化工进展 ›› 2021, Vol. 40 ›› Issue (8): 4327-4345.DOI: 10.16085/j.issn.1000-6613.2020-1848
袁雨婷1(), 冯勇超1, 易红宏1,2(), 唐晓龙1,2, 于庆君1,2, 张媛媛1, 隗晶慧1, 孟宪政1
收稿日期:
2020-09-14
出版日期:
2021-08-05
发布日期:
2021-08-12
通讯作者:
易红宏
作者简介:
袁雨婷(1995—),女,硕士研究生,研究方向为大气污染控制。E-mail:基金资助:
YUAN Yuting1(), FENG Yongchao1, YI Honghong1,2(), TANG Xiaolong1,2, YU Qingjun1,2, ZHANG Yuanyuan1, WEI Jinghui1, MENG Xianzheng1
Received:
2020-09-14
Online:
2021-08-05
Published:
2021-08-12
Contact:
YI Honghong
摘要:
体相超疏水材料因其优异的疏水性能,可广泛应用于工业防锈、管道运输、光电材料、建筑材料、纺织等领域,成为目前功能材料的研究热点之一。本文首先针对体相超疏水材料的结构特性及制备方法进行了综述。其次,针对体相超疏水材料在对挥发性有机物(VOCs)、NOx和二氧化硫(SO2)的净化与检测、对二氧化碳(CO2)的捕集和还原等大气污染检测与控制领域的应用进展进行了概述。在此基础上,一方面对现有典型气体污染物控制技术的特点及其存在的问题以及体相超疏水材料与现有大气污染控制技术相结合所具备的优势进行了阐述;另一方面,对超疏水材料目前存在的耐久性差、制备过程复杂、制备原料昂贵且污染大等缺点,对体相超疏水材料的改进及应用提出了展望。
中图分类号:
袁雨婷, 冯勇超, 易红宏, 唐晓龙, 于庆君, 张媛媛, 隗晶慧, 孟宪政. 体相超疏水材料及其在大气污染控制领域的应用研究进展[J]. 化工进展, 2021, 40(8): 4327-4345.
YUAN Yuting, FENG Yongchao, YI Honghong, TANG Xiaolong, YU Qingjun, ZHANG Yuanyuan, WEI Jinghui, MENG Xianzheng. Research progress of superhydrophobic surface materials and its application in air pollution control[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4327-4345.
1 | ZHANG X H, XU S Q. Preparation and applications of super-hydrophobic materials[J]. MATEC Web of Conferences, 2018, 175: 01012. |
2 | DORRER C, RÜHE J. Some thoughts on superhydrophobic wetting[J]. Soft Matter, 2009, 5(1): 51-61. |
3 | DONG H Y, CHENG M J, ZHANG Y J, et al. Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed[J]. Journal of Materials Chemistry A, 2013, 1(19): 5886-5891. |
4 | WANG G, ZENG Z, WANG H, et al. Low drag porous ship with superhydrophobic and superoleophilic surface for oil spills cleanup[J]. ACS Applied Materials and Interfaces, 2015, 7(47): 26184-26194. |
5 | QIAN H C, XU D K, DU C W, et al. Dual-action smart coatings with a self-healing superhydrophobic surface and anti-corrosion properties[J]. Journal of Materials Chemistry A, 2017, 5(5): 2355-2364. |
6 | FORT JR T. Adsorption and boundary friction on polymer surfaces[J]. The Journal of Physical Chemistry, 1962, 66(6): 1136-1143. |
7 | DAS S, KUMAR S, SAMAL S K, et al. A review on superhydrophobic polymer nanocoatings: recent development and applications[J]. Industrial and Engineering Chemistry Research, 2018, 57(8): 2727-2745. |
8 | ZHANG W B, SHI Z, ZHANG F, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25(14): 2071-2076. |
9 | WANG Y Y, XUE J, WANG Q J, et al. Verification of icephobic/anti-icing properties of a superhydrophobic surface[J]. ACS Applied Materials and Interfaces, 2013, 5(8): 3370-3381. |
10 | WENZEL R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8): 988-994. |
11 | WENZEL R N. Surface roughness and contact angle[J]. The Journal of Physical and Colloid Chemistry, 1949, 53(9): 1466-1467. |
12 | CASSIE A B D, BAXTER S. Wettability of porous surfaces[J]. Transactions of the Faraday Society, 1944, 40: 546-551. |
13 | CASSIE A B D. Contact angles[J]. Discussions of the Faraday Society, 1948, 3: 11-16. |
14 | WANG S T, JIANG L. Definition of superhydrophobic states[J]. Advanced Materials, 2007, 19(21): 3423-3424. |
15 | LIN D M, ZENG X R, LI H Q, et al. One-pot fabrication of superhydrophobic and flame-retardant coatings on cotton fabrics via sol-gel reaction[J]. Journal of Colloid and Interface Science, 2019, 533: 198-206. |
16 | ZHANG L B, CHEN H, SUN J Q, et al. Layer-by-layer deposition of poly(diallyldimethylammonium chloride) and sodium silicate multilayers on silica-sphere-coated substrate—facile method to prepare a superhydrophobic surface[J]. Chemistry of Materials, 2007, 19(4): 948-953. |
17 | DARMANIN T, TAFFIN D G E, AMIGONI S, et al. Superhydrophobic surfaces by electrochemical processes[J]. Adv. Mater., 2013, 25(10): 1378-1394. |
18 | REZAEI S, MANOUCHERI I, MORADIAN R, et al. One-step chemical vapor deposition and modification of silica nanoparticles at the lowest possible temperature and superhydrophobic surface fabrication[J]. Chemical Engineering Journal, 2014, 252: 11-16. |
19 | SONG X Y, ZHAI J, WANG Y L, et al. Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties[J]. The Journal of Physical Chemistry B, 2005, 109(9): 4048-4052. |
20 | WANG X F, DING B, YU J Y, et al. Engineering biomimetic superhydrophobic surfaces of electrospun nanomaterials[J]. Nano Today, 2011, 6(5): 510-530. |
21 | CHENG Y, ZHU T X, LI S H, et al. A novel strategy for fabricating robust superhydrophobic fabrics by environmentally-friendly enzyme etching[J]. Chemical Engineering Journal, 2019, 355: 290-298. |
22 | FENG J S, TUOMINEN M T, ROTHSTEIN J P. Hierarchical superhydrophobic surfaces fabricated by dual-scale electron-beam-lithography with well-ordered secondary nanostructures[J]. Advanced Functional Materials, 2011, 21(19): 3715-3722. |
23 | ZHANG Q B, ZHANG K L, XU D G, et al. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications[J]. Progress in Materials Science. 2014, 60: 208-337. |
24 | NGUYEN D D, TAI N H, LEE S B, et al. Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method[J]. Energy and Environmental Science, 2012, 5(7): 7908. |
25 | LIU H, HUANG J Y, CHEN Z, et al. Robust translucent superhydrophobic PDMS/PMMA film by facile one-step spray for self-cleaning and efficient emulsion separation[J]. Chemical Engineering Journal, 2017, 330: 26-35. |
26 | XU L B, KARUNAKARAN R G, GUO J, et al. Transparent, superhydrophobic surfaces from one-step spin coating of hydrophobic nanoparticles[J]. ACS Applied Materials and Interfaces, 2012, 4(2): 1118-1125. |
27 | TAURINO R, FABBRI E, POSPIECH D, et al. Preparation of scratch resistant superhydrophobic hybrid coatings by sol-gel process[J]. Progress in Organic Coatings, 2014, 77(11): 1635-1641. |
28 | WANG S H, GUO X W, XIE Y J, et al. Preparation of superhydrophobic silica film on Mg-Nd-Zn-Zr magnesium alloy with enhanced corrosion resistance by combining micro-arc oxidation and sol-gel method[J]. Surface and Coatings Technology, 2012, 213: 192-201. |
29 | LI H, YANG J, LI P, et al. A facile method for preparation superhydrophobic paper with enhanced physical strength and moisture-proofing property[J]. Carbohydrate Polymers, 2017, 160: 9-17. |
30 | LI H, WANG X, HE Y Q, et al. Facile preparation of fluorine-free superhydrophobic/superoleophilic paper via layer-by-layer deposition for self-cleaning and oil/water separation[J]. Cellulose, 2019, 26(3): 2055-2074. |
31 | WANG H Y, HU Z Y, ZHU Y X, et al. Toward easily enlarged superhydrophobic materials with stain-resistant, oil-water separation and anticorrosion function by a water-based one-step electrodeposition method[J]. Industrial and Engineering Chemistry Research, 2017, 56(4): 933-941. |
32 | ZHANG F, SHI Z W, CHEN L S, et al. Porous superhydrophobic and superoleophilic surfaces prepared by template assisted chemical vapor deposition[J]. Surface and Coatings Technology, 2017, 315: 385-390. |
33 | JIANG H J, ZHANG L, CHEN J, et al. Hierarchical self-assembly of a porphyrin into chiral macroscopic flowers with superhydrophobic and enantioselective property[J]. ACS Nano, 2017, 11(12): 12453-12460. |
34 | ZHOU X, LEE Y Y, CHONG K S L, et al. Superhydrophobic and slippery liquid-infused porous surfaces formed by the self-assembly of a hybrid ABC triblock copolymer and their antifouling performance[J]. Journal of Materials Chemistry B, 2018, 6(3): 440-448. |
35 | RADWAN A B, MOHAMED A M A, ABDULLAH A M, et al. Corrosion protection of electrospun PVDF-ZnO superhydrophobic coating[J]. Surface and Coatings Technology, 2016, 289: 136-143. |
36 | DOU W W, WU J J, GU T Y, et al. Preparation of super-hydrophobic micro-needle CuO surface as a barrier against marine atmospheric corrosion[J]. Corrosion Science, 2018, 131: 156-163. |
37 | CHO S W, KIM J H, LEE H M, et al. Superhydrophobic Si surfaces having microscale rod structures prepared in a plasma etching system[J]. Surface and Coatings Technology, 2016, 306: 82-86. |
38 | CHEN Y P, WANG H W, YAO Q F, et al. Biomimetic taro leaf-like films decorated on wood surfaces using soft lithography for superparamagnetic and superhydrophobic performance[J]. Journal of Materials Science, 2017, 52(12): 7428-7438. |
39 | LIU C J, FENG X Y, LI N, et al. Super-hydrophobic Co3O4-loaded nickel foam with corrosion-resistant property prepared by combination of hydrothermal synthesis and PFAS modification[J]. Surface and Coatings Technology, 2017, 309: 1111-1118. |
40 | CAO C Y, CHENG J. Fabrication of superhydrophobic copper stearate@ Fe3O4 coating on stainless steel meshes by dip-coating for oil/water separation[J]. Surface and Coatings Technology, 2018, 349: 296-302. |
41 | LI H, ZHAO X Y, WU P F, et al. Facile preparation of superhydrophobic and superoleophilic porous polymer membranes for oil/water separation from a polyarylester polydimethylsiloxane block copolymer[J]. Journal of Materials Science, 2016, 51(6): 3211-3218. |
42 | LONG M Y, PENG S, DENG W S, et al. Robust and thermal-healing superhydrophobic surfaces by spin-coating of polydimethylsiloxane[J]. Journal of Colloid and Interface Science, 2017, 508: 18-27. |
43 | JEEVAHAN J, CHANDRASEKARAN M, BRITTO JOSEPH G, et al. Superhydrophobic surfaces: a review on fundamentals, applications, and challenges[J]. Journal of Coatings Technology and Research, 2018, 15(2): 231-250. |
44 | LI Y, LIU F, SUN J. A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings[J]. Chemical Communications, 2009(19): 2730. |
45 | NIMITTRAKOOLCHAI O U, SUPOTHINA S. Deposition of organic-based superhydrophobic films for anti-adhesion and self-cleaning applications[J]. Journal of the European Ceramic Society, 2008, 28(5): 947-952. |
46 | CHOY K L. Chemical vapour deposition of coatings[J]. Progress in Materials Science, 2003, 48(2): 57-170. |
47 | YIN S H, WU D X, YANG J, et al. Fabrication and surface characterization of biomimic superhydrophobic copper surface by solution-immersion and self-assembly[J]. Applied Surface Science, 2011, 257(20): 8481-8485. |
48 | QIAN B, SHEN Z. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir, 2005, 21(20): 9007-9009. |
49 | 赵晓非,杨明全,章磊,等. 仿生超疏水表面的制备与应用的研究进展[J]. 化工进展, 2016, 35(9): 2818-2829. |
ZHAO Xiaofei, YANG Mingquan, ZHANG Lei, et al. Research progress in fabrication and application of bioinspired super-hydrophobic surface[J]. Chemical Industry and Engineering Progress, 2016, 35(9): 2818-2829. | |
50 | KUMAR A, NANDA D. Chapter 3-methods and fabrication techniques of superhydrophobic surfaces[M]. Superhydrophobic Polymer Coatings, Amsterdam: Elsevier, 2019: 43-75. |
51 | LI L J, ZHANG Y Z, LEI J L, et al. A facile approach to fabricate superhydrophobic Zn surface and its effect on corrosion resistance[J]. Corrosion Science, 2014, 85: 174-182. |
52 | GURAV A B, XU Q F, LATTHE S S, et al. Superhydrophobic coatings prepared from methyl-modified silica particles using simple dip-coating method[J]. Ceramics International, 2015, 41(2): 3017-3023. |
53 | 赵美蓉,周惠言,康文倩,等. 超疏水表面制备方法的比较[J]. 复合材料学报, 2021, 38(2): 361-379. |
ZHAO Meirong, ZHOU Huiyan, KANG Wenqian, et al. A comparison of methods for fabricating superhydrophobic surface[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 361-379. | |
54 | WAN Y X, CHEN M J, LIU W, et al. The research on preparation of superhydrophobic surfaces of pure copper by hydrothermal method and its corrosion resistance[J]. Electrochimica Acta, 2018, 270: 310-318. |
55 | LIU M L, LUO Y F, JIA D M. Fabrication of a versatile composite material with three-dimensional superhydrophobic for aquatic show[J]. Chemical Engineering Journal, 2020, 398: 125362. |
56 | ZHANG L, LI H Q, LAI X J, et al. Thiolated graphene-based superhydrophobic sponges for oil-water separation[J]. Chemical Engineering Journal, 2017, 316: 736-743. |
57 | LI L J, RONG L D, XU Z T, et al. Cellulosic sponges with pH responsive wettability for efficient oil-water separation[J]. Carbohydrate Polymer, 2020, 237: 116133. |
58 | EZAZI M, SHRESTHA B, KLEIN N, et al. Self-healable superomniphobic surfaces for corrosion protection[J]. ACS Applied Materials and Interfaces, 2019, 11(33): 30240-30246. |
59 | CAI Y H, CHEN D Y, LI N J, et al. Superhydrophobic metal–organic framework membrane with self-repairing for high-efficiency oil/water emulsion separation[J]. ACS Sustainable Chemistry and Engineering, 2019, 7(2): 2709-2717. |
60 | PAN S Y, CHEN M, WU L M. Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry[J]. ACS Applied Materials and Interfaces, 2020, 12(4): 5157-5165. |
61 | GUO H, LEE S C, CHAN L Y, et al. Risk assessment of exposure to volatile organic compounds in different indoor environments[J]. Environmental Research, 2004, 94(1): 57-66. |
62 | LI L, LIU S Q, LIU J X. Surface modification of coconut shell based activated carbon for the improvement of hydrophobic VOC removal[J]. Journal of Hazardous Materials, 2011, 192(2): 683-690. |
63 | PODDAR T K, SIRKAR K K. A hybrid of vapor permeation and membrane-based absorption-stripping for VOC removal and recovery from gaseous emissions[J]. Journal of Membrane Science, 1997, 132(2): 229-233. |
64 | BELAISSAOUI B, MOULLEC Y L, FAVRE E, et al. Energy efficiency of a hybrid membrane/condensation process for VOC (volatile organic compounds) recovery from air: a generic approach[J]. Energy, 2016, 95: 291-302. |
65 | ARULNEYAM D, SWAMINATHAN T. Biodegradation of mixture of VOC’s in a biofilter[J]. Journal of Environmental Sciences-China, 2004, 16(1): 30-33. |
66 | CHEN K Y, ZHU L Z, YANG K. Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air[J]. Journal of Environmental Sciences, 2015, 32: 189-195. |
67 | KOUTSOSPYROS A D, YIN S M, CHRISTODOULATOS C, et al. Plasmochemical degradation of volatile organic compounds (VOC) in a capillary discharge plasma reactor[C]//IEEE Transactions on Plasma Science, 2005, 33(1): 42-49. |
68 | KRAUS M, TROMMLER U, HOLZER F, et al. Competing adsorption of toluene and water on various zeolites[J]. Chemical Engineering Journal, 2018, 351: 356-363. |
69 | 郭秋敏. 非均匀气液成核及纳米颗粒在气液界面稳定性的密度泛函理论研究[D]. 北京:北京化工大学, 2013. |
GUO Qiumin. Heterogeneous vapor-liquid nucleation and stability of nanoparticles at the vapor-liquid interface: a density functional theory study[D]. Beijing: Beijing University of Chemical Technology, 2013. | |
70 | LI R N, CHONG S J, ALTAF N, et al. Synthesis of ZSM-5/siliceous zeolite composites for improvement of hydrophobic adsorption of volatile organic compounds[J]. Frontiers in Chemistry, 2019, 7: 505. |
71 | BOINOVICH L B, EMELYANENKO A M, PASHININ A S, et al. Origins of thermodynamically stable superhydrophobicity of boron nitride nanotubes coatings[J]. Langmuir, 2012, 28(2): 1206-1216. |
72 | ZHU X, FENG S S, ZHAO S F, et al. Perfluorinated superhydrophobic and oleophobic SiO2@PTFE nanofiber membrane with hierarchical nanostructures for oily fume purification[J]. Journal of Membrane Science, 2020, 594: 117473. |
73 | WANG J H, WANG W Q, HAO Z P, et al. A superhydrophobic hyper-cross-linked polymer synthesized at room temperature used as an efficient adsorbent for volatile organic compounds[J]. RSC Advances, 2016, 6(99): 97048-97054. |
74 | YAN Z J, REN H, MA H P, et al. Construction and sorption properties of pyrene-based porous aromatic frameworks[J]. Microporous and Mesoporous Materials, 2013, 173: 92-98. |
75 | SHIN H C, PARK J W, PARK K, et al. Removal characteristics of trace compounds of landfill gas by activated carbon adsorption[J]. Environmental Pollution, 2002, 119(2): 227-236. |
76 | WANG J H, WANG G, WANG W Q, et al. Hydrophobic conjugated microporous polymer as a novel adsorbent for removal of volatile organic compounds[J]. Journal of Materials Chemistry A, 2014, 2(34): 14028-14037. |
77 | WANG W Q, WANG J H, CHEN J G, et al. Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams[J]. Chemical Engineering Journal, 2015, 281: 34-41. |
78 | HU Q, DOU B J, TIAN H, et al. Mesoporous silicalite-1 nanospheres and their properties of adsorption and hydrophobicity[J]. Microporous and Mesoporous Materials, 2010, 129(1/2): 30-36. |
79 | DOU B J, LI J J, WANG Y F, et al. Adsorption and desorption performance of benzene over hierarchically structured carbon-silica aerogel composites[J]. Journal of Hazardous Materials, 2011, 196: 194-200. |
80 | ALLEN M R, BRAITHWAITE A, HILLS C C. Trace organic compounds in landfill gas at seven U.K. waste disposal sites[J]. Environmental Science and Technology, 1997, 31(4): 1054-1061. |
81 | TURKIN A A, DUTKA M, VAINCHTEIN D, et al. Deposition of SiO2 nanoparticles in heat exchanger during combustion of biogas[J]. Applied Energy, 2014, 113: 1141-1148. |
82 | BAK C U, LIM C J, LEE J G, et al. Removal of sulfur compounds and siloxanes by physical and chemical sorption[J]. Separation and Purification Technology, 2019, 209: 542-549. |
83 | SCHWEIGKOFLER M, NIESSNER R. Removal of siloxanes in biogases[J]. Journal of Hazardous Materials, 2001, 83(3): 183-196. |
84 | JUNG H, LEE D Y, JURNG J. Low-temperature regeneration of novel polymeric adsorbent on decamethylcyclopentasiloxane (D5) removal for cost-effective purification of biogases from siloxane[J]. Renewable Energy, 2017, 111: 718-723. |
85 | GISLON P, GALLI S, MONTELEONE G. Siloxanes removal from biogas by high surface area adsorbents[J]. Waste Management, 2013, 33(12): 2687-2693. |
86 | ZHANG Y C, ZOU G S, LIU L, et al. Time-dependent wettability of nano-patterned surfaces fabricated by femtosecond laser with high efficiency[J]. Applied Surface Science, 2016, 389: 554-559. |
87 | KIETZIG A M, HATZIKIRIAKOS S G, ENGLEZOS P. Patterned superhydrophobic metallic surfaces[J]. Langmuir, 2009, 25(8):4821-4827. |
88 | GARGIULO N, PELUSO A, APREA P, et al. Chromium-based MIL-101 metal organic framework as a fully regenerable D4 adsorbent for biogas purification[J]. Renewable Energy, 2019, 138: 230-235. |
89 | LIU Y H, MENG Z Y, WANG J Y, et al. Removal of siloxanes from biogas using acetylated silica gel as adsorbent[J]. Petroleum Science, 2019, 16(4): 920-928. |
90 | MENG Z Y, LIU Y H, LI X, et al. Removal of siloxane (L2) from biogas using methyl-functionalised silica gel as adsorbent[J]. Chemical Engineering Journal, 2020, 389: 124440. |
91 | YAN X, HUANG Z, SETT S, et al. Atmosphere-mediated superhydrophobicity of rationally designed micro/nanostructured surfaces[J]. ACS Nano, 2019, 13(4): 4160-4173. |
92 | ANDREEVA N, ISHIZAKI T, BAROCH P, et al. High sensitive detection of volatile organic compounds using superhydrophobic quartz crystal microbalance[J]. Sensors and Actuators B: Chemical, 2012, 164(1): 15-21. |
93 | ESMERYAN K D, YORDANOV T A, VERGOV L G, et al. Humidity tolerant organic vapor detection using a superhydrophobic quartz crystal microbalance[J]. IEEE Sensors Journal, 2015, 15(11): 6318-6325. |
94 | WANG L Y, CHA X L, WU Y L, et al. Superhydrophobic polymerized n-octadecylsilane surface for BTEX sensing and stable toluene/water selective detection based on QCM sensor[J]. ACS Omega, 2018, 3(2): 2437-2443. |
95 | CHEN Y, WANG L Y, KONG J W, et al. Superhydrophobic hierarchical porous divinylbenzene polymer for BTEX sensing and toluene/water selective detection[J]. Chinese Chemical Letters, 2020, 31(8): 2125-2128. |
96 | PU Y J, XIE X Y, JIANG W J, et al. Low-temperature selective catalytic reduction of NOx with NH3 over zeolite catalysts: a review[J]. Chinese Chemical Letters, 2020, 31(10): 2549-2555. |
97 | KANG Z Z, YUAN Q X, ZHAO L Z, et al. Study of the performance, simplification and characteristics of SNCR de-NOx in large-scale cyclone separator[J]. Applied Thermal Engineering, 2017, 123: 635-645. |
98 | 于伟. 超疏水消氢催化剂涂层及膜反应器的研究[D]. 上海:华东理工大学, 2017. |
YU Wei. Superhydrophobic catalyst coating for hydrogen mitigation and superhydrophobic ceramic membrane contactor[D]. Shanghai: East China University of Science and Technology, 2017. | |
99 | KARTOHARDJONO S, SAKSONO N, SUPRAMONO D, et al. NOx removal from air through super hydrophobic hollow fiber membrane contactors[J]. International Journal of Technology, 2019, 10(3): 472-480. |
100 | BOUTAMINE M, BELLEL A, SAHLI S, et al. Hexamethyldisiloxane thin films as sensitive coating for quartz crystal microbalance based volatile organic compounds sensors[J]. Thin Solid Films, 2014, 552: 196-203. |
101 | ESMERYAN K D, GEORGIEVA V, VERGOV L, et al. A superhydrophobic quartz crystal microbalance based chemical sensor for NO2 detection[J]. Izvestiya Po Khimiya Bulgarska Akademiya Na Naukite, 2015, 47: 1039-1044. |
102 | WU J, LI Z, XIE X, et al. 3D superhydrophobic reduced graphene oxide for activated NO2 sensing with enhanced immunity to humidity[J]. Journal of Materials Chemistry A, 2018, 6(2): 478-488. |
103 | 杨德祥, 余龙红, 吴雷. 催化烟气湿法洗涤脱硫技术探讨[J]. 石油化工设计, 2008, 25(3): 1-4. |
YANG Dexiang, YU Longhong, WU Lei. Discussion on FCC flue gas wet scrubber desulfurization technology[J]. Petrochemical Design, 2008, 25(3): 1-4. | |
104 | ARIONO D, SIAGIAN U W R, WARDANI A K, et al. SO2 Removal from the flue gas by hollow fibre membrane contactor[J]. MATEC Web of Conferences, 2018, 156: 08007. |
105 | LI Y N, HAO Y C, YE H, et al. Single-sided superhydrophobic fluorinated silica/poly(ether sulfone) membrane for SO2 absorption[J]. Journal of Membrane Science, 2019, 580: 190-201. |
106 | YOU X, WU J J, CHI Y W. Superhydrophobic silica aerogels encapsulated fluorescent perovskite quantum dots for reversible sensing of SO2 in a 3D-printed gas cell[J]. Analytical Chemistry, 2019, 91(8): 5058-5066. |
107 | ZHOU C, CHEN Y M, SHANG P X, et al. Strong electrochemiluminescent interactions between carbon nitride nanosheet-reduced graphene oxide nanohybrids and folic acid, and ultrasensitive sensing for folic acid[J]. Analyst, 2016, 141(11): 3379-3388. |
108 | World Health Organization. Air quality guidelines: global update 2005: particulate matter, ozone, dioxidenitrogen, and sulfur dioxide[R]. World Health Organization, 2006. |
109 | LU X, ZHANG S J, XING J, et al. Progress of air pollution control in China and its challenges and opportunities in the ecological civilization era[J]. Engineering, 2020, 6(12): 1423-1431. |
110 | SAMANTA A, ZHAO A, SHIMIZU G K H, et al. Post-combustion CO2 capture using solid sorbents: a review[J]. Industrial and Engineering Chemistry Research, 2012, 51(4): 1438-1463. |
111 | YOUSEF A M, EL-MAGHLANY W M, ELDRAINY Y A, et al. New approach for biogas purification using cryogenic separation and distillation process for CO2 capture[J]. Energy, 2018, 156: 328-351. |
112 | BRUNETTI A, SCURA F, BARBIERI G, et al. Membrane technologies for CO2 separation[J]. Journal of Membrane Science, 2010, 359(1): 115-125. |
113 | YU X H, AN L, YANG J, et al. CO2 capture using a superhydrophobic ceramic membrane contactor[J]. Journal of Membrane Science, 2015, 496: 1-12. |
114 | AHMAD A L, MOHAMMED H N, OOI B S, et al. Deposition of a polymeric porous superhydrophobic thin layer on the surface of poly(vinylidenefluoride) hollow fiber membrane[J]. Polish Journal of Chemical Technology, 2013, 15(3): 1-6. |
115 | HIMMA N F, WENTEN I G. Superhydrophobic membrane contactor for acid gas removal[J]. Journal of Physics: Conference Series, 2017, 877: 012010. |
116 | WU X N, ZHAO B, WANG L, et al. Superhydrophobic PVDF membrane induced by hydrophobic SiO2 nanoparticles and its use for CO2 absorption[J]. Separation and Purification Technology, 2018, 190: 108-116. |
117 | LI S G, ROCHA D J, JAMES ZHOU S, et al. Post-combustion CO2 capture using super-hydrophobic, polyether ether ketone, hollow fiber membrane contactors[J]. Journal of Membrane Science, 2013, 430: 79-86. |
118 | NANDI S, WERNER-ZWANZIGER U, VAIDHYANATHAN R, et al. A triazine-resorcinol based porous polymer with polar pores and exceptional surface hydrophobicity showing CO2 uptake under humid conditions[J]. Journal of Materials Chemistry A, 2015, 3(42): 21116-21122. |
119 | ZHU X, MAHURIN S M, AN S H, et al. Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups[J]. Chemical Communications, 2014, 50(59): 7933-7936. |
120 | RAO K P, DEVI Y K, SURYACHANDRAM J, et al. A dense I1O3 hybrid superhydrophobic network, Pb(H-BTMB), exhibits selectivity toward CO2 gas sorption[J]. Inorganic Chemistry, 2017, 56(18): 11184-11189. |
121 | NORO S, NAKAMURA T. Fluorine-functionalized metal-organic frameworks and porous coordination polymers[J]. NPG Asia Materials, 2017, 9(9): e433. |
122 | MOGHADAM P Z, IVY J F, ARVAPALLY R K, et al. Adsorption and molecular siting of CO2, water, and other gases in the superhydrophobic, flexible pores of FMOF-1 from experiment and simulation[J]. Chemical Science, 2017, 8(5): 3989-4000. |
123 | LI A, CAO Q, ZHOU G, et al. Three-phase photocatalysis for the enhanced selectivity and activity of CO2 reduction on a hydrophobic surface[J]. Angewandte Chemie International Edition, 2019, 58(41): 14549-14555. |
124 | BÖRJESSON G, SUNDH I, SVENSSON B H, et al. Microbial oxidation of CH4 at different temperatures in landfill cover soils[J]. FEMS Microbiology Ecology, 2004, 48(3): 305-312. |
125 | BÖRJESSON G, SUNDH I, TUNLID A, et al. Microbial oxidation of CH4 at high partial pressures in an organic landfill cover soil under different moisture regimes[J]. FEMS Microbiology Ecology, 1998, 26(3): 207-217. |
126 | WASALATHANTHRI N D, POYRAZ A S, BISWAS S, et al. High-performance catalytic CH4 oxidation at low temperatures: inverse micelle synthesis of amorphous mesoporous manganese oxides and mild transformation to K2-xMn8O16 and ε-MnO2[J]. The Journal of Physical Chemistry C, 2015, 119(3): 1473-1482. |
127 | HE L, FAN Y L, BELLETTRE J, et al. A review on catalytic methane combustion at low temperatures: catalysts, mechanisms, reaction conditions and reactor designs[J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109589. |
128 | MURCIA-LÓPEZ S, BACARIZA M C, VILLA K, et al. Controlled photocatalytic oxidation of methane to methanol through surface modification of beta zeolites[J]. ACS Catalysis, 2017, 7(4): 2878-2885. |
129 | ZHENG B, TIAN D, ZHANG L, et al. Investigation of methane adsorption in strained IRMOF-1[J]. The Journal of Physical Chemistry C, 2019, 123(40): 24592-24597. |
130 | 周金平, 喻丽莎. 一种纳米纤维素的疏水改性方法:CN107383212A[P]. 2017-11-24. |
ZHOU Jinping, YU Lisha. Hydrophobic modification method of nanocellulose: CN107383212A[P] . 2017-11-24. | |
131 | LI N, CHEN W, CHEN G, et al. A low-cost, sustainable, and environmentally sound cellulose absorbent with high efficiency for collecting methane bubbles from seawater[J]. ACS Sustainable Chemistry and Engineering, 2018, 6(5): 6370-6377. |
132 | KARTOHARDJONO S, SHABANINDITA S, HARIANJA M, et al. N2O absorption through super hydrophobic hollow fiber membrane contactor[J]. Environmental Progress and Sustainable Energy, 2019, 38(2): 362-366. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[3] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[4] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[5] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[6] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[7] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[8] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[9] | 王谨航, 何勇, 史伶俐, 龙臻, 梁德青. 气体水合物阻聚剂研究进展[J]. 化工进展, 2023, 42(9): 4587-4602. |
[10] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[11] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[12] | 张振, 李丹, 陈辰, 吴菁岚, 应汉杰, 乔浩. 吸附树脂对唾液酸的分离纯化[J]. 化工进展, 2023, 42(8): 4153-4158. |
[13] | 张超, 杨鹏, 刘广林, 赵伟, 杨绪飞, 张伟, 宇波. 表面微结构对阵列微射流沸腾换热的影响[J]. 化工进展, 2023, 42(8): 4193-4203. |
[14] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[15] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |