1 |
中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2018.
|
|
National Bureau of Statistics of the People’s Republic of China. China statistical yearbook[M]. Beijing: China Statistical Press, 2018.
|
2 |
章骅, 于思源, 邵立明, 等. 烟气净化工艺和焚烧炉类型对生活垃圾焚烧飞灰性质的影响[J]. 环境科学, 2018, 39(1): 467-476.
|
|
ZHANG Hua, YU Siyuan, SHAO Liming, et al. Influence of air pollution control (APC) systems and furnace type on the characteristics of APC residues from municipal solid waste incinerators[J]. Environmental Science, 2018, 39(1): 467-476.
|
3 |
MA Wenchao, CHEN Dongmei, PAN Minhui, et al. Performance of chemical chelating agent stabilization and cement solidification on heavy metals in MSWI fly ash: a comparative study[J]. Journal of Environmental Management, 2019, 247: 169-177.
|
4 |
SUN Yangyu, XU Congbin, YANG Wenjie, et al. Evaluation of a mixed chelator as heavy metal stabilizer for municipal solid-waste incineration fly ash: behaviors and mechanisms[J]. Journal of the Chinese Chemical Society, 2019, 66(2): 188-196.
|
5 |
LINDBERG D, MOLIN C, HUPA M. Thermal treatment of solid residues from WtE units: a review[J]. Waste Management, 2015, 37: 82-94.
|
6 |
熊祖鸿, 范根育, 鲁敏, 等. 垃圾焚烧飞灰处置技术研究进展[J]. 化工进展, 2013, 32(7): 1678-1684.
|
|
XIONG Zuhong, FAN Genyu, LU Min, et al. Treatment technologies of municipal solid waste incinerator fly ash: a review[J]. Chemical Industry and Engineering Progress, 2013, 32(7): 1678-1684.
|
7 |
苏蓉. 生活垃圾焚烧飞灰的处理[J]. 广州化工, 2016, 44(24): 104-106.
|
|
SU Rong. Fly ash processing in living garbage incineration[J]. Guangzhou Chemical Industry, 2016, 44(24): 104-106.
|
8 |
LONG Ling, JIANG Xuguang, Guojun LYU, et al. Characteristics of fly ash from waste-to-energy plants adopting grate-type or circulating fluidized bed incinerators: a comparative study[J/OL]. Energy Sources Part A: Recovery Utilization and Environmental Effects. DOI: 10.1080/15567036.2020.1796851.
|
9 |
MA Xiaojun, JIANG Xuguang, JIN Yuqi, et al. Hydrothermal stabilization of fly ash from a fluidized bed incinerator co-firing refuse and coal[J]. Fresenius Environmental Bulletin, 2012, 21(3): 586-592.
|
10 |
LIU Jianwen, LUO Wenzhi, CAO Hailin, et al. Understanding the immobilization mechanisms of hazardous heavy metal ions in the cage of sodalite at molecular level: a DFT study[J]. Microporous and Mesoporous Materials, 2020, 306: 110409.
|
11 |
QIU Qili, CHEN Qian, JIANG Xuguang, et al. Improving microwave-assisted hydrothermal degradation of PCDD/Fs in fly ash with added Na2HPO4 and water-washing pretreatment[J]. Chemosphere, 2019, 220: 1118-1125.
|
12 |
邱琪丽. 垃圾焚烧飞灰的微波水热法无害化处置及产物吸附性能研究[D]. 杭州: 浙江大学, 2019.
|
|
QIU Qili. Study on microwave-assisted hydrothermal disposal and product adsorption property of MSWI fly ash[D]. Hangzhou: Zhejiang University, 2019.
|
13 |
BAYUSENO A P, SCHMAHL W W, MUELLEJANS T. Hydrothermal processing of MSWI fly ash-towards new stable minerals and fixation of heavy metals[J]. Journal of Hazardous Materials, 2009, 167(1/2/3): 250-259.
|
14 |
United States Environmental Protection Agency. Toxicity characteristic leaching procedure: SW-846 Test Method 1311[S]. 1992.
|
15 |
Federal Government of the United States. Toxicity characteristics of hazardous waste: 40 CFR §261.24[S]. 1992.
|
16 |
JIN Jian, LI Xiaodong, CHI Yong, et al. Heavy metals stabilization in medical waste incinerator fly ash using alkaline assisted supercritical water technology[J]. Waste Management & Research, 2010, 28(12): 1133-1142.
|
17 |
中华人民共和国环境保护部. 危险废物鉴别标准浸出毒性鉴别: [S]. 北京: 中国环境科学出版社, 2007.
|
|
Ministry of Ecology Environment of the People’s Republic of China. Identification standards for hazardous wastes: [S]. Beijing: China Environment Science Press, 2007.
|
18 |
JIN Jian, LI Xiaodong, CHI Yong, et al. Co-disposal of heavy metals containing waste water and medical waste incinerator fly ash by hydrothermal process with addition of sodium carbonate: a case study on Cu(II) removal[J]. Water, Air, & Soil Pollution, 2010, 209(1/2/3/4): 391-400.
|
19 |
中华人民共和国环境保护部. 生活垃圾填埋场污染控制标准: [S]. 北京: 中国环境科学出版社, 2008.
|
|
Ministry of Ecology Environment of the People’s Republic of China. Standard for pollution control on landfill site of municipal solid waste: [S]. Beijing: China Environment Science Press, 2008.
|
20 |
中华人民共和国环境保护部. 污水综合排放标准: [S]. 北京: 中国环境科学出版社, 1996.
|
|
Ministry of Ecology Environment of the People’s Republic of China. Integrated wastewater discharge standard: [S]. Beijing: China Environment Science Press, 1996.
|
21 |
JIN Yuqi, MA Xiaojun, JIANG Xuguang, et al. Effects of hydrothermal treatment on the major heavy metals in fly ash from municipal solid waste incineration[J]. Energy & Fuels, 2013, 27(1): 394-400.
|
22 |
马晓军. 水热法处理生活垃圾焚烧飞灰中重金属和二英的研究[D]. 杭州: 浙江大学, 2013.
|
|
MA Xiaojun. Study on hydrothermal treatment of heavy metals and PCDD/Fs in MSWI fly ash[D]. Hangzhou: Zhejiang University, 2013.
|
23 |
CHEN Zhan, YU Guangwei, WANG Yin, et al. Fate of heavy metals during co-disposal of municipal solid waste incineration fly ash and sewage sludge by hydrothermal coupling pyrolysis process[J]. Waste Management, 2020, 109: 28-37.
|
24 |
阮煜, 宗达, 陈志良, 等. 水热法协同处置不同垃圾焚烧炉飞灰及其机理[J]. 中国环境科学, 2018, 38(7): 2602-2608.
|
|
RUAN Yu, ZONG Da, CHEN Zhiliang, et al. Co-hydrothermal processing for stabilize of different waste incinerator fly ash and its mechanism[J]. China Environmental Science, 2018, 38(7): 2602-2608.
|
25 |
金剑. 水热法垃圾焚烧飞灰重金属稳定化处理及同步去除废水中重金属[D]. 杭州: 浙江大学, 2010.
|
|
JIN Jian. A novel hydrothermal process to stabilize heavy metals from both fly ash and waste water[D]. Hangzhou: Zhejiang University, 2010.
|
26 |
CAPRAI V, SCHOLLBACH K, BROUWERS H J H. Influence of hydrothermal treatment on the mechanical and environmental performances of mortars including MSWI bottom ash[J]. Waste Management, 2018, 78: 639-648.
|
27 |
张超. 碱性水热法稳定生活垃圾焚烧飞灰中重金属的研究[D]. 重庆: 重庆大学, 2017.
|
|
ZHANG Chao. Study on alkaline hydrothermal treatment for stabilization of heavy metals in fly ash from municipal solid waste incineration[D]. Chongqing: Chongqing University, 2017.
|
28 |
ROŻEK P, KRÓL M, MOZGAWA W. Solidification/stabilization of municipal solid waste incineration bottom ash via autoclave treatment: Structural and mechanical properties[J]. Construction and Building Materials, 2019, 202: 603-613.
|
29 |
BISWAL B K, CHEN Zhitao, YANG Enhua. Hydrothermal process reduced Pseudomonas aeruginosa PAO1-driven bioleaching of heavy metals in a novel aerated concrete synthesized using municipal solid waste incineration bottom ash[J]. Chemical Engineering Journal, 2019, 360: 1082-1091.
|
30 |
SHAN Chengchong, JING Zhenzi, PAN Lili, et al. Hydrothermal solidification of municipal solid waste incineration fly ash[J]. Research on Chemical Intermediates, 2011, 37(2/3/4/5): 551-565.
|
31 |
王磊. 水热法外加硅铝源稳定医疗废物焚烧飞灰中重金属的研究[D]. 杭州: 浙江大学, 2012.
|
|
WANG Lei. Study on Silicon-aluminum additives assisted hydrothermal process for stabilization of heavy metals in fly ash from medical waste incineration[D]. Hangzhou: Zhejiang University, 2012.
|
32 |
SHI Dezhi, HU Chunyan, ZHANG Jinlu, et al. Silicon-aluminum additives assisted hydrothermal process for stabilization of heavy metals in fly ash from MSW incineration[J]. Fuel Processing Technology, 2017, 165: 44-53.
|
33 |
TIAN Xiang, RAO Feng, MORALES-ESTRELLA R, et al. Effects of aluminum dosage on gel formation and heavy metal immobilization in alkali-activated municipal solid waste incineration fly ash[J]. Energy & Fuels, 2020, 34(4): 4727-4733.
|
34 |
WEI Yufeng, WANG Jin, WANG Junxia, et al. Hydrothermal processing, characterization and leaching toxicity of Cr-added “fly ash-metakaolin” based geopolymer[J]. Construction and Building Materials, 2020, 251: 118931.
|
35 |
SHI Dezhi, ZHANG Chao, ZHANG Jinlu, et al. Seed-assisted hydrothermal treatment with composite silicon-aluminum additive for solidification of heavy metals in municipal solid waste incineration fly ash[J]. Energy & Fuels, 2016, 30(12): 10661-10670.
|
36 |
胡雨燕, 陈德珍, Christensen T H. 水热条件下绿矾稳定垃圾焚烧飞灰的研究[J]. 环境污染与防治, 2007, 29(1): 4-8.
|
|
HU Yuyan, CHEN Dezhen, CHRISTENSEN T H. Chemical stabilization of incineration fly ash with FeSO4 under hydrothermal conditions[J]. Environmental Pollution & Control, 2007, 29(1): 4-8.
|
37 |
胡雨燕, 陈德珍. 水热条件下磷酸盐稳定垃圾焚烧飞灰的研究[J]. 建筑材料学报, 2008, 11(1): 121-126.
|
|
HU Yuyan, CHEN Dezhen. Study of incineration fly ash stabilization with phosphate under hydrothermal condition[J]. Journal of Building Materials, 2008, 11(1): 121-126.
|
38 |
HU Yuyan, ZHANG Pengfei, LI Jianping, et al. Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process[J]. Journal of Hazardous Materials, 2015, 299: 149-157.
|
39 |
CHEN Qian, LONG Ling, LIU Xiaobo, et al. Low-toxic zeolite fabricated from municipal solid waste incineration fly ash via microwave-assisted hydrothermal process with fusion pretreatment[J]. Journal of Material Cycles and Waste Management, 2020, 22(4): 1196-1207.
|
40 |
CHEN Qian, Guojun LYU, JIANG Xuguang, et al. Stabilization of heavy metals in municipal solid waste circulating fluidized bed incineration fly ash by fusion-hydrothermal method[J]. Waste Disposal & Sustainable Energy, 2019, 1(4): 251-259.
|
41 |
QIU Qili, JIANG Xuguang, Guojun LYU, et al. Adsorption of copper ions by fly ash modified through microwave-assisted hydrothermal process[J]. Journal of Material Cycles and Waste Management, 2019, 21: 469-477
|
42 |
QIU Qili, JIANG Xuguang, Shengyong LYU, et al. Effects of microwave-assisted hydrothermal treatment on the major heavy metals of municipal solid waste incineration fly ash in a circulating fluidized bed[J]. Energy & Fuels, 2016, 30(7): 5945-5952.
|
43 |
QIU Qili, JIANG Xuguang, Guojun LYU, et al. Stabilization of heavy metals in municipal solid waste incineration fly ash in circulating fluidized bed by microwave-assisted hydrothermal treatment with additives[J]. Energy & Fuels, 2016, 30(9): 7588-7595.
|
44 |
QIU Qili, JIANG Xuguang, CHEN Zhiliang, et al. Microwave-assisted hydrothermal treatment with soluble phosphate added for heavy metals solidification in MSWI fly ash[J]. Energy & Fuels, 2017, 31(5): 5222-5232.
|
45 |
QIU Qili, JIANG Xuguang, Guojun LYU, et al. Evolution of heavy metal speciation in MSWI fly ash after microwave-assisted hydrothermal treatment[J]. Chemistry Letters, 2018, 47(8): 960-963.
|