1 | Climate Change: Atmospheric Carbon Dioxide[Z/OL].[2020-02-20]. . | 2 | Carbon dioxide: Projected emissions and concentrations[Z/OL].[2000-12-31]. . | 3 | CANADELL J G, LE QUERE C, RAUPACH M R, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47): 18866-18870. | 4 | GISS surface temperature analysis (v4>)[Z/OL].[2020-04-13]. . | 5 | NAKICENOVIC N, ALCANMO J, DAVIS G, et al. Intergovernmental panel on climate change: special report on emissions scenarios[R]. Intergovernmental Panel on Climate Change, United Nations, Geneva, Switzerland, 2000. | 6 | ALBRITON D L, BARKER T, BASHMAKOV I A, et al. IPCC, climate change 2001: synthesis report[R]. Intergovernmental Panel on Climate Change, United Nations, Geneva, Switzerland, 2001. | 7 | PACHAURI R K, ALLEN M R, BARROS V R, et al. Climate change 2014: synthesis report[R]. Intergovernmental Panel on Climate Change, United Nations. Geneva, Switzerland, 2014. | 8 | WITTMANN A C, RTNER H-O P. Sensitivities of extant animal taxa to ocean acidification[J]. Nature Climate Change, 2013, 3(11): 995-1001. | 9 | MUNDAY P L, DIXSON D L, DONELSON J M, et al. Ocean acidification impairs olfactory discrimination and homing ability of a marine fish[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(6): 1848-1852. | 10 | GATTI L V, GLOOR M, MILLER J B, et al. Drought sensitivity of amazonian carbon balance revealed by atmospheric measurements[J]. Nature, 2014, 506(7486): 76-80. | 11 | EYRE B D, CYRONAK T, DRUPP P, et al. Coral reefs will transition to net dissolving before end of century[J]. Science, 2018, 359(6378): 908-911. | 12 | DAHLKE F T, BUTZIN M, NAHRGANG J, et al. Northern cod species face spawning habitat losses if global warming exceeds 1.5℃[J]. Science Advances, 2018, 4(11): eaas8821. | 13 | ZHU Chunwu, KOBAYASHI K, LOLADZE I, et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries[J]. Science Advances, 2018, 4(5): eaaq1012. | 14 | United Nations Framework Convention on Climate Change[Z]. United Nations. Rio de Janeiro Brazil, 1992. | 15 | Kyoto protocol to the United Nations framework convention on climate change[Z]. United Nations. Kyoto, Japan, 1997. | 16 | Agreement Paris. United Nations[Z]. Paris, France, 2015. | 17 | Communication Regarding intent to withdraw from Paris Agreement[EB/OL].[2017-08-04]. . | 18 | International Energy Agency. World energy outlook[R]. Paris, France, 2018. | 19 | New oil and gas discoveries in 2018[Z/OL].[2019-07-30]. . | 20 | ERANS M, MANOVIC V, ANTHONY E J. Calcium looping sorbents for CO2 capture[J]. Applied Energy, 2016, 180: 722-742. | 21 | BLAMEY J, ANTHONY E J, WANG Jinsheng, et al. The calcium looping cycle for large-scale CO2 capture[J]. Progress in Energy and Combustion Science, 2010, 36(2): 260-279. | 22 | International Energy Agency. Energy technology perspectives[R]. Paris, France, 2008. | 23 | STEWART C, M-A HESSAMI. A study of methods of carbon dioxide capture and sequestration—The sustainability of a photosynthetic bioreactor approach[J]. Energy Conversion and Management, 2005, 46(3): 403-420. | 24 | STEENEVELDT R, BERGER B, TORP T A. CO2 capture and storage[J]. Chemical Engineering Research and Design, 2006, 84(9): 739-763. | 25 | THIRUVENKATACHARI R, SU Shi, AN Hui, et al. Post combustion CO2 capture by carbon fibre monolithic adsorbents[J]. Progress in Energy and Combustion Science, 2009, 35(5): 438-455. | 26 | SVENSSON R, ODENBERGER M, JOHNSSON F, et al. Transportation systems for CO2—Application to carbon capture and storage[J]. Energy Conversion and Management, 2004, 45(15/16): 2343-2353. | 27 | ZHANG Zaoxiao, WANG G X, MASSAROTTO P, et al. Optimization of pipeline transport for CO2 sequestration[J]. Energy Conversion and Management, 2006, 47(6): 702-715. | 28 | International Energy Agency. Technology roadmap—Carbon capture and storage[R]. Paris, France. 2013. | 29 | BODE S, JUNG M. Carbon dioxide capture and storage—Liability for non-permanence under the UNFCCC[J]. International Environmental Agreements: Politics, Law and Economics, 2006, 6(2): 173-186. | 30 | PIRES J C M, MARTINS F G, ALVIM-FERRAZ M C M, et al. Recent developments on carbon capture and storage: an overview[J]. Chemical Engineering Research and Design, 2011, 89(9): 1446-1460. | 31 | METZ B, DAVIDSON O, DE CONINCK, et al. IPCC special report on carbon dioxide capture and storage[R]. Intergovernmental Panel on Climate Change, United Nations, Geneva, Switzerland, 2005. | 32 | AL-MAMOORI A, KRISHNAMURTHY A, ROWNAGHI A A. Carbon capture and utilization update[J]. Energy Technology, 2017, 5(6): 835-849. | 33 | ARESTA M, DIBENEDETTO A. Utilisation of CO2 as a chemical feedstock: opportunities and challenges[J]. Dalton Transactions, 2007, 28: 2975-2992. | 34 | FAN Mun‐Sing, ABDULLAH A Z, BHATIA S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas[J]. ChemCatChem, 2009, 1(2): 192-208. | 35 | GRACIANI J, MUDIYANSELAGE K, XU Fang, et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2[J]. Science, 2014, 345(6196): 546-550. | 36 | VISCONTI C G, MARTINELLI M, FALBO L, et al. CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer-Tropsch catalysts[J]. Catalysis Today, 2016, 277: 161-170. | 37 | CHEN Guangbo, GAO Rui, ZHAO Yufei, et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons[J]. Advanced Materials, 2018, 30(3): 1704663. | 38 | WEI Xing, YIN Zhenglei, Kangjie LYU, et al. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces[J]. ACS Catalysis, 2020, 10(7): 4103-4111. | 39 | SANNA A, UIBU M, CARAMANNA G, et al. A review of mineral carbonation technologies to sequester CO2[J]. Chemical Society Reviews, 2014, 43(23): 8049-8080. | 40 | SANNA A, HALL M R, MAROTO-VALER M. Post-processing pathways in carbon capture and storage by mineal carbonation (CCSM) towards the introduction of carbon neutral materials[J]. Energy & Environmental Science, 2012, 5(7): 7781. | 41 | MARKEWITZ P, KUCKSHINRICHS W, LEITNER W, et al. Worldwide innovations in the development of carbon capture technologies and the utilization of CO2[J]. Energy & Environmental Science, 2012, 5(6): 7281. | 42 | HU Boxun, GUILD C, SUIB S L. Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products[J]. Journal of CO2 Utilization, 2013, 1: 18-27. | 43 | ALIE C, BACKHAM L, CROISET E, et al. Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method[J]. Energy Conversion and Management, 2005, 46(3): 475-487. | 44 | CHI Susan, ROCHELLE G T. Oxidative degradation of monoethanolamine[J]. Industrial & Engineering Chemistry Research, 2002, 41(17): 4178-4186. | 45 | FYTIANOS G, UCAR S, GRIMSTVEDT A, et al. Corrosion and degradation in MEA based post-combustion CO2 capture[J]. International Journal of Greenhouse Gas Control, 2016, 46: 48-56. | 46 | ZHANG Shihan, SHEN Yao, WANG Lidong, et al. Phase change solvents for post-combustion CO2 capture: principle, advances, and challenges[J]. Applied Energy, 2019, 239: 876-897. | 47 | SHIMIZU T, HIRAMA T, HOSODA H, et al. A twin fluid-bed reactor for removal of CO2 from combustion processes[J]. Chemical Engineering Research and Design, 1999, 77(1): 62-68. | 48 | MANOVIC V, ANTHONY E J. SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles[J]. Environmental Science & Technology, 2007, 41(12): 4435-4440. | 49 | MANOVIC V, WU Yinghai, HE Ian, et al. Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles[J]. Environmental Science & Technology, 2012, 46(22): 12720-12725. | 50 | SUN P, GRACE J R, LIM C J, et al. The effect of CaO sintering on cyclic CO2 capture in energy systems[J]. AIChE Journal, 2007, 53(9): 2432-2442. | 51 | HANAK D P, BILIYOK C, ANTHONY E J, et al. Modelling and comparison of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant[J]. International Journal of Greenhouse Gas Control, 2015, 42: 226-236. | 52 | ROMANO M C. Modeling the carbonator of a Ca-looping process for CO2 capture from power plant flue gas[J]. Chemical Engineering Science, 2012, 69(1): 257-269. | 53 | DEAN C C, BLAMEY J, FLORIN N H, et al. The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production[J]. Chemical Engineering Research and Design, 2011, 89(6): 836-855. | 54 | MANTRIPRAGADA H C, RUBIN E S. Calcium looping cycle for CO2 capture: performance, cost and feasibility analysis[J]. Energy Procedia, 2014, 63: 2199-2206. | 55 | C-C CORMOS. Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle[J]. Energy, 2014, 78: 665-673. | 56 | C-C CORMOS. Assessment of chemical absorption/adsorption for post-combustion CO2 capture from natural gas combined cycle (NGCC) power plants[J]. Applied Thermal Engineering, 2015, 82: 120-128. | 57 | RIDHA F N, LU D, MACCHI A, et al. Combined calcium looping and chemical looping combustion cycles with CaO-CuO pellets in a fixed bed reactor[J]. Fuel, 2015, 153: 202-209. | 58 | ARIAS B, DIEGO M E, ABANADES J C, et al. Demonstration of steady state CO2 capture in a 1.7MWth calcium looping pilot[J]. International Journal of Greenhouse Gas Control, 2013, 18: 237-245. | 59 | STR?HLE J, JUNK M, KREMER J, et al. Carbonate looping experiments in a 1MWth pilot plant and model validation[J]. Fuel, 2014, 127: 13-22. | 60 | HILZ J, HAAF M, HELBIG M, et al. Scale-up of the carbonate looping process to a 20?MWth pilot plant based on long-term pilot tests[J]. International Journal of Greenhouse Gas Control, 2019, 88: 332-341. | 61 | LYSIKOV A I, SALANOV A N, OKUNEV A G. Change of CO2 carrying capacity of CaO in isothermal recarbonation-decomposition cycles[J]. Industrial & Engineering Chemistry Research, 2007, 46(13): 4633-4638. | 62 | COPPOLA A, SCALA F, SALATINO P, et al. Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcination conditions (Ⅰ): Assessment of six limestones[J]. Chemical Engineering Journal, 2013, 231: 537-543. | 63 | CASTILLO R. Thermodynamic analysis of a hard coal oxyfuel power plant with high temperature three-end membrane for air separation[J]. Applied Energy, 2011, 88: 1480-1493. | 64 | MBERG L STR, LINDGREN G, JACOBY J, et al. Update on Vattenfall’s 30 MWth oxyfuel pilot plant in Schwarze Pumpe[J]. Energy Procedia, 2009, 1: 581-589. | 65 | STURGEON D W, CAMERON E D, FITZGERALD F D. Demonstration of an oxyfuel combustion system[J]. Energy Procedia, 2009, 1: 471-478. | 66 | STANGER R, WALL T, SP?RL R, et al. Oxyfuel combustion for CO2 capture in power plants[J]. International Journal of Greenhouse Gas Control, 2015, 40: 55-125. | 67 | GUO Junjun, HU Fan, JIANG Xudong, et al. Experimental and numerical investigations on heat transfer characteristics of a 35MW oxy-fuel combustion boiler[J]. Energy Procedia, 2017, 114: 481-489. | 68 | STADLER H, BEGGEL F, HABERMEHL M, et al. Oxyfuel coal combustion by efficient integration of oxygen transport membranes[J]. International Journal of Greenhouse Gas Control, 2011, 5(1): 7-15. | 69 | ADANEZ J, ABAD A, GARCIA-LABIANO F, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282. | 70 | LUO Siwei, ZENG Liang, FAN Liang-Shih. Chemical looping technology: oxygen carrier characteristics[J]. Annual Review of Chemical and Biomolecular Engineering, 2015, 6: 53-75. | 71 | ZENG Liang, CHENG Zhuo, FAN J A, et al. Metal oxide redox chemistry for chemical looping processes[J]. Nature Reviews Chemistry, 2018, 2(11): 349-364. | 72 | FAN Liang-Shih, LI Fanxing. Chemical looping technology and its fossil energy conversion applications[J]. Industrial & Engineering Chemistry Research, 2010, 49(21): 10200-10211. | 73 | 曾亮, 罗四维, 李繁星, 等. 化学链技术及其在化石能源转化与二氧化碳捕集领域的应用[J]. 中国科学(化学), 2012, 42(3): 260-281. | 73 | ZENG Liang, LUO Siwei, LI Fanxing, et al. Chemical looping technology and its applications in fossil fuel conversion and CO2 capture[J]. Scientia Sinica Chimica, 2012, 42(3): 260-281. | 74 | KUNZE C, SPLIETHOFF H. Assessment of oxy-fuel, pre- and post-combustion-based carbon capture for future IGCC plants[J]. Applied Energy, 2012, 94: 109-116. | 75 | Powerfuel 900MW Hatfield IGCC project United Kingdom[EB/OL].[2009-02-15]. . | 76 | Siemens system picked for 270MW coal-to-gas plant[EB/OL].[2009-05-14] . | 77 | GUO Yun, HUANG Zhiqiang, ZHOU Zhiguan. Technology roadmap of IGCC industry in China[J]. Energy and Power Engineering, 2015, 7(11): 535-545. | 78 | COURSON C, GALLUCCI K. CaO-based high-temperature CO2 sorbents[M]//WANG Qiang. Pre-combustion carbon dioxide capture materials. Cambridge: Royal Society of Chemistry, 2018: 144-237. | 79 | SCHWACH P, PAN Xiulian, BAO Xinhe. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects[J]. Chemical Reviews, 2017, 117(13): 8497-8520. | 80 | DING Yulong, ALPAY E. Adsorption-enhanced steam-methane reforming[J]. Chemical Engineering Science, 2000, 55(18): 3929-3940. | 81 | ORTIZ A L, HARRISON D P. Hydrogen production using sorption-enhanced reaction[J]. Industrial & Engineering Chemistry Research, 2001, 40(23): 5102-5109. | 82 | YI Kwang Bok, HARRISON D P. Low-pressure sorption-enhanced hydrogen production[J]. Industrial & Engineering Chemistry Research, 2005, 44(6): 1665-1669. | 83 | KATO M, MAEZAWA Y, TAKEDA S, et al. Pre-combustion CO2 capture using ceramic absorbent and methane steam reforming[J]. Journal of the Ceramic Society of Japan, 2005, 113(1315): 252-254. | 84 | JOHNSEN K, Hojung RYU, GRACE J R, et al. Sorption-enhanced steam reforming of methane in a fluidized bed reactor with dolomite as CO2-acceptor[J]. Chemical Engineering Science, 2006, 61(4): 1195-1202. | 85 | ALVAREZ D, ABANADES J C. Determination of the critical product layer thickness in the reaction of CaO with CO2[J]. Industrial & Engineering Chemistry Research, 2005, 44(15): 5608-5615. | 86 | HAN Chun, HARRISON D P. Simultaneous shift reaction and carbon dioxide separation for the direct production of hydrogen[J]. Chemical Engineering Science, 1994, 49(24): 5875-5883. | 87 | International Energy Agency. Technology roadmap—Hydrogen and fuel cells[R]. Paris, France, 2013. | 88 | KIRUBAKARAN V, SIVARAMAKRISHNAN V, NALINI R, et al. A review on gasification of biomass[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 179-186. | 89 | SCHWENGBER C A, ALVES H J, SCHAFFNER R A, et al. Overview of glycerol reforming for hydrogen production[J]. Renewable and Sustainable Energy Reviews, 2016, 58: 259-266. | 90 | DOU Binlin, ZHANG Hua, SONG Yongchen, et al. Hydrogen production from the thermochemical conversion of biomass: issues and challenges[J]. Sustainable Energy & Fuels, 2019, 3(2): 314-342. | 91 | FERMOSO J, HE Li, CHEN D. Sorption enhanced steam reforming (SESR): a direct route towards efficient hydrogen production from biomass-derived compounds[J]. Journal of Chemical Technology & Biotechnology, 2012, 87(10): 1367-1374. | 92 | HE Li, BERNTSEN H, CHEN De. Approaching sustainable H2 production: sorption enhanced steam reforming of ethanol[J]. The Journal of Physical Chemistry A, 2010, 114(11): 3834-3844. | 93 | LYSIKOV A I, TRUKHAN S N, OKUNEV A G. Sorption enhanced hydrocarbons reforming for fuel cell powered generators[J]. International Journal of Hydrogen Energy, 2008, 33(12): 3061-3066. | 94 | WU Gaowei, ZHANG Chengxi, LI Shuirong, et al. Sorption enhanced steam reforming of ethanol on Ni-CaO-Al2O3 multifunctional catalysts derived from hydrotalcite-like compounds[J]. Energy & Environmental Science, 2012, 5(10): 8942. | 95 | CUI Y, GALVITA V, RIHKO-STRUCKMANN L, et al. Steam reforming of glycerol: the experimental activity of La1-xCexNiO3 catalyst in comparison to the thermodynamic reaction equilibrium[J]. Applied Catalysis B: Environmental, 2009, 90(1/2): 29-37. | 96 | DOU Binlin, DUPONT V, RICKETT G, et al. Hydrogen production by sorption-enhanced steam reforming of glycerol[J]. Bioresource Technology, 2009, 100(14): 3540-3547. | 97 | DOU Binlin, WANG Chao, CHEN Haisheng, et al. Continuous sorption-enhanced steam reforming of glycerol to high-purity hydrogen production[J]. International Journal of Hydrogen Energy, 2013, 38(27): 11902-11909. | 98 | HE Li, PARRA J M S, BLEKKAN E A, et al. Towards efficient hydrogen production from glycerol by sorption enhanced steam reforming[J]. Energy & Environmental Science, 2010, 3(8): 1046. | 99 | FERMOSO J, HE Li, CHEN De. Production of high purity hydrogen by sorption enhanced steam reforming of crude glycerol[J]. International Journal of Hydrogen Energy, 2012, 37(19): 14047-14054. | 100 | SCOTT D S, PISKORZ J, RADLEIN D. Liquid products from the continuous flash pyrolysis of biomass[J]. Industrial & Engineering Chemistry Process Design and Development, 1985, 24(3): 581-588. | 101 | IORDANIDIS A, KECHAGIOPOULOS P, VOUTETAKIS S, et al. Autothermal sorption-enhanced steam reforming of bio-oil/biogas mixture and energy generation by fuel cells: concept analysis and process simulation[J]. International Journal of Hydrogen Energy, 2006, 31(8): 1058-1065. | 102 | GIL M V, FERMOSO J, RUBIERA F, et al. H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: an assessment of the effect of operation variables using response surface methodology[J]. Catalysis Today, 2015, 242: 19-34. | 103 | GIL M V, FERMOSO J, PEVIDA C, et al. Production of fuel-cell grade H2 by sorption enhanced steam reforming of acetic acid as a model compound of biomass-derived bio-oil[J]. Applied Catalysis B: Environmental, 2016, 184: 64-76. | 104 | ESTEBAN- DíEZ G, GIL M V, PEVIDA C, et al. Effect of operating conditions on the sorption enhanced steam reforming of blends of acetic acid and acetone as bio-oil model compounds[J]. Applied Energy, 2016, 177: 579-590. | 105 | XIE Huaqing, YU Qingbo, ZUO Zongliang, et al. Hydrogen production via sorption-enhanced catalytic steam reforming of bio-oil[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2345-2353. | 106 | HE Li, CHEN De. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises[J]. ChemSusChem, 2012, 5(3): 5875-595. | 107 | DANG Chengxiong, WU Shijie, YANG Guangxing, et al. Hydrogen production from sorption-enhanced steam reforming of phenol over a Ni-Ca-Al-O bi-functional catalyst[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(18): 7111-7120. | 108 | WU Xiang, WU Sufang. Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol[J]. Journal of Energy Chemistry, 2015, 24(3): 315-321. | 109 | QI Tongyichao, YANG Ying, WU Yijiang, et al. Sorption-enhanced methanol steam reforming for hydrogen production by combined copper-based catalysts with hydrotalcites[J]. Chemical Engineering and Processing: Process Intensification, 2018, 127: 72-82. | 110 | DEWOOLKAR K D, VAIDYA P D. Sorption-enhanced steam reforming of ethylene glycol over dual functional hydrotalcite materials promoted with Pt and Ru[J]. Chemistry Select, 2017, 2(27): 8326-8336. | 111 | DEWOOLKAR K D, VAIDYA P D. New hybrid materials for improved hydrogen production by the sorption-enhanced steam reforming of butanol[J]. Energy Technology, 2017, 5(8): 1300-1310. | 112 | DOU Binlin, WANG Kaiqiang, JIANG Bo, et al. Fluidized-bed gasification combined continuous sorption-enhanced steam reforming system to continuous hydrogen production from waste plastic[J]. International Journal of Hydrogen Energy, 2016, 41(6): 3803-3810. | 113 | LI Zhenshan, CAI Ningsheng, HUANG Yuyu, et al. Synthesis, experimental studies, and analysis of a new calcium-based carbon dioxide absorbent[J]. Energy & Fuels, 2005, 19(4): 1447-1452. | 114 | MARTAVALTZI C S, PEFKOS T D, LEMONIDOU A A. Operational window of sorption enhanced steam reforming of methane over CaO-Ca12Al14O33[J]. Industrial & Engineering Chemistry Research, 2011, 50(2): 539-545. | 115 | XIE Miaomiao, ZHOU Zhiming, QI Yang, et al. Sorption-enhanced steam methane reforming by in situ CO2 capture on a CaO-Ca9Al6O18 sorbent[J]. Chemical Engineering Journal, 2012, 207/208: 142-150. | 116 | KIM Jong-Nam, Chang Hyun KO, YI Kwang Bok. Sorption enhanced hydrogen production using one-body CaO-Ca12Al14O33-Ni composite as catalytic absorbent[J]. International Journal of Hydrogen Energy, 2013, 38(14): 6072-6078. | 117 | CHEN Xiangling, YANG Lei, ZHOU Zhiming, et al. Core-shell structured CaO-Ca9Al6O18@Ca5Al6O14/Ni bifunctional material for sorption-enhanced steam methane reforming[J]. Chemical Engineering Science, 2017, 163: 114-122. | 118 | WANG Chao, DOU Binlin, JIANG Bo, et al. Sorption-enhanced steam reforming of glycerol on Ni-based multifunctional |
[1] |
王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] |
谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[3] |
戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] |
常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[5] |
张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[6] |
白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[7] |
王蕴青, 杨国锐, 延卫. 过渡金属磷化物的改性方法及其在电化学析氢中的应用[J]. 化工进展, 2023, 42(7): 3532-3549. |
[8] |
顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[9] |
符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[10] |
王子宗, 刘罡, 王振维. 乙烯丙烯生产过程强化技术进展及思考[J]. 化工进展, 2023, 42(4): 1669-1676. |
[11] |
符乐, 杨阳, 徐文青, 耿錾卜, 朱廷钰, 郝润龙. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080. |
[12] |
尚玉, 肖满, 崔秋芳, 涂特, 晏水平. CO2捕集工艺中热再生气余热的PVDF/BN-OH平板复合膜回收特性[J]. 化工进展, 2023, 42(3): 1618-1628. |
[13] |
王璐, 张磊, 都健. 机器学习高效筛选用于CO2/N2选择性吸附分离的沸石材料[J]. 化工进展, 2023, 42(1): 148-158. |
[14] |
沈天绪, 沈来宏. 基于3kW塔式串行流化床差异燃料的化学链燃烧解析[J]. 化工进展, 2023, 42(1): 138-147. |
[15] |
王一茹, 宋小三, 水博阳, 王三反. 胺功能化介孔二氧化硅捕集CO2的研究进展[J]. 化工进展, 2022, 41(S1): 536-544. |
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn
|
|