化工进展 ›› 2021, Vol. 40 ›› Issue (7): 4064-4073.DOI: 10.16085/j.issn.1000-6613.2020-1646
汤茜1,2(), 范艺馨2, 苏欣2, 黄成思1,2, 孙玉伟1,2, 高永慧1, 王栋3
收稿日期:
2020-08-17
修回日期:
2020-09-10
出版日期:
2021-07-06
发布日期:
2021-07-19
通讯作者:
汤茜
作者简介:
汤茜(1980—),女,副教授,硕士生导师,研究方向为有机废水高级氧化处理。E-mail:基金资助:
TANG Qian1,2(), FAN Yixin2, SU Xin2, HUANG Chengsi1,2, SUN Yuwei1,2, GAO Yonghui1, WANG Dong3
Received:
2020-08-17
Revised:
2020-09-10
Online:
2021-07-06
Published:
2021-07-19
Contact:
TANG Qian
摘要:
以玉米芯为主要原料,采用热沉积、高温焙烧法,制备N/B/Fe共掺杂生物质炭(N/B/Fe@BC),通过X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)和X射线光电子能谱仪(XPS)等手段对样品的晶格结构、形貌特征和组成等进行表征,并以对硝基酚为对象,探究N/B/Fe@BC电极的电芬顿催化性能。结果表明,N/B/Fe@BC为纳米薄片交错堆积的三维多孔结构,表面缺陷较未掺杂生物质炭显著增加,催化氧还原以两电子产H2O2为主。在电流强度50mA、初始pH为3的电芬顿体系中,120min时对硝基酚的去除率为97.93%±1.62%,60min内反应速率常数k为0.040min-1,是未掺杂生物质炭电极的2.7倍。N/B/Fe@BC电极的pH适用范围较宽,受水质的影响较小,循环使用10次后120min对硝基酚的去除率仍可达到85%以上。
中图分类号:
汤茜, 范艺馨, 苏欣, 黄成思, 孙玉伟, 高永慧, 王栋. N/B/Fe共掺杂生物质炭阴极制备及电芬顿降解对硝基酚[J]. 化工进展, 2021, 40(7): 4064-4073.
TANG Qian, FAN Yixin, SU Xin, HUANG Chengsi, SUN Yuwei, GAO Yonghui, WANG Dong. Preparation of N/B/Fe co-doped biochar cathode for degradation of p-nitrophenol[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4064-4073.
样品 | 电子转移数n | ||||
---|---|---|---|---|---|
-0.60V | -0.70V | -0.80V | -0.90V | -1.00V | |
N/B/Fe@BC | 1.88 | 1.87 | 1.87 | 1.96 | 2.23 |
Fe@BC | 2.26 | 2.35 | 2.53 | 2.85 | 3.72 |
N/B@BC | 2.23 | 2.12 | 2.10 | 2.26 | 2.95 |
BC | 2.10 | 2.13 | 2.22 | 2.49 | 3.38 |
表1 样品的电催化氧还原电子转移数
样品 | 电子转移数n | ||||
---|---|---|---|---|---|
-0.60V | -0.70V | -0.80V | -0.90V | -1.00V | |
N/B/Fe@BC | 1.88 | 1.87 | 1.87 | 1.96 | 2.23 |
Fe@BC | 2.26 | 2.35 | 2.53 | 2.85 | 3.72 |
N/B@BC | 2.23 | 2.12 | 2.10 | 2.26 | 2.95 |
BC | 2.10 | 2.13 | 2.22 | 2.49 | 3.38 |
1 | XIONG Z K, ZHANG H, ZHANG W C, et al. Removal of nitrophenols and their derivatives by chemical redox: a review[J]. Chemical Engineering Journal, 2019, 359: 13-31. |
2 | XU W T, CHEN J N, QIU Y, et al. Highly efficient microwave catalytic oxidation degradation of 4-nitrophenol over magnetically separable NiCo2O4-Bi2O2CO3 composite without adding oxidant[J]. Separation and Purification Technology, 2019, 213: 426-436. |
3 | SANTOS A DOS, VIANTE M F, POCHAPSKI D J, et al. Enhanced removal of p-nitrophenol from aqueous media by montmorillonite clay modified with a cationic surfactant[J]. Journal of Hazardous Materials, 2018, 355: 136-144. |
4 | 孟启, 舒斌斌, 周峰, 等. 胺化聚苯乙烯树脂的制备及吸附对硝基酚[J]. 化工进展, 2015, 34(6):1714-1719. |
MENG Q, SHU B B, ZHOU F, et al. Preparation of aminated polystyrene resins and its adsorption of p-nitrophenol[J]. Chemical Industry and Engineering Progress, 2015, 34(6):1714-1719. | |
5 | MEI X, LIU J, GUO Z W, et al. Simultaneous p-nitrophenol and nitrogen removal in PNP wastewater treatment: comparison of two integrated membrane-aerated bioreactor systems[J]. Journal of Hazardous Materials, 2019, 363: 99-108. |
6 | RODRIGUES C S D, BORGES R A C, LIMA V N, et al. p-Nitrophenol degradation by Fenton's oxidation in a bubble column reactor[J]. Journal of Environmental Management, 2018, 206: 774-785. |
7 | LI H Y, XING X, WANG K, et al. Improved BDD anode system in electrochemical degradation of p-nitrophenol by corroding electrode of iron[J]. Electrochimica Acta, 2018, 291: 335-342. |
8 | NIE Y C, YU F, WANG L C, et al. Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H-2 evolution over graphene quantum dots/Mn-N-TiO2/g-C3N4 composite catalysts: performance and mechanism[J]. Applied Catalysis B: Environmental, 2018, 227: 312-321. |
9 | NIDHEESH P V, GANDHIMATHI R. Trends in electro-Fenton process for water and wastewater treatment: an overview[J]. Desalination, 2012, 299: 1-15. |
10 | CHEN S, TANG L, FENG H P, et al. Carbon felt cathodes for electro-Fenton process to remove tetracycline via synergistic adsorption and degradation[J]. Science of the Total Environment, 2019, 670: 921-931. |
11 | BRILLAS E, SIRES I, OTURAN M A. Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry[J]. Chemical Reviews, 2009, 109(12): 6570-6631. |
12 | ZHOU W, RAJIC L, CHEN L, et al. Activated carbon as effective cathode material in iron-free electro-Fenton process: integrated H2O2 electrogeneration, activation, and pollutants adsorption[J]. Electrochimica Acta, 2019, 296: 317-326. |
13 | COLADES J I, DE LUNA M D G, SECONDES M F N, et al. Electrochemical in situ hydrogen peroxide generation in a packed-bed reactor for Fenton oxidation of p-nitrophenol in aqueous solution[J]. Process Safety and Environmental Protection, 2019, 123: 161-168. |
14 | JIANG W L, XIA X, HAN J L, et al. Graphene modified electro-Fenton catalytic membrane for in situ degradation of antibiotic florfenicol[J]. Environmental Science & Technology, 2018, 52(17): 9972-9982. |
15 | DUAN X G, INDRAWIRAWAN S, SUN H Q, et al. Effects of nitrogen-, boron-, and phosphorus-doping or codoping on metal-free graphene catalysis[J]. Catalysis Today, 2015, 249: 184-191. |
16 | ZHAO K, QUAN X, CHEN S, et al. Enhanced electro-Fenton performance by fluorine-doped porous carbon for removal of organic pollutants in wastewater[J]. Chemical Engineering Journal, 2018, 354: 606-615. |
17 | FERNANDEZ-SAEZ N, VILLELA-MARTINEZ D E, CARRASCO-MARIN F, et al. Heteroatom-doped graphene aerogels and carbon-magnetite catalysts for the heterogeneous electro-Fenton degradation of acetaminophen in aqueous solution[J]. Journal of Catalysis, 2019, 378: 68-79. |
18 | CAO P K, ZHAO K, QUAN X, et al. Efficient and stable heterogeneous electro-Fenton system using iron oxides embedded in Cu, N co-doped hollow porous carbon as functional electrocatalyst[J]. Separation and Purification Technology, 2020, 238: 116424. |
19 | PREMARATHNA K S D, RAJAPAKSHA A U, SARKAR B, et al. Biochar-based engineered composites for sorptive decontamination of water: a review[J]. Chemical Engineering Journal, 2019, 372: 536-550. |
20 | ZHU S S, HUANG X C, MA F, et al. Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms[J]. Environmental Science & Technology, 2018, 52(15): 8649-8658. |
21 | SIZMUR T, FRESNO T, AKGUL G, et al. Biochar modification to enhance sorption of inorganics from water [J]. Bioresource Technology, 2017, 246: 34-47. |
22 | 余剑刚, 张兴文, 王栋, 等. 水热改性热解生物炭的制备、表征及吸附特性[J]. 工业水处理, 2018, 38(9): 53-57. |
YU J G, ZHANG X W, WANG D, et al. Preparation,characterization and adsorption performance of hydrothermal modified pyrolysis biochar[J]. Industrial Water Treatment, 2018, 38(9): 53-57. | |
23 | DENG F X, OLVERA-VARGAS H, GARCIA-RODRIGUEZ O, et al. Waste-wood-derived biochar cathode and its application in electro-Fenton for sulfathiazole treatment at alkaline pH with pyrophosphate electrolyte[J]. Journal of Hazardous Materials, 2019, 377: 249-258. |
24 | LIANG J X, TANG D Y, HUANG L, et al. High oxygen reduction reaction performance nitrogen-doped biochar cathode: a strategy for comprehensive utilizing nitrogen and carbon in water hyacinth[J]. Bioresource Technology, 2018, 267: 524-531. |
25 | ZHAO H Y, CHEN Y, PENG Q S, et al. Catalytic activity of MOF(2Fe/Co)/carbon aerogel for improving H2O2 and ·OH generation in solar photo-electro-Fenton process[J]. Applied Catalysis B: Environmental, 2017, 203: 127-137. |
26 | YUAN H R, CHEN H B, LI D N, et al. Catalytic synthesis and simultaneous co-doping of hierarchically porous carbon with in situ coated graphene from biomass tar as efficient catalyst for ORR[J]. Electrochemistry Communications, 2019, 100: 52-59. |
27 | SELLERS R M. Spectrophotometric determination of hydrogen peroxide using potassium titanium(Ⅳ) oxalate[J]. The Analyst, 1980, 105(1255): 950-954. |
28 | BABA Y, YATAGAI T, HARADA T, et al. Hydroxyl radical generation in the photo-Fenton process: effects of carboxylic acids on iron redox cycling[J]. Chemical Engineering Journal, 2015, 277: 229-241. |
29 | ZHAO H Y, QIAN L, CHEN Y, et al. Selective catalytic two-electron O2 reduction for onsite efficient oxidation reaction in heterogeneous electro-Fenton process[J]. Chemical Engineering Journal, 2018, 332: 486-498. |
30 | JIAO Y, WAN C C, BAO W H, et al. Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B[J]. Carbohydrate Polymers, 2018, 189: 371-378. |
31 | 郭斌斌, 欧阳静, 杨华明. 埃洛石管内负载纳米四氧化三铁复合材料对亚甲基蓝的吸附性能[J]. 硅酸盐学报, 2016, 44(11): 1655-1661. |
GUO B B, OUYANG J, YANG H M. Adsorption performance to methylene blue by nano-Fe3O4 assembled in lumen of halloysite nanotubes[J]. Journal of the Chinese Ceramic Society, 2016, 44(11): 1655-1661. | |
32 | 俞志敏, 卫新来, 娄梅生, 等. 氯化锌活化生物质炭制备活性炭及其表征[J]. 化工进展, 2014, 33(12): 3318-3323. |
YU Z M, WEI X L, LOU M S, et al. Preparation and characterization of activated carbon from bio-char by chemical activation with ZnCl2[J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3318-3323. | |
33 | LEE D, LEE B, PARK K H, et al. Scalable exfoliation process for highly soluble boron nitride nanoplatelets by hydroxide-assisted ball milling[J]. Nano Letters, 2015, 15(2): 1238-1244. |
34 | THIRUMAL V, PANDURANGAN A, JAYAVEL R, et al. Synthesis and characterization of boron doped graphene nanosheets for supercapacitor applications[J]. Synthetic Metals, 2016, 220: 524-532. |
35 | 张凯, 韦秀丽, 王冰, 等. Fe3O4改性水热炭活化过硫酸钠降解罗丹明B[J]. 化工进展, 2020, 39(7): 2867-2875. |
ZHANG K, WEI X L, WANG B, et al. Degradation of Rhodamine B by sodium persulfate activated with Fe3O4 modified hydrochar[J]. Chemical Industry and Engineering Progress, 2020, 39(7): 2867-2875. | |
36 | ZHOU H, WU S K, ZHOU Y Y, et al. Insights into the oxidation of organic contaminants by iron nanoparticles encapsulated within boron and nitrogen co-doped carbon nanoshell: catalyzed Fenton-like reaction at natural pH[J]. Environment International, 2019, 128: 77-88. |
37 | LIANG H W, WEI W, WU Z S, et al. Mesoporous metal-nitrogen-doped carbon electrocatalysts for highly efficient oxygen reduction reaction[J]. Journal of the American Chemical Society, 2013, 135(43): 16002-16005. |
38 | ZHENG Y, JIAO Y, GE L, et al. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis[J]. Angewandte Chemie International Edition, 2013, 52(11): 3110-3116. |
39 | CHEN S C, CHEN Z H, SIAHROSTAMI S, et al. Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide[J]. Journal of the American Chemical Society, 2018, 140(25): 7851-7859. |
40 | LAN H C, LI J F, SUN M, et al. Efficient conversion of dimethylarsinate into arsenic and its simultaneous adsorption removal over FeCx/N-doped carbon fiber composite in an electro-Fenton process [J]. Water Research, 2016, 100: 57-64. |
41 | SUN Y Y, SINEV I, JU W, et al. Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts[J]. ACS Catalysis, 2018, 8(4): 2844-2856. |
42 | HUANG T Z, MAO S, QIU M, et al. Nitrogen-boron dipolar-doped nanocarbon as a high-efficiency electrocatalyst for oxygen reduction reaction[J]. Electrochimica Acta, 2016, 222: 481-487. |
43 | SU P, ZHOU M H, REN G B, et al. A carbon nanotube-confined iron modified cathode with prominent stability and activity for heterogeneous electro-Fenton reactions[J]. Journal of Materials Chemistry A, 2019, 7(42): 24408-24419. |
44 | DONG P, LIU W J, WANG S J, et al. In suit synthesis of Fe3O4 on carbon fiber paper@polyaniline substrate as novel self-supported electrode for heterogeneous electro-Fenton oxidation[J]. Electrochimica Acta, 2019, 308: 54-63. |
45 | YANG W L, ZHOU M H, LIANG L. Highly efficient in-situ metal-free electrochemical advanced oxidation process using graphite felt modified with N-doped graphene[J]. Chemical Engineering Journal, 2018, 338: 700-708. |
[1] | 徐虎, 郭泓凯, 柴昌盛, 郝相忠, 杨子元, 徐卫军. 碳纤维类材料用于电芬顿体系电极的研究现状[J]. 化工进展, 2022, 41(7): 3707-3718. |
[2] | 宋少花, 徐金兰, 宋晓乔, 于媛. 磁性生物质炭的制备及在污染水体中的应用[J]. 化工进展, 2022, 41(12): 6586-6605. |
[3] | 李庆林, 宋涛, 杨勇. 生物质炭基材料在有机催化转化中的应用[J]. 化工进展, 2021, 40(4): 1966-1982. |
[4] | 曲可琪, 尤月, 孙哲, 黄占华. 氮硼掺杂菌糠炭:蜂窝结构用于电极材料[J]. 化工进展, 2021, 40(3): 1527-1536. |
[5] | 田玉菲, 杨莉, 周鸣人, 张存胜. 玉米芯与鸡粪混合发酵提高甲烷发酵性能[J]. 化工进展, 2019, 38(06): 2898-2904. |
[6] | 朱赫男, 王志朴, 邢文龙, 舒新前. 污泥与生物质共热解制备生物质炭工艺优化及吸附性能[J]. 化工进展, 2018, 37(S1): 199-204. |
[7] | 闫思佳, 胡建杭, 刘泽伟, 袁晓涛, 李慧. 温度和低氧条件对成型生物质炭孔结构影响的实验研究[J]. 化工进展, 2018, 37(08): 3100-3106. |
[8] | 李光源, 吴轩韬, 王杰. 两种反应器中生物质炭水蒸气催化气化的动力学[J]. 化工进展, 2018, 37(08): 2984-2990. |
[9] | 屈笑笑, 邢宝林, 康伟伟, 张传涛, 黄光许, 赵会会, 田野, 郭梦瑶, 张传祥. 玉米芯电容炭的制备及其电化学性能[J]. 化工进展, 2018, 37(06): 2340-2346. |
[10] | 贾爽, 应浩, 徐卫, 孙云娟, 尹航, 宁思云, 孙宁. 生物质炭水蒸气气化制取富氢合成气[J]. 化工进展, 2018, 37(04): 1402-1407. |
[11] | 吴月, 孙宇维, 王岽, 张健, 何沛然, 李玉平, 张忠国, 曹宏斌. 曝气及外加H2O2强化电芬顿法处理石化反渗透浓水[J]. 化工进展, 2017, 36(09): 3523-3530. |
[12] | 郭磊, 尤伟娜, 赵欣, 胡仰栋, 伍联营. 玉米芯脱盐及脱蛋白的预处理工艺[J]. 化工进展, 2017, 36(05): 1927-1932. |
[13] | 孟启, 舒斌斌, 周峰, 夏丰敏, 孙小强. 胺化聚苯乙烯树脂的制备及吸附对硝基酚[J]. 化工进展, 2015, 34(06): 1714-1719. |
[14] | 俞志敏1,2,卫新来1,2,娄梅生2,3,熊鸿斌3,吴宗杰1,金杰1,2,吴克1. 氯化锌活化生物质炭制备活性炭及其表征[J]. 化工进展, 2014, 33(12): 3318-3323. |
[15] | 岳丽清1,2,肖清贵2,王天贵1,徐红彬2,曹宏斌2,张 懿2. 三苯基磷在玉米芯制备糠醛中的应用[J]. 化工进展, 2012, 31(05): 1103-1108. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 818
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 370
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |