1 |
YU I, TSANG D. Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms[J]. Bioresource Technology, 2017, 238: 716-732.
|
2 |
WANG H, YANG B, ZHANG Q, et al. Catalytic routes for the conversion of lignocellulosic biomass to aviation fuel range hydrocarbons[J]. Renewable and Sustainable Energy Reviews, 2020, 120: 109612.1-109612.18.
|
3 |
SHU R, LI R, LIN B, et al. A review on the catalytic hydrodeoxygenation of lignin-derived phenolic compounds and the conversion of raw lignin to hydrocarbon liquid fuels[J]. Biomass & Bioenergy, 2020, 132: 105432.1-105432.14.
|
4 |
CHEN M Y, HUANG Y B, PANG H, et al. Hydrodeoxygenation of lignin-derived phenols into alkanes over carbon nanotube supported Ru catalysts in biphasic systems[J]. Green Chemistry, 2015, 17: 1710-1717.
|
5 |
SHU R Y, ZHANG Q, MA L, et al. Insight into the solvent, temperature and time effects on the hydrogenolysis of hydrolyzed lignin[J]. Bioresource Technology, 2016, 221: 568-575.
|
6 |
MA H, LI H, ZHAO W, et al. Selective depolymerization of lignin catalyzed by nickel supported on zirconium phosphate[J]. Green Chemistry, 2019, 21: 658-668.
|
7 |
SHU R, ZHANG Q, WANG C G, et al. Efficient and product-controlled depolymerization of lignin oriented by metal chloride cooperated with Pd/C[J]. Bioresource Technology, 2015, 179: 84-90.
|
8 |
CAO L, YU I, LIU Y, et al. Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects[J]. Bioresource Technology, 2018, 269: 465-475.
|
9 |
舒日洋. Pd/C与金属氯化物协同催化木质素氢解的研究[D]. 北京: 中国科学院大学, 2017.
|
|
SHU Riyang. Research on hydrogenolysis of lignin catalyzed by Pd/C cooperated with metal chloride[D]. Beijing: Chinese Academy of Sciences University, 2017.
|
10 |
陈宇, 纪红兵. 木质素类生物质催化热解制备精细化学品研究进展[J]. 化工进展, 2019, 38(1): 633-645.
|
|
CHEN Yu, JI Hongbing. Catalytic pyrolysis of lignin biomass for the production of fine chemicals[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 633-645.
|
11 |
MULLEN C A, BOATENG A A. Catalytic pyrolysis-GC/MS of lignin from several sources[J]. Fuel Processing Technology, 2010, 91(11): 1446-1458.
|
12 |
WANG S, DAI G, YANG H, et al. Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review[J]. Progress in Energy & Combustion Science, 2017, 62: 33-86.
|
13 |
KONG J, LUO Z, LI B, et al. Advances in depolymerization and hydrodeoxygenation of lignin[J]. Scientia Sinica, 2015, 45(5): 510.
|
14 |
沈晓骏, 黄攀丽, 文甲龙,等. 木质素氧化还原解聚研究现状[J]. 化学进展, 2017, 29(1): 162-178.
|
|
SHEN Xiaojun, HUANG Panli, WEN Jialong, et al. Research status of lignin oxidative and reductive depolymerization[J]. Progress in Chemistry, 2017, 29(1): 162-178.
|
15 |
RAHIMI A, UlBRICH A, COON J J, et al. Formic-acid-induced depolymerization of oxidized lignin to aromatics[J]. Nature, 2014, 515(7526): 249-252.
|
16 |
JASON M, NICHOLS LEE M, BISHOP ROBERT G, et al. Catalytic C—O bond cleavage of 2-aryloxy-1-arylethanols and its application to the depolymerization of lignin-related polymers[J]. Journal of the American Chemical Society, 2010, 132(36): 12554-12555.
|
17 |
BOSCH S VAN DEN, SCHUTYSER W, KOELEWIJN F, et al. Tuning the lignin oil OH-content with Ru and Pd catalysts during lignin hydrogenolysis on birch wood[J]. Chemical Communications, 2015, 51: 13158-13161.
|
18 |
ZHANG Z, SONG J, HAN B, et al. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids[J]. Chemical Reviews, 2016, 117(10): 6834-6880.
|
19 |
KNOPF B, NAHMMACHER P, SCHMID E. The European renewable energy target for 2030 —An impact assessment of the electricity sector[J]. Energy Policy, 2015, 85: 50-60.
|
20 |
齐学振, 谢敏慧, 林绍杰, 等. K+/CaO催化糠醛与甲基异丁基酮缩合制备生物航空燃料中间体[J]. 林产化学与工业, 2016, 36(6): 35-40.
|
|
QI Xuezhen, XIE Huimin, LIN Shaojie, et al. Production of bio-aviation fuel intermediates by aldol condensation of furfural and methyl isobutyl ketone over K+/CaO[J]. Chemistry and Industry of Forest Products, 2016, 36(6): 35-40.
|
21 |
ZHAN T, WU S, MA H, et al. Production of biofuel intermediates from furfural via aldol condensation over K2O clusters containing N-doped porous carbon materials with shape selectivity[J].Microporous and Mesoporous Materials, 2019, 281: 101-109.
|
22 |
李峥. 生物质和非生物质共转化合成高密度燃料组分的研究[D]. 天津: 天津大学, 2018.
|
|
LI Zheng. Study on synthesis of high density fuel components from biomass and non-biomass derived compounds[D]. Tianjin: Tianjin University, 2018.
|
23 |
LI H, RIISAGER A, SARAVANAMURUGAN S, et al. Carbon-increasing catalytic strategies for upgrading biomass into energy-intensive fuels and chemicals[J]. ACS Catalysis, 2017, 8: 148-187.
|
24 |
聂根阔. 基于松节油和木质纤维素平台化合物的高密度燃料合成[D]. 天津: 天津大学, 2017.
|
|
NIE Genkuo. Synthesis of high-density fuels based on turpentine and lignocellulose platform chemicals[D]. Tianjin: Tianjin University, 2017.
|
25 |
XUE Y, KELKAR A, BAI X. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer[J]. Fuel, 2016, 166: 227-236.
|
26 |
韩枫安.以苯甲醛类化合物为原料合成可再生航空煤油组分[D].吉林: 东北电力大学, 2019.
|
|
HAN Feng’an. Synthesis of renewable jet fuel with chemicals derived for benzaldehyde derivatives[D]. Jilin: Northeast Dianli University, 2019.
|
27 |
XU L, LI N, LI G, et al. Synthesis of high-density aviation fuels with methyl benzaldehyde and cyclohexanone[J]. Green Chemistry, 2018, 20: 3753-3760.
|
28 |
LIU Y, WANG Y, CAO Y, YU Q. One-pot synthesis of cyclic biofuel intermediates from biomass in choline chloride/formic acid-based deep eutectic solvents[J]. ACS Sustainable Chemistry and Engineering, 2020, 8(18): 6949-6955.
|
29 |
WANG R, LI G, TANG H, et al. Synthesis of decaline-type thermal-stable jet fuel additives with cycloketones[J]. ACS Sustainable Chemistry & Engineering, 2019, 7: 17354-17361.
|
30 |
YANG J, LI N, LI G, et al. Synthesis of renewable high-density fuels using cyclopentanone derived from lignocellulose[J]. Chemical Communications, 2014, 50(20): 2572-2574.
|
31 |
LIANG, D C, LI G Z, LIU Y H, et al. Controllable self-aldol condensation of cyclopentanone over MgO-ZrO2 mixed oxides: origin of activity & selectivity[J]. Catalysis Communications, 2016, 81:33-36.
|
32 |
HRONEC M, FULAJTÁROVA K, LIPTAJ T, et al. Cyclopentanone: a raw material for production of C15 and C17 fuel precursors[J]. Biomass & Bioenergy, 2014, 63(7): 291-299.
|
33 |
LIU Q, ZHANG C, SHI N, et al. Production of renewable long-chained cycloalkanes from biomass-derived furfurals and cyclic ketones[J]. RSC Advances, 2018, 8: 13686-13696.
|
34 |
BI P, WANG J, ZHANG Y, et al. From lignin to cycloparaffins and aromatics: directional synthesis of jet and diesel fuel range biofuels using biomass[J]. Bioresource Technology, 2015,183: 10-17.
|
35 |
NIE G, DAI Y Y, LIU Y N, et al. High yield one-pot synthesis of high density and low freezing point jet-fuel-ranged blending from bio-derived phenol and cyclopentanol[J]. Chemical Engineering Science, 2019, 207: 441-447.
|
36 |
邓强. 基于木质纤维素合成高密度烷烃燃料研究[D]. 天津: 天津大学, 2016.
|
|
DENG Qiang. Study on synthesis of lignocellulose-based high density alkane fuels[D]. Tianjin: Tianjin University, 2016.
|
37 |
WRIGHT M E, HARVEY B G, QUINTANA R L. Highly efficient zirconium-catalyzed batch conversion of 1-butene: a new route to jet fuels[J]. Energy & Fuels, 2008, 22(5): 3299-3302.
|
38 |
ARIAS-UGARTE R, WEKESA F S, SCHUNEMANN S, et al. Iron(Ⅲ)-catalyzed dimerization of cycloolefins: synthesis of high-density fuel candidates[J]. Energy & Fuels, 2015, 29: 8162-8167.
|
39 |
XIE J, ZHANG X, LIU Y, et al. Synthesis of high-density liquid fuel via Diels-Alder reaction of dicyclopentadiene and lignocellulose-derived 2-methylfuran[J]. Catalysis Today, 2019,319: 139-144.
|
40 |
张兴华. 木质素催化降解及降解产物加氢脱氧制备烃类化合物[D]. 北京: 中国科学院大学, 2013.
|
|
ZHANG Xinghua. Catalytic degradation of lignin and hydrodeoxygenation of degradation products for production of hydrocarbons[D]. Beijing: Chinese Academy of Sciences University, 2013.
|
41 |
WANG H L, WANG H M, KUHN E, et al. Production of jet fuel-range hydrocarbons from hydrodeoxygenation of lignin over super lewis acid combined with metal catalysts[J]. ChemSusChem, 2018, 11: 285-291.
|
42 |
MA D, LU S, LIU X, et al. Depolymerization and hydrodeoxygenation of lignin to aromatic hydrocarbons with a Ru catalyst on a variety of Nb-based supports[J]. Chinese Journal of Catalysis, 2019, 40(4): 609-617.
|
43 |
ZHOU M, CHEN C, LIU P, et al. Catalytic hydrotreatment of β-O-4 ether in lignin: cleavage of the C—O bond and hydrodeoxygenation of lignin-derived phenols in one pot[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(38): 14511-14523.
|
44 |
赵岩, 徐清, 傅尧,等. 由木质素制备高品位运输燃料初探[J]. 化学通报, 2017, 80(3): 278-282.
|
|
ZHAO Yan, XU Qing, FU Yao, et al. Preliminary study on preparation of high-quality transportation fuels from lignin[J]. Chemistry, 2017, 80(3): 278-282.
|