化工进展 ›› 2022, Vol. 41 ›› Issue (2): 998-1008.DOI: 10.16085/j.issn.1000-6613.2021-0519
谷志攀1,2(), 阳季春2, 张叶2, 陶乐仁1,3(), 刘泛函2
收稿日期:
2021-03-15
修回日期:
2021-05-23
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
陶乐仁
作者简介:
谷志攀(1983—),男,讲师,博士研究生,研究方向为多孔介质传热传质。E-mail:基金资助:
GU Zhipan1,2(), YANG Jichun2, ZHANG Ye2, TAO Leren1,3(), LIU Fanhan2
Received:
2021-03-15
Revised:
2021-05-23
Online:
2022-02-05
Published:
2022-02-23
Contact:
TAO Leren
摘要:
采用静态重量法测定了市政污泥在30℃、40℃、50℃下的吸附等温线,选用11个常见的数学模型对实验数据进行了拟合并对最佳模型进行了解析,通过净等量吸附热qst、微分熵ΔS、扩散压力π、净积分焓qin和净积分熵ΔSin等指标评价污泥的热力学性质。试验结果表明,在温度恒定时,等温曲线属于Ⅱ型,GAB模型拟合效果最佳,能较好地反映平衡含水量随水分活度的变化。应用Clausius-Clapeyron方程,利用等温线模型计算净等量吸附热和微分熵,随着平衡含水率的增加,净等量吸附热和微分熵明显降低,调和平均温度Thm与等速温度Tl不等,焓-熵补偿理论成立。在一定的水活度下,扩散压力随温度的升高而减小,在温度恒定的情况下,扩张压力随水分活度增大而升高。净积分焓随平衡含水率的增加而减小,而净积分熵在低平衡含水率时随平衡含水率的增加而减小,在30℃、40℃和50℃时分别达到最小值-75.698J/(K?mol)、-78.987J/(K?mol)和-82.687J/(K?mol),然后呈上升趋势。
中图分类号:
谷志攀, 阳季春, 张叶, 陶乐仁, 刘泛函. 市政污泥吸附等温线模型和热力学性质[J]. 化工进展, 2022, 41(2): 998-1008.
GU Zhipan, YANG Jichun, ZHANG Ye, TAO Leren, LIU Fanhan. Mathematical modelling of water sorption isotherms and thermodynamic properties of municipal sewage sludge[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 998-1008.
盐 | 水活性 | ||
---|---|---|---|
30℃ | 40℃ | 50℃ | |
KOH | 0.074 | 0.063 | 0.057 |
LiCl | 0.11 | 0.11 | 0.11 |
MgCl2 | 0.32 | 0.31 | 0.30 |
K2CO3 | 0.43 | 0.43 | 0.42 |
NaBr | 0.56 | 0.53 | 0.51 |
NaNO3 | 0.73 | 0.71 | 0.58 |
NaCl | 0.75 | 0.75 | 0.71 |
KCl | 0.84 | 0.82 | 0.77 |
BaCl2 | 0.90 | 0.89 | 0.88 |
表1 饱和盐溶液及其相应的水活性
盐 | 水活性 | ||
---|---|---|---|
30℃ | 40℃ | 50℃ | |
KOH | 0.074 | 0.063 | 0.057 |
LiCl | 0.11 | 0.11 | 0.11 |
MgCl2 | 0.32 | 0.31 | 0.30 |
K2CO3 | 0.43 | 0.43 | 0.42 |
NaBr | 0.56 | 0.53 | 0.51 |
NaNO3 | 0.73 | 0.71 | 0.58 |
NaCl | 0.75 | 0.75 | 0.71 |
KCl | 0.84 | 0.82 | 0.77 |
BaCl2 | 0.90 | 0.89 | 0.88 |
模型 | 函数表达式 |
---|---|
Halsey | |
Henderson | |
Oswin | |
Smith | |
Lespam | |
Modified Halsey | |
Modified Henderson | |
Modified Oswin | |
Enderby | |
GAB | |
Peleg |
表2 等温线模型
模型 | 函数表达式 |
---|---|
Halsey | |
Henderson | |
Oswin | |
Smith | |
Lespam | |
Modified Halsey | |
Modified Henderson | |
Modified Oswin | |
Enderby | |
GAB | |
Peleg |
模型 | 参数 | 解吸 | 吸附 | ||||
---|---|---|---|---|---|---|---|
30℃ | 40℃ | 50℃ | 30℃ | 40℃ | 50℃ | ||
Enerby | k1 | 164.6200 | 154.6625 | 97.5232 | 228.5969 | 67.6927 | 41.9163 |
k2 | 4.3777 | 4.1455 | 3.2694 | 4.1245 | 3.4799 | 2.8263 | |
n1 | -21.4747 | -27.5731 | -16.7879 | -35.8708 | -10.4499 | -5.5114 | |
n2 | 0.7922 | 0.8081 | 0.8657 | 0.8080 | 0.8355 | 0.8684 | |
R2 | 0.9987 | 0.9918 | 0.9914 | 0.9994 | 0.9992 | 0.9936 | |
SSE | 6.7642×10-5 | 2.2067×10-5 | 2.2948×10-4 | 5.3219×10-5 | 5.7626×10-5 | 1.8101×10-4 | |
GAB | Mm | 6.9489 | 5.7250 | 4.9885 | 5.8989 | 5.5057 | 5.4636 |
K | 0.74617 | 0.78664 | 0.81484 | 0.7791 | 0.78411 | 0.77744 | |
C | 38.6475 | 38.8496 | 30.2742 | 61.2461 | 19.2301 | 13.1561 | |
R2 | 0.9986 | 0.9993 | 0.9981 | 0.9996 | 0.9987 | 0.9979 | |
SSE | 7.0842×10-5 | 5.4423×10-5 | 8.0862×10-5 | 4.5813×10-5 | 6.7642×10-5 | 8.5269×10-5 | |
Henderson | a | 0.004480 | 0.009660 | 0.01752 | 0.006690 | 0.01658 | 0.02156 |
b | 2.0713 | 1.8695 | 1.6997 | 1.9860 | 1.7112 | 1.6387 | |
R2 | 0.9834 | 0.9784 | 0.9784 | 0.9695 | 0.9915 | 0.9944 | |
SSE | 6.6675×10-4 | 1.0083×10-3 | 1.0083×10-3 | 1.6067×10-3 | 2.2751×10-4 | 1.6334×10-4 | |
Lespam | k1 | 4.1040 | 2.7496 | 2.3542 | 1.8656 | 4.3583 | 6.6839 |
k2 | 87.0296 | 102.9505 | 109.1127 | 120.1665 | 82.3949 | 64.8542 | |
b | 0.8122 | 1.31745 | 0.95785 | 3.09977 | -1.5383 | -4.6904 | |
R2 | 0.9871 | 0.9881 | 0.9789 | 0.9907 | 0.9812 | 0.9762 | |
SSE | 4.2235×10-4 | 3.5621×10-4 | 9.7470×10-4 | 2.4491×10-4 | 8.2005×10-4 | 1.1562×10-3 | |
Modified Halsey | a | 11.6936 | 7.2225 | 7.8648 | 5.1827 | 10.5786 | 4.0135 |
b | -1.50581 | -0.67996 | -0.92382 | -0.11143 | -1.51745 | -0.03796 | |
c | 2.3746 | 2.1245 | 2.0419 | 2.2667 | 2.0878 | 2.0452 | |
R2 | 0.9876 | 0.9906 | 0.9908 | 0.9964 | 0.9840 | 09864 | |
SSE | 3.8973×10-4 | 2.4711×10-4 | 2.4270×10-4 | 1.1932×10-4 | 6.3179×10-4 | 4.7042×10-4 | |
Modified Henderson | a | 2.749×10-5 | 7.2117×10-5 | 8.4859×10-5 | 3.92302×10-5 | 9.31591×10-5 | 1.12525×10-4 |
b | -153.8850 | -197.6900 | -157.8362 | -155.6501 | -160.9387 | -160.8820 | |
c | 2.1207 | 1.9468 | 1.8093 | 2.0644 | 1.7860 | 1.7145 | |
R2 | 0.9878 | 0.9831 | 0.9844 | 0.9738 | 0.9947 | 0.9958 | |
SSE | 3.7629×10-4 | 6.9230×10-4 | 6.0489×10-4 | 1.317×10-3 | 1.5677×10-4 | 1.3253×10-4 | |
Modified Oswin | a | -11.3030 | -12.0411 | -12.5870 | -11.8017 | -12.5025 | -12.7686 |
b | 0.5534 | 0.5350 | 0.5216 | 0.5410 | 0.5235 | 0.5168 | |
n | 0.3064 | 0.3387 | 0.3736 | 0.3181 | 0.3654 | 0.3854 | |
R2 | 0.9879 | 0.9980 | 0.9979 | 0.9955 | 0.9982 | 0.9933 | |
SSE | 3.6957×10-4 | 8.4066×10-5 | 8.6269×10-5 | 1.3914×10-4 | 7.9659×10-5 | 1.8762×10-4 | |
Peleg | k1 | 13.9311 | 14.6001 | 15.3302 | 14.9750 | 13.2518 | 12.9026 |
k2 | 12.8412 | 10.8048 | 10.3439 | 10.6098 | 11.7910 | 12.5854 | |
n1 | 4.5828 | 4.5950 | 5.3950 | 4.4285 | 5.6993 | 7.0189 | |
n2 | 0.3601 | 0.3618 | 0.4305 | 0.2973 | 0.5238 | 0.6412 | |
R2 | 0.9899 | 0.9988 | 0.9978 | 0.9983 | 0.9980 | 0.9899 | |
SSE | 2.6253×10-4 | 6.6439×10-5 | 8.8472×10-5 | 7.7456×10-5 | 8.4066×10-5 | 2.3509×10-4 | |
Halsey | k | 458.71 | 87.4532 | 53.1284 | 159.9017 | 62.3501 | 77.6911 |
n | 2.7239 | 2.23048 | 2.0917 | 2.4367 | 2.1552 | 2.2392 | |
R2 | 0.9890 | 0.9850 | 0.9930 | 0.9890 | 0.9768 | 0.9818 | |
SSE | 5.8658×10-4 | 8.0070×10-4 | 3.7246×10-4 | 5.865×10-4 | 1.239×10-3 | 9.7199×10-4 | |
Oswin | k | 11.37929 | 9.2118 | 8.3955 | 9.7888 | 8.4931 | 8.6816 |
n | 0.2821 | 0.3469 | 0.3676 | 0.3189 | 0.3608 | 0.3410 | |
R2 | 0.9942 | 0.9985 | 0.9965 | 0.9954 | 0.9972 | 0.9980 | |
SSE | 3.0823×10-4 | 7.8053×10-5 | 1.8511×10-4 | 2.4399×10-4 | 1.4764×10-4 | 1.0481×10-4 | |
Smith | a | 6.1447 | 3.9708 | 3.4089 | 4.7343 | 3.4131 | 3.7764 |
b | -6.6351 | -6.8745 | -6.6602 | -6.5677 | -6.6802 | -6.3820 | |
R2 | 0.9946 | 0.9942 | 0.9987 | 0.9967 | 0.9902 | 0.9906 | |
SSE | 2.8681×10-4 | 3.0823×10-4 | 6.7347×10-4 | 1.7440×10-4 | 5.2348×10-4 | 5.0093×10-4 |
表3 污泥3吸附、解吸等温线模型参数及精度
模型 | 参数 | 解吸 | 吸附 | ||||
---|---|---|---|---|---|---|---|
30℃ | 40℃ | 50℃ | 30℃ | 40℃ | 50℃ | ||
Enerby | k1 | 164.6200 | 154.6625 | 97.5232 | 228.5969 | 67.6927 | 41.9163 |
k2 | 4.3777 | 4.1455 | 3.2694 | 4.1245 | 3.4799 | 2.8263 | |
n1 | -21.4747 | -27.5731 | -16.7879 | -35.8708 | -10.4499 | -5.5114 | |
n2 | 0.7922 | 0.8081 | 0.8657 | 0.8080 | 0.8355 | 0.8684 | |
R2 | 0.9987 | 0.9918 | 0.9914 | 0.9994 | 0.9992 | 0.9936 | |
SSE | 6.7642×10-5 | 2.2067×10-5 | 2.2948×10-4 | 5.3219×10-5 | 5.7626×10-5 | 1.8101×10-4 | |
GAB | Mm | 6.9489 | 5.7250 | 4.9885 | 5.8989 | 5.5057 | 5.4636 |
K | 0.74617 | 0.78664 | 0.81484 | 0.7791 | 0.78411 | 0.77744 | |
C | 38.6475 | 38.8496 | 30.2742 | 61.2461 | 19.2301 | 13.1561 | |
R2 | 0.9986 | 0.9993 | 0.9981 | 0.9996 | 0.9987 | 0.9979 | |
SSE | 7.0842×10-5 | 5.4423×10-5 | 8.0862×10-5 | 4.5813×10-5 | 6.7642×10-5 | 8.5269×10-5 | |
Henderson | a | 0.004480 | 0.009660 | 0.01752 | 0.006690 | 0.01658 | 0.02156 |
b | 2.0713 | 1.8695 | 1.6997 | 1.9860 | 1.7112 | 1.6387 | |
R2 | 0.9834 | 0.9784 | 0.9784 | 0.9695 | 0.9915 | 0.9944 | |
SSE | 6.6675×10-4 | 1.0083×10-3 | 1.0083×10-3 | 1.6067×10-3 | 2.2751×10-4 | 1.6334×10-4 | |
Lespam | k1 | 4.1040 | 2.7496 | 2.3542 | 1.8656 | 4.3583 | 6.6839 |
k2 | 87.0296 | 102.9505 | 109.1127 | 120.1665 | 82.3949 | 64.8542 | |
b | 0.8122 | 1.31745 | 0.95785 | 3.09977 | -1.5383 | -4.6904 | |
R2 | 0.9871 | 0.9881 | 0.9789 | 0.9907 | 0.9812 | 0.9762 | |
SSE | 4.2235×10-4 | 3.5621×10-4 | 9.7470×10-4 | 2.4491×10-4 | 8.2005×10-4 | 1.1562×10-3 | |
Modified Halsey | a | 11.6936 | 7.2225 | 7.8648 | 5.1827 | 10.5786 | 4.0135 |
b | -1.50581 | -0.67996 | -0.92382 | -0.11143 | -1.51745 | -0.03796 | |
c | 2.3746 | 2.1245 | 2.0419 | 2.2667 | 2.0878 | 2.0452 | |
R2 | 0.9876 | 0.9906 | 0.9908 | 0.9964 | 0.9840 | 09864 | |
SSE | 3.8973×10-4 | 2.4711×10-4 | 2.4270×10-4 | 1.1932×10-4 | 6.3179×10-4 | 4.7042×10-4 | |
Modified Henderson | a | 2.749×10-5 | 7.2117×10-5 | 8.4859×10-5 | 3.92302×10-5 | 9.31591×10-5 | 1.12525×10-4 |
b | -153.8850 | -197.6900 | -157.8362 | -155.6501 | -160.9387 | -160.8820 | |
c | 2.1207 | 1.9468 | 1.8093 | 2.0644 | 1.7860 | 1.7145 | |
R2 | 0.9878 | 0.9831 | 0.9844 | 0.9738 | 0.9947 | 0.9958 | |
SSE | 3.7629×10-4 | 6.9230×10-4 | 6.0489×10-4 | 1.317×10-3 | 1.5677×10-4 | 1.3253×10-4 | |
Modified Oswin | a | -11.3030 | -12.0411 | -12.5870 | -11.8017 | -12.5025 | -12.7686 |
b | 0.5534 | 0.5350 | 0.5216 | 0.5410 | 0.5235 | 0.5168 | |
n | 0.3064 | 0.3387 | 0.3736 | 0.3181 | 0.3654 | 0.3854 | |
R2 | 0.9879 | 0.9980 | 0.9979 | 0.9955 | 0.9982 | 0.9933 | |
SSE | 3.6957×10-4 | 8.4066×10-5 | 8.6269×10-5 | 1.3914×10-4 | 7.9659×10-5 | 1.8762×10-4 | |
Peleg | k1 | 13.9311 | 14.6001 | 15.3302 | 14.9750 | 13.2518 | 12.9026 |
k2 | 12.8412 | 10.8048 | 10.3439 | 10.6098 | 11.7910 | 12.5854 | |
n1 | 4.5828 | 4.5950 | 5.3950 | 4.4285 | 5.6993 | 7.0189 | |
n2 | 0.3601 | 0.3618 | 0.4305 | 0.2973 | 0.5238 | 0.6412 | |
R2 | 0.9899 | 0.9988 | 0.9978 | 0.9983 | 0.9980 | 0.9899 | |
SSE | 2.6253×10-4 | 6.6439×10-5 | 8.8472×10-5 | 7.7456×10-5 | 8.4066×10-5 | 2.3509×10-4 | |
Halsey | k | 458.71 | 87.4532 | 53.1284 | 159.9017 | 62.3501 | 77.6911 |
n | 2.7239 | 2.23048 | 2.0917 | 2.4367 | 2.1552 | 2.2392 | |
R2 | 0.9890 | 0.9850 | 0.9930 | 0.9890 | 0.9768 | 0.9818 | |
SSE | 5.8658×10-4 | 8.0070×10-4 | 3.7246×10-4 | 5.865×10-4 | 1.239×10-3 | 9.7199×10-4 | |
Oswin | k | 11.37929 | 9.2118 | 8.3955 | 9.7888 | 8.4931 | 8.6816 |
n | 0.2821 | 0.3469 | 0.3676 | 0.3189 | 0.3608 | 0.3410 | |
R2 | 0.9942 | 0.9985 | 0.9965 | 0.9954 | 0.9972 | 0.9980 | |
SSE | 3.0823×10-4 | 7.8053×10-5 | 1.8511×10-4 | 2.4399×10-4 | 1.4764×10-4 | 1.0481×10-4 | |
Smith | a | 6.1447 | 3.9708 | 3.4089 | 4.7343 | 3.4131 | 3.7764 |
b | -6.6351 | -6.8745 | -6.6602 | -6.5677 | -6.6802 | -6.3820 | |
R2 | 0.9946 | 0.9942 | 0.9987 | 0.9967 | 0.9902 | 0.9906 | |
SSE | 2.8681×10-4 | 3.0823×10-4 | 6.7347×10-4 | 1.7440×10-4 | 5.2348×10-4 | 5.0093×10-4 |
参数 | 吸附 | 解吸 |
---|---|---|
Mm0 | 0.02996 | 1.6379 |
C0 | 1.1321 | 2.5146×10-12 |
K0 | 3.0870 | 0.7566 |
ΔH/kJ·mol-1 | 13.7074 | 3.2062 |
HM-HN/kJ·mol-1 | 8.9807 | 77.6208 |
HL-HN/kJ·mol-1 | -3.5705 | 0.07985 |
表4 GAB模型参数
参数 | 吸附 | 解吸 |
---|---|---|
Mm0 | 0.02996 | 1.6379 |
C0 | 1.1321 | 2.5146×10-12 |
K0 | 3.0870 | 0.7566 |
ΔH/kJ·mol-1 | 13.7074 | 3.2062 |
HM-HN/kJ·mol-1 | 8.9807 | 77.6208 |
HL-HN/kJ·mol-1 | -3.5705 | 0.07985 |
1 | MOU X Z, CHEN Z Q. Experimental study on the effect of sludge thickness on the characteristics of ultrasound-assisted hot air convective drying municipal sewage sludge[J]. Drying Technology, 2021, 39(6): 752-764. |
2 | 陈思思, 杨殿海, 庞维海, 等. 我国剩余污泥厌氧转化的主要影响因素及影响机制研究进展[J]. 化工进展, 2020, 39(4): 1511-1520. |
CHEN Sisi, YANG Dianhai, PANG Weihai, et al. Main influencing factors and mechanisms of anaerobic transformation of excess sludge in China[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1511-1520. | |
3 | ERIKSSON E, CHRISTENSEN N, EJBYE SCHMIDT J, et al. Potential priority pollutants in sewage sludge[J]. Desalination, 2008, 226(1/2/3): 371-388. |
4 | 宋文婷, 郭静, 杨倩倩, 等. 污泥有机污染物降解研究进展[J]. 化工进展, 2020, 39(1): 380-386. |
SONG Wenting, GUO Jing, YANG Qianqian, et al. Research progress on degradation of sludge organic pollutants[J]. Chemical Industry and Engineering Progress, 2020, 39(1): 380-386. | |
5 | 张俊杰, 邵敬爱, 黄河洵, 等. 利用污泥制备活性炭及其吸附特性的研究进展[J]. 化工进展, 2017, 36(10): 3876-3886. |
ZHANG Junjie, SHAO Jing’ai, HUANG Hexun, et al. Review on the preparation of activated carbon from sludge and its adsorption characteristics[J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3876-3886. | |
6 | 陈丹丹, 窦昱昊, 卢平, 等. 污泥深度脱水技术研究进展[J]. 化工进展, 2019, 38(10): 4722-4746. |
CHEN Dandan, DOU Yuhao, LU Ping, et al. A review on sludge deep dewatering technology[J]. Chemical Industry and Engineering Progress, 2019, 38(10): 4722-4746. | |
7 | 米琼, 戴世金, 张瑞娜, 等. 干污泥高维填埋的堆体边坡稳定性模拟与分析[J]. 中国环境科学, 2018, 38(4): 1397-1402. |
MI Qiong, DAI Shijin, ZHANG Ruina, et al. Slope stability simulation of dry sludge pile in high-dimensional landfill operation[J]. China Environmental Science, 2018, 38(4): 1397-1402. | |
8 | 王子文, 曹蓉, 杨艳坤, 等. 聚季铵盐调理污泥深度脱水过程与中试效能[J]. 化工进展, 2019, 38(7): 3458-3464. |
WANG Ziwen, CAO Rong, YANG Yankun, et al. Performance and pilot-scale efficiency of polyquaternary ammonium in sludge deep dewatering process[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3458-3464. | |
9 | WU B R, DAI X H, CHAI X L. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations[J]. Water Research, 2020, 180: 115912. |
10 | SYED-HASSAN S S A, WANG Y, HU S, et al. Thermochemical processing of sewage sludge to energy and fuel: fundamentals, challenges and considerations[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 888-913. |
11 | CHAN W P, WANG J Y. Comprehensive characterisation of sewage sludge for thermochemical conversion processes—Based on Singapore survey[J]. Waste Management, 2016, 54: 131-142. |
12 | 郑晓园, 蒋正伟, 陈伟, 等. 污水污泥水热炭化过程中磷的迁移转化特性[J]. 化工进展, 2020, 39(5): 2017-2025. |
ZHENG Xiaoyuan, JIANG Zhengwei, CHEN Wei, et al. Migration and transformation of phosphorus in sewage sludge during hydrothermal carbonization process[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 2017-2025. | |
13 | 范海宏, 武亚磊, 李斌斌, 等. 市政污泥干化动力学研究[J]. 环境工程学报, 2015, 9(9): 4488-4494. |
FAN Haihong, WU Yalei, LI Binbin, et al. Investigation of drying kinetic of municipal dewater sewage sludge[J]. Chinese Journal of Environmental Engineering, 2015, 9(9): 4488-4494. | |
14 | 张绪坤, 刘胜平, 吴青荣, 等. 污泥低温干燥动力学特性及干燥参数优化[J]. 农业工程学报, 2017, 33(17): 216-223. |
ZHANG Xukun, LIU Shengping, WU Qingrong, et al. Drying kinetics and parameters optimization of sludge drying at low temperature[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 216-223. | |
15 | 李斌斌, 范海宏, 任洋明, 等. 城市污泥薄层干燥特性及动力学研究[J]. 环境工程, 2016, 34(10): 103-107. |
LI Binbin, FAN Haihong, REN Yangming, et al. Municipal sludge drying characteristics and dynamics based on thin layer drying model[J]. Environmental Engineering, 2016, 34(10): 103-107. | |
16 | 郑龙, 伍健东, 周兴求, 等. 温度和相对湿度对污泥低温干燥速率的影响[J]. 环境工程学报, 2016, 10(2): 922-928. |
ZHENG Long, WU Jiandong, ZHOU Xingqiu, et al. Effects of temperature and relative humidity on drying rate of sludge at low temperature[J]. Chinese Journal of Environmental Engineering, 2016, 10(2): 922-928. | |
17 | 邓文义, 梅静, 刘亚军, 等. CaO和木屑对市政污泥干化过程中黏滞特性的影响[J]. 化工进展, 2017, 36(5): 1933-1939. |
DENG Wenyi, MEI Jing, LIU Yajun, et al. Effect of CaO and sawdust on sticky properties of municipal sewage sludge during drying process[J]. Chemical Industry and Engineering Progress, 2017, 36(5): 1933-1939. | |
18 | 刘亚军, 王爱春, 邓文义. 市政污泥热力干化过程中黏滞特性研究进展[J]. 化工进展, 2018, 37(6): 2378-2385. |
LIU Yajun, WANG Aichun, DENG Wenyi. Progress in sticky characteristics of sewage sludge during thermal drying process[J]. Chemical Industry and Engineering Progress, 2018, 37(6): 2378-2385. | |
19 | 郑玲玲, 程榕, 郑燕萍, 等. MVR空心桨叶干燥污泥的特性及动力学[J]. 化工进展, 2016, 35(S1): 53-57. |
ZHENG Lingling, CHENG Rong, ZHENG Yanping, et al. Drying properties and kinetics of MVR technology applied to the hollow blade dryer drying sludge[J]. Chemical Industry and Engineering Progress, 2016, 35(S1): 53-57. | |
20 | LÉONARD A, BLACHER S, MARCHOT P, et al. Measurement of shrinkage and cracks associated to convective drying of soft materials by X-ray microtomography[J]. Drying Technology, 2004, 22(7): 1695-1708. |
21 | FONT R, GOMEZ-RICO M F, FULLANA A. Skin effect in the heat and mass transfer model for sewage sludge drying[J]. Separation and Purification Technology, 2011, 77(1): 146-161. |
22 | HUANG Y W, CHEN M Q. Thin-layer isothermal drying kinetics of municipal sewage sludge based on two falling rate stages during hot-air-forced convection[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(1): 567-575. |
23 | GUO J, CHEN M Q, HUANG Y W, et al. Salinity effects on ultrasound-assisted hot air drying kinetics of sewage sludge[J]. Thermochimica Acta, 2019, 678: 178298. |
24 | EOM H, JANG Y H, LEE D Y, et al. Optimization of a hybrid sludge drying system with flush drying and microwave drying technology[J]. Chemical Engineering Research and Design, 2019, 148: 68-74. |
25 | DI FRAIA S, FIGAJ R D, MASSAROTTI N, et al. An integrated system for sewage sludge drying through solar energy and a combined heat and power unit fuelled by biogas[J]. Energy Conversion and Management, 2018, 171: 587-603. |
26 | WANG P L, MOHAMMED D, ZHOU P, et al. Roof solar drying processes for sewage sludge within sandwich-like chamber bed[J]. Renewable Energy, 2019, 136: 1071-1081. |
27 | HASSINE N BEN, CHESNEAU X, LAATAR A H, et al. Modelisation and simulation of heat and mass transfers during solar drying of sewage sludge with introduction of real climatic conditions[J]. Journal of Applied Fluid Mechanics, 2017, 10(2): 651-659. |
28 | JIANG J, DANG L P, YUENSIN C, et al. Simulation of microwave thin layer drying process by a new theoretical model[J]. Chemical Engineering Science, 2017, 162: 69-76. |
29 | BELLUR S R, CORONELLA C J, VÁSQUEZ V R. Analysis of biosolids equilibrium moisture and drying[J]. Environmental Progress & Sustainable Energy, 2009, 28(2): 291-298. |
30 | REMINGTON C, BOURGAULT C, DOREA C C. Measurement and modelling of moisture sorption isotherm and heat of sorption of fresh feces[J]. Water, 2020, 12(2): 323. |
31 | BOUGAYR E H, LAKHAL E K, IDLIMAM A, et al. Experimental study of hygroscopic equilibrium and thermodynamic properties of sewage sludge[J]. Applied Thermal Engineering, 2018, 143: 521-531. |
32 | FAKHFAKH R, MIHOUBI D, KECHAOU N. Moisture sorption isotherms and thermodynamic properties of bovine leather[J]. Heat and Mass Transfer, 2018, 54(4): 1163-1176. |
33 | 杨昭, 李想, 陶志超. 豌豆种子吸附等温线与热力学性质研究[J]. 农业机械学报, 2017, 48(10): 323-329. |
YANG Zhao, LI Xiang, TAO Zhichao. Sorption isotherms and thermodynamic properties of pea seed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 323-329. | |
34 | NOURHÈNE B, NEILA B, MOHAMMED K, et al. Sorptions isotherms and isosteric heats of sorption of olive leaves (Chemlali variety): experimental and mathematical investigations[J]. Food and Bioproducts Processing, 2008, 86(3): 167-175. |
35 | BERTOLIN C, DE FERRI L, STROJECKI M. Application of the Guggenheim, Anderson, de Boer (GAB) equation to sealing treatments on pine wood[J]. Procedia Structural Integrity, 2020, 26: 147-154. |
36 | POLATOĞLU B, BEŞE A V, KAYA M, et al. Moisture adsorption isotherms and thermodynamics properties of sucuk (Turkish dry-fermented sausage)[J]. Food and Bioproducts Processing, 2011, 89(4): 449-456. |
37 | MGHAZLI S, IDLIMAM A, MAHROUZ M, et al. Comparative moisture sorption isotherms, modelling and isosteric heat of sorption of controlled and irradiated Moroccan rosemary leaves[J]. Industrial Crops and Products, 2016, 88: 28-35. |
38 | OUERTANI S, AZZOUZ S, HASSINI L, et al. Moisture sorption isotherms and thermodynamic properties of Jack pine and palm wood: comparative study[J]. Industrial Crops and Products, 2014, 56: 200-210. |
39 | IGLESIAS H A, CHIRIFE J. Prediction of the effect of temperature on water sorption isotherms of food material[J]. International Journal of Food Science & Technology, 1976, 11(2): 109-116. |
40 | KAYA S, KAHYAOGLU T. Moisture sorption and thermodynamic properties of safflower petals and tarragon[J]. Journal of Food Engineering, 2007, 78(2): 413-421. |
[1] | 徐晨阳, 都健, 张磊. 基于图神经网络的化学反应优劣评价[J]. 化工进展, 2023, 42(S1): 205-212. |
[2] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[5] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[6] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[7] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[8] | 陈林, 徐培渊, 张晓慧, 陈杰, 徐振军, 陈嘉祥, 密晓光, 冯永昌, 梅德清. 液化天然气绕管式换热器壳侧混合工质流动及传热特性[J]. 化工进展, 2023, 42(9): 4496-4503. |
[9] | 张帆, 陶少辉, 陈玉石, 项曙光. 基于改进恒热传输模型的精馏模拟初始化[J]. 化工进展, 2023, 42(9): 4550-4558. |
[10] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[11] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[12] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[13] | 张智琛, 朱云峰, 成卫戍, 马守涛, 姜杰, 孙冰, 周子辰, 徐伟. 高压聚乙烯失控分解研究进展:反应机理、引发体系与模型[J]. 化工进展, 2023, 42(8): 3979-3989. |
[14] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[15] | 于静文, 宋璐娜, 刘砚超, 吕瑞东, 武蒙蒙, 冯宇, 李忠, 米杰. 一种吲哚基超交联聚合物In-HCP对水中碘的吸附作用[J]. 化工进展, 2023, 42(7): 3674-3683. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |