16 |
秦裕琨, 孙锐, 李争起, 等. 径向浓淡旋流煤粉燃烧器气流湍流特性的冷态试验研究[J]. 工程热物理学报, 2001, 22(1): 111-114.
|
|
QIN Yukun, SUN Rui, LI Zhengqi, et al. Experimental study on the turbulent properties of isothermal flow from radial bias combustion swirl burner[J]. Journal of Engineering Thermophysics, 2001, 22(1): 111-114.
|
17 |
蒋平, 郭印诚, 张会强, 等. 矩形射流扩散火焰近区拟序结构的周期性研究[C]//中国工程热物理学会第十一届燃烧学学术会议, 2005.
|
|
JIANG Ping, GUO Yincheng, ZHANG Huiqiang, et al. Periodic study on near zone coherent structure of rectangular jet diffusion flame[C]//The 11th Academic Conference on combustion of Chinese society of Engineering Thermophysics, 2005.
|
18 |
KARYEYEN S, FESER J S, JAHODA E, et al. Development of distributed combustion index from a swirl-assisted burner[J]. Applied Energy, 2020, 268: 114967.
|
19 |
WEIDMANN M, HONORÉ D, VERBAERE V, et al. Experimental characterization of pulverized coal MILD flameless combustion from detailed measurements in a pilot-scale facility[J]. Combustion and Flame, 2016, 168: 365-377.
|