化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1797-1811.DOI: 10.16085/j.issn.1000-6613.2020-1982
王晓达1(), 陈宇1, 王清莲1, 黄智贤1, 杨臣1, 王红星2, 邱挺1()
收稿日期:
2020-09-29
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
邱挺
作者简介:
王晓达(1987—),男,副教授,硕士生导师,研究方向为化工过程强化。E-mail:基金资助:
WANG Xiaoda1(), CHEN Yu1, WANG Qinglian1, HUANG Zhixian1, YANG Chen1, WANG Hongxing2, QIU Ting1()
Received:
2020-09-29
Online:
2021-04-05
Published:
2021-04-14
Contact:
QIU Ting
摘要:
醚化反应是生产燃油添加剂这一关系国计民生重要化工产品的关键途径,反应精馏是其生产的核心技术。对醚化反应精馏技术进行总结和回顾,既有利于推进反应精馏基础理论的发展,也可促进醚化产品生产技术的升级。本文全面系统地介绍了生产甲基叔丁基醚、乙基叔丁基醚、甲基叔戊基醚、乙基叔戊基醚和二甲醚这几种燃油添加剂的反应精馏技术研究进展,涉及基础研究和工业应用,包括反应原料选择、工艺系统开发和多稳态现象调控,分析了不同反应路径和工艺系统的优缺点,总结了反应精馏多稳态研究的基本问题和结论。展望了反应精馏技术在聚甲氧基二甲醚合成和甘油、5-羟甲基糠醛、糠醇等生物质平台化合物制备新型醚类化合物的应用前景和挑战。指出了醚化反应精馏技术在工艺系统开发和催化填料设计方面存在的核心共性问题,并提出了相应的解决方案。
中图分类号:
王晓达, 陈宇, 王清莲, 黄智贤, 杨臣, 王红星, 邱挺. 醚化反应精馏研究进展[J]. 化工进展, 2021, 40(4): 1797-1811.
WANG Xiaoda, CHEN Yu, WANG Qinglian, HUANG Zhixian, YANG Chen, WANG Hongxing, QIU Ting. Review on etherification by reactive distillation[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1797-1811.
1 | KISS A A, JOBSON M, GAO Xin. Reactive distillation: stepping up to the next level of process intensification[J]. Industrial & Engineering Chemistry Research, 2018, 58(15): 5909-5918. |
2 | 高鑫, 赵悦, 李洪, 等. 反应精馏过程耦合强化技术基础与应用研究述评[J]. 化工学报, 2018, 69(1): 218-238. |
GAO Xin, ZHAO Yue, LI Hong, et al. Review of basic and application investigation of reactive distillation technology for process intensification[J]. CIESC Journal, 2018, 69(1): 218-238. | |
3 | MASUKU C M, BIEGLER L T. Recent advances in gas-to-liquids process intensification with emphasis on reactive distillation[J]. Current Opinion in Chemical Engineering, 2019, 25: 95-100. |
4 | LI Chunli, DUAN Cong, FANG Jing, et al. Process intensification and energy saving of reactive distillation for production of ester compounds[J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1307-1323. |
5 | ALMEIDA-RIVERA C P, SWINKELS P L J, GRIEVINK J. Designing reactive distillation processes: present and future[J]. Computers & Chemical Engineering, 2004, 28(10): 1997-2020. |
6 | LUYBEN W L, YU Cheng-Ching. Reactive distillation design and control[M]. New Jersey, USA:John Wiley & Sons, 2009. |
7 | Kian Fei YEE, MOHAMED A R, TAN Soon Huat. A review on the evolution of ethyl tert-butyl ether (ETBE) and its future prospects[J]. Renewable and Sustainable Energy Reviews, 2013, 22: 604-620. |
8 | 曹永强. 中国ETBE供给缺口较大行业发展前景较好[EB/OL].[2018-09-30]. . |
9 | FATTORE V, MAURI M M, ORIANI G, et al. Crack MTBE for isobutylene[J]. Hydrocarbon Processing, 1981, 60(8): 101-106. |
10 | SMITH L A. Catalyst system for separating isobutene from C4 streams: US4215011[P]. 1980-07-29. |
11 | 陆佳伟, 孔倩, 汤吉海, 等. “背包式”反应精馏集成过程研究进展[J]. 化工进展, 2020, 39(12): 4940-4953. |
LU Jiawei, KONG Qian, TANG Jihai, et al. Review on the investigation of side-reactor column configuration technology[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4940-4953. | |
12 | KISS A A. Novel catalytic reactive distillation processes for a sustainable chemical industry[J]. Topics in Catalysis, 2019, 62(17/18/19/20): 1132-1148. |
13 | HU Xutao, CHENG Hongye, KANG Xueqing, et al. Analysis of direct synthesis of dimethyl carbonate from methanol and CO2 intensified by in-situ hydration-assisted reactive distillation with side reactor[J]. Chemical Engineering and Processing-Process Intensification, 2018, 129: 109-117. |
14 | WU Tsai-Wei, I-Lung CHIEN. CO2 utilization feasibility study: dimethyl carbonate direct synthesis process with dehydration reactive distillation[J]. Industrial & Engineering Chemistry Research, 2019, 59(3): 1234-1248. |
15 | QI Zhiwen, SUNDMACHER K, STEIN E, et al. Reactive separation of isobutene from C4 crack fractions by catalytic distillation processes[J]. Separation and Purification Technology, 2002, 26(2/3): 147-163. |
16 | HUANG Weijin, LI Hong, WANG Rui, et al. Application of the aldolization reaction in separating the mixture of ethylene glycol and 1,2-butanediol: kinetics and reactive distillation[J]. Chemical Engineering and Processing: Process Intensification, 2017, 120: 173-183. |
17 | LI Xingang, WANG Rui, YAN Yutao, et al. Ethylene glycol recovery from 2-ethyl-1,3-dioxolane hydrolysis via reactive distillation: pilot-scale experiments and process analysis[J]. Industrial & Engineering Chemistry Research, 2019, 58(45): 20746-20757. |
18 | SU Yang, YANG Ao, JIN Saimeng, et al. Investigation on ternary system tetrahydrofuran/ethanol/water with three azeotropes separation via the combination of reactive and extractive distillation[J]. Journal of Cleaner Production, 2020, 273: 123145. |
19 | YU Jieping, SHI Li, YUAN Yang, et al. Thermally coupled reactive distillation system for the separations of cyclohexene/cyclohexane mixtures[J]. Industrial & Engineering Chemistry Research, 2016, 55(1): 311-322. |
20 | GUO Liang, WANG Tiefeng, LI Dongfeng, et al. Liquid-holdup regions research of novel reactive distillation column for C5 fraction separation[J]. Chinese Journal of Chemical Engineering, 2017, 25(4): 433-441. |
21 | 王清莲, 王晓达, 王红星, 等. 酶反应精馏耦合技术研究进展[J]. 化工学报, 2020, 71(1): 122-137. |
WANG Qinglian, WANG Xiaoda, WANG Hongxing, et al. Recent developments in enzymatic reactive distillation coupling technology[J]. CIESC Journal, 2020, 71(1): 122-137. | |
22 | KÜHN S, SLUYTER G, CHRISTLIEB M A, et al. In situ separation of the chiral target compound (S)-2-pentanol in biocatalytic reactive distillation[J]. Industrial & Engineering Chemistry Research, 2017, 56(22): 6451-6461. |
23 | BLATKIEWICZ M, MIBFELDT F, SMIRNOVA I. Dynamic model of batch enzymatic reactive distillation for the production of R-2-pentyl butyrate[J]. Industrial & Engineering Chemistry Research, 2019, 58(51): 22820-22834. |
24 | NIJHUIS S A, KERKHOF F, MAK A N S. Multiple steady states during reactive distillation of methyl tert-butyl ether[J]. Industrial & Engineering Chemistry Research, 1993, 32(11): 2767-2774. |
25 | HAUAN S, HERTZBERG T, LIEN K M. Multiplicity in reactive distillation of MTBE[J]. Computers & Chemical Engineering, 1997, 21(10): 1117-1124. |
26 | JAIME-LEAL J E, BONILLA-PETRICIOLET A, SEGOVIA-HERNÁNDEZ J G, et al. On the multiple solutions of the reactive distillation column for production of fuel ethers[J]. Chemical Engineering and Processing: Process Intensification, 2013, 72: 31-41. |
27 | CHEN Fengrong, HUSS R S, DOHERTY M F, et al. Multiple steady states in reactive distillation: kinetic effects[J]. Computers & Chemical Engineering, 2002, 26(1): 81-93. |
28 | HIGLER A P, TAYLOR R, KRISHNA R. Nonequilibrium modelling of reactive distillation: multiple steady states in MTBE synthesis[J]. Chemical Engineering Science, 1999, 54(10): 1389-1395. |
29 | SCHRANS S, DE WOLF S, BAUR R. Dynamic simulation of reactive distillation: an MTBE case study[J]. Computers & Chemical Engineering, 1996, 20: S1619-S1624. |
30 | SNEESBY M G, TADE M O, SMITH T N. Steady-state transitions in the reactive distillation of MTBE[J]. Computers & Chemical Engineering, 1998, 22(7/8): 879-892. |
31 | BAUR R, TAYLOR R, KRISHNA R. Dynamic behaviour of reactive distillation columns described by a nonequilibrium stage model[J]. Chemical Engineering Science, 2001, 56(6): 2085-2102. |
32 | YAMAKI T, MATSUDA K, NA-RANONG D, et al. Energy-saving performance of reactive distillation process for TAME synthesis through multiple steady state conditions[J]. Chemical Engineering and Processing: Process Intensification, 2018, 130: 101-109. |
33 | YAMAKI T, MATSUDA K, NA-RANONG D, et al. Intensification of reactive distillation for TAME synthesis based on the analysis of multiple steady-state conditions[J]. Processes, 2018, 6(12): 241. |
34 | DOMINGUES L, PINHEIRO C I C, OLIVEIRA N M C, et al. Model development and validation of ethyl tert-butyl ether production reactors using industrial plant data[J]. Industrial & Engineering Chemistry Research, 2012, 51(46): 15018-15031. |
35 | SNEESBY M G, TADE M O, DATTA R, et al. ETBE synthesis via reactive distillation (Ⅰ): Steady-state simulation and design aspects[J]. Industrial & Engineering Chemistry Research, 1997, 36(5): 1855-1869. |
36 | DOMINGUES L, PINHEIRO C I C, OLIVEIRA N M C. Economic comparison of a reactive distillation-based process with the conventional process for the production of ethyl tert-butyl ether (ETBE)[J]. Computers & Chemical Engineering, 2017, 100: 9-26. |
37 | BISOWARNO B H, TIAN Yu-Chu, TADE M O. Application of side reactors on ETBE reactive distillation[J]. Chemical Engineering Journal, 2004, 99(1): 35-43. |
38 | BISOWARNO B H, TIAN Yu-Chu, TADÉ M O. Interaction of separation and reactive stages on ETBE reactive distillation columns[J]. AIChE Journal, 2004, 50(3): 646-653. |
39 | KAUR J, SANGAL V K. Reducing energy requirements for ETBE synthesis using reactive dividing wall distillation column[J]. Energy, 2017, 126: 671-676. |
40 | LI Yonghong, HUANG Shuangyan, WU Shaomin, et al. Preparation and catalytic distillation testing of an acidic zeolite film catalytic packing for synthesis of ETBE[J]. Catalysis Letters, 2003, 87(1/2): 31-35. |
41 | BABAIE O, ESFAHANY M N. Optimum process configuration for ETBE production based on TAC minimization[J]. Separation and Purification Technology, 2020, 256: 117744. |
42 | MA Yingjie, LUO Yiqing, YUAN Xigang. Equation-oriented optimization of reactive distillation systems using pseudo-transient models[J]. Chemical Engineering Science, 2019, 195: 381-398. |
43 | ZHANG Yizu, HE Naien, MASUKU C M, et al. A multi-objective reactive distillation optimization model for Fischer-Tropsch synthesis[J]. Computers & Chemical Engineering, 2020, 135: 106754. |
44 | CONTRERAS-ZARAZÚA G, VÁZQUEZ-CASTILLO J A, RAMÍREZ-MÁRQUEZ C, et al. Multi-objective optimization involving cost and control properties in reactive distillation processes to produce diphenyl carbonate[J]. Computers & Chemical Engineering, 2017, 105: 185-196. |
45 | ZHANG Yizu, MASUKU C M, BIEGLER L T. Equation-oriented framework for optimal synthesis of integrated reactive distillation systems for Fischer-Tropsch processes[J]. Energy & Fuels, 2018, 32(6): 7199-7209. |
46 | MIRANDA C, URRESTA J, CRUCHADE H, et al. Exploring the impact of zeolite porous voids in liquid phase reactions: the case of glycerol etherification by tert-butyl alcohol[J]. Journal of Catalysis, 2018, 365: 249-260. |
47 | QUITAIN A, ITOH H, GOTO S. Industrial-scale simulation of proposed process for synthesizing ethyl tert-butyl ether from bioethanol[J]. Journal of Chemical Engineering of Japan, 1999, 32(4): 539-543. |
48 | CHASE J D, WOODS H J, KENNEDY B W. Preparation of gasoline containing tertiaryamyl methyl ether: US 4193770[P]. 1980-03-18. |
49 | PLESU A E, BONET J, PLESU V, et al. Residue curves map analysis for tert-amyl methyl ether synthesis by reactive distillation in kinetically controlled conditions with energy-saving evaluation[J]. Energy, 2008, 33(10): 1572-1589. |
50 | BRAVO J L, PYHALAHTI A, JARVELIN H. Investigations in a catalytic distillation pilot plant. vapor/liquid equilibrium kinetics, and mass-transfer issues[J]. Industrial & Engineering Chemistry Research, 1993, 32(10): 2220-2225. |
51 | SUBAWALLA H, FAIR J R. Design guidelines for solid-catalyzed reactive distillation systems[J]. Industrial & Engineering Chemistry Research, 1999, 38(10): 3696-3709. |
52 | VANAKI A, ESLAMLOUEYAN R. Steady-state simulation of a reactive internally heat integrated distillation column (R-HIDiC) for synthesis of tertiary-amyl methyl ether (TAME)[J]. Chemical Engineering and Processing: Process Intensification, 2012, 52: 21-27. |
53 | YANG Ao, Liping LYU, SHEN Weifeng, et al. Optimal design and effective control of the tert-amyl methyl ether production process using an integrated reactive dividing wall and pressure swing columns[J]. Industrial & Engineering Chemistry Research, 2017, 56(49): 14565-14581. |
54 | GAO Xin, WANG Fangzhou, LI Hong, et al. Heat-integrated reactive distillation process for TAME synthesis[J]. Separation and Purification Technology, 2014, 132: 468-478. |
55 | BABAIE O, ESFAHANY M N. Optimization of a new combined approach to reduce energy consumption in the hybrid reactive distillation-pervaporation process[J]. Chemical Engineering and Processing: Process Intensification, 2020, 151: 107910. |
56 | BABAIE O, ESFAHANY M N. Optimization and heat integration of hybrid R-HIDiC-PV process with the series-parallel arrangement of PV modules and recycle streams for TAME production[J]. Separation and Purification Technology, 2020, 242: 116786. |
57 | BABAIE O, ESFAHANY M N. Optimization and heat integration of hybrid R-HIDiC and pervaporation by combining GA and PSO algorithm in TAME synthesis[J]. Separation and Purification Technology, 2020, 236: 116288. |
58 | PEREDERIC O A, PLEŞU V, IANCU P, et al. Simulation and process integration for tert-amyl-methyl ether (TAME) synthesis[J]. Computers & Chemical Engineering, 2015, 83: 79-96. |
59 | CIORNEI C, BUMBAC G, PLESU V. Modelling and simulation of operation for the TAEE synthesis by catalytic distillation[J]. Computer Aided Chemical Engineering, 2005, 20: 655-660. |
60 | GONZÁLEZ-RUGERIO C A, KELLER T, PILARCZYK J, et al. TAEE synthesis from isoamylenes and ethanol by catalytic distillation: pilot plant experiments and model validation[J]. Fuel Processing Technology, 2012, 102: 1-10. |
61 | SAHAPATSOMBUD U, ARPORNWICHANOP A, ASSABUMRUNGRAT S, et al. Simulation studies on reactive distillation for synthesis of tert-amyl ethyl ether[J]. Korean Journal of Chemical Engineering, 2005, 22(3): 387-392. |
62 | LEI Zhao, YI Chunhai, YANG Bolun. Design, optimization, and control of reactive distillation column for the synthesis of tert-amyl ethyl ether[J]. Chemical Engineering Research and Design, 2013, 91(5): 819-830. |
63 | FU Junying, LI Zhibing, XING Shiyou, et al. Cation exchange resin catalysed biodiesel production from used cooking oil (UCO): investigation of impurities effect[J]. Fuel, 2016, 181: 1058-1065. |
64 | GOMIS V, SAQUETE M D, FONT A, et al. Phase equilibria of the water + 1-butanol + 2-pentanol ternary system at 101.3 kPa[J]. The Journal of Chemical Thermodynamics, 2018, 123: 38-45. |
65 | AIOUACHE F, GOTO S. Reactive distillation-pervaporation hybrid column for tert-amyl alcohol etherification with ethanol[J]. Chemical Engineering Science, 2003, 58(12): 2465-2477. |
66 | ARPORNWICHANOP A, SAHAPATSOMBUD U, PATCHARAVORACHOT Y, et al. Hybrid process of reactive distillation and pervaporation for the production of tert-amyl ethyl ether[J]. Chinese Journal of Chemical Engineering, 2008, 16(1): 100-103. |
67 | VARISLI D, DOGU T. Simultaneous production of tert-amyl ethyl ether and tert-amyl alcohol from isoamylene-ethanol-water mixtures in a batch-reactive distillation column[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 5227-5232. |
68 | LUYBEN W L. Improving the conventional reactor/separation/recycle DME process[J]. Computers & Chemical Engineering, 2017, 106: 17-22. |
69 | AN Weizhu, CHUANG K T, SANGER A R. Dehydration of methanol to dimethyl ether by catalytic distillation[J]. The Canadian Journal of Chemical Engineering, 2004, 82(5): 948-955. |
70 | PATRUT C, BILDEA C S, KISS A A. Catalytic cyclic distillation—A novel process intensification approach in reactive separations[J]. Chemical Engineering and Processing: Process Intensification, 2014, 81: 1-12. |
71 | LEI Zhigang, ZOU Zhiwu, DAI Chengna, et al. Synthesis of dimethyl ether (DME) by catalytic distillation[J]. Chemical Engineering Science, 2011, 66(14): 3195-3203. |
72 | BÎLDEA C S, GYŐRGY R, BRUNCHI C C, et al. Optimal design of intensified processes for DME synthesis[J]. Computers & Chemical Engineering, 2017, 105: 142-151. |
73 | KISS A A, DAVID J P C S. Innovative dimethyl ether synthesis in a reactive dividing-wall column[J]. Computers & Chemical Engineering, 2012, 38: 74-81. |
74 | TONG Liwei, CHEN Lifang, YE Yinmei, et al. Analysis of intensification mechanism of auxiliary reaction on reactive distillation: methyl acetate hydrolysis process as example[J]. Chemical Engineering Science, 2014, 106: 190-197. |
75 | 童立威. 基于辅助化学反应直接强化的乙酸甲酯水解反应精馏过程基础研究[D]. 上海: 华东理工大学, 2014. |
TONG Liwei. Study of methyl acetat hydrolysis directly intensified by auxiliary reaction in the process of reactive distillation[D]. Shanghai: East China University of Science and Technology, 2014. | |
76 | PÉREZ-MACIÁ M Á, BRINGUÉ R, IBORRA M, et al. Kinetic study of 1-butanol dehydration to di-n-butyl ether over Amberlyst 70[J]. AIChE Journal, 2016, 62(1): 180-194. |
77 | RORRER J E, BELL A T, TOSTE F D. Synthesis of biomass-derived ethers for use as fuels and lubricants[J]. ChemSusChem, 2019, 12(13): 2835-2858. |
78 | CASAS C, BRINGUÉ R, FITÉ C, et al. Kinetics of the liquid phase dehydration of 1-octanol to di-n-octyl ether on Amberlyst 70[J]. AIChE Journal, 2017, 63(9): 3966-3978. |
79 | BILDEA C S, GYŐRGY R, SÁNCHEZ-RAMÍREZ E, et al. Optimal design and plantwide control of novel processes for di-n-pentyl ether production[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(6): 992-1001. |
80 | 张信伟, 李杰, 倪向前, 等. 聚甲氧基二甲醚合成技术的产业化进展[J]. 化工进展, 2016, 35(7): 2293-2298. |
ZHANG Xinwei, LI Jie, NI Xiangqian, et al. Development of the synthesis technology of polyoxymethylene dimethyl ethers[J]. Chemical Industry and Engineering Progress, 2016, 35(7): 2293-2298. | |
81 | 耿雪丽, 孟莹, 从海峰, 等. 聚甲氧基二甲醚合成工艺及产业化述评[J]. 化工进展, 2020, 39(12): 4993-5008. |
GENG Xueli, MENG Ying, CONG Haifeng, et al. Review on the synthesis process and industrialization of polyoxymethylene dimethyl ethers[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4993-5008. | |
82 | BARANOWSKI C J, BAHMANPOUR A M, KRÖCHER O. Catalytic synthesis of polyoxymethylene dimethyl ethers (OME): a review[J]. Applied Catalysis B: Environmental, 2017, 217: 407-420. |
83 | SCHMITZ N, BURGER J, STRÖFER E, et al. From methanol to the oxygenated diesel fuel poly(oxymethylene) dimethyl ether: an assessment of the production costs[J]. Fuel, 2016, 185: 67-72. |
84 | WU Yajuan, LI Zhen, XIA Chungu. Silica-gel-supported dual acidic ionic liquids as efficient catalysts for the synthesis of polyoxymethylene dimethyl ethers[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 1859-1865. |
85 | SCHMITZ N, STRÖFER E, BURGER J, et al. Conceptual design of a novel process for the production of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol[J]. Industrial & Engineering Chemistry Research, 2017, 56(40): 11519-11530. |
86 | 高鑫, 孟莹, 李洪, 等. 一种用于聚甲氧基二甲醚合成的反应精馏工艺装置及方法: CN110078600A[P]. 2019-08-02. |
GAO Xin, MENG Ying, LI Hong, et al. Reactive distillation process device and method for synthesis of PODEn (polyoxymethylene dimethyl ethers): CN110078600A[P]. 2019-08-02. | |
87 | 李鑫钢, 孟莹, 李洪, 等. 一种聚甲氧基二甲醚的多段反应精馏合成工艺方法及装置: CN110078598A[P]. 2019-08-02. |
LI Xingang, MENG Ying, LI Hong, et al. Multi-stage reactive distillation synthesis technique and device of PODEn (polyoxymethylene dimethyl ethers): CN110078598A[P]. 2019-08-02. | |
88 | 高鑫, 孟莹, 李洪, 等. 用于聚甲氧基二甲醚合成的反应精馏-蒸汽渗透耦合工艺: CN110156575A[P]. 2019-08-23. |
GAO Xin, MENG Ying, LI Hong, et al. Reactive distillation-vapor permeation coupling process for polyoxymethylene dimethyl ether synthesis: CN110156575A[P]. 2019-08-23. | |
89 | 李鑫钢, 洪正鹏, 高鑫, 等. 使用隔壁塔分离聚甲氧基二甲醚的方法和装置: CN108299167A[P]. 2018-07-20. |
LI Xingang, HONG Zhengpeng, GAO Xin, et al. Method and device for separating polymethoxydimethyl ether by using isolation wall tower: CN108299167A[P]. 2018-07-20. | |
90 | SCHMITZ N, FRIEBEL A, HARBOU E VON, et al. Liquid-liquid equilibrium in binary and ternary mixtures containing formaldehyde, water, methanol, methylal, and poly(oxymethylene) dimethyl ethers[J]. Fluid Phase Equilibria, 2016, 425: 127-135. |
91 | OESTREICH D, LAUTENSCHÜTZ L, ARNOLD U, et al. Reaction kinetics and equilibrium parameters for the production of oxymethylene dimethyl ethers (OME) from methanol and formaldehyde[J]. Chemical Engineering Science, 2017, 163: 92-104. |
92 | SCHMITZ N, BURGER J, HASSE H. Reaction kinetics of the formation of poly(oxymethylene) dimethyl ethers from formaldehyde and methanol in aqueous solutions[J]. Industrial & Engineering Chemistry Research, 2015, 54(50): 12553-12560. |
93 | CLIMENT M J, CORMA A, IBORRA S. Conversion of biomass platform molecules into fuel additives and liquid hydrocarbon fuels[J]. Green Chemistry, 2014, 16(2): 516-547. |
94 | TRIFOI A R, AGACHI P Ş, PAP T. Glycerol acetals and ketals as possible diesel additives: a review of their synthesis protocols[J]. Renewable and Sustainable Energy Reviews, 2016, 62: 804-814. |
95 | 孙启梅, 王崇辉, 王领民, 等. 生物柴油副产物粗甘油的综合利用[J]. 化工进展, 2017, 36(S1): 161-166. |
SUN Qimei, WANG Chonghui, WANG Lingmin, et al. Integrated utilization of crude glycerol as a by-product of biodiesel production[J]. Chemical Industry and Engineering Progress, 2017, 36(S1): 161-166. | |
96 | LEMOS C O T, RADE L L, BARROZO M A S, et al. Study of glycerol etherification with ethanol in fixed bed reactor under high pressure[J]. Fuel Processing Technology, 2018, 178: 1-6. |
97 | RASTEGARI H, GHAZIASKAR H S, YALPANI M, et al. Development of a continuous system based on azeotropic reactive distillation to enhance triacetin selectivity in glycerol esterification with acetic acid[J]. Energy & Fuels, 2017, 31(8): 8256-8262. |
98 | LI Hong, LI Jin, LI Xingang, et al. Esterification of glycerol and acetic acid in a pilot-scale reactive distillation column: experimental investigation, model validation, and process analysis[J]. Journal of the Taiwan Institute of Chemical Engineers, 2018, 89: 56-66. |
99 | KIATKITTIPONG W, INTARACHAROEN P, LAOSIRIPOJANA N, et al. Glycerol ethers synthesis from glycerol etherification with tert-butyl alcohol in reactive distillation[J]. Computers & Chemical Engineering, 2011, 35(10): 2034-2043. |
100 | 杨学萍, 董丽, 陈璐, 等. 生物质制乙二醇技术进展与发展前景[J]. 化工进展, 2015, 34(10): 3609-3616, 3629. |
YANG Xueping, DONG Li, CHEN Lu, et al. Advances in biomass to ethylene glycol converting technologies[J]. Chemical Industry and Engineering Progress, 2015, 34(10): 3609-3616, 3629. | |
101 | CHAUHAN B S, SINGH R K, Haengmuk CHO, et al. Practice of diesel fuel blends using alternative fuels: a review[J]. Renewable and Sustainable Energy Reviews, 2016, 59: 1358-1368. |
102 | ZHAO Deyang, PRINSEN P, WANG Yantao, et al. Continuous flow alcoholysis of furfuryl alcohol to alkyl levulinates using zeolites[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 6901-6909. |
103 | GUPTA S S R, KANTAM M L. Catalytic conversion of furfuryl alcohol or levulinic acid into alkyl levulinates using a sulfonic acid-functionalized hafnium-based MOF[J]. Catalysis Communications, 2019, 124: 62-66. |
104 | CHAPPAZ A, LAI J, DE OLIVEIRA VIGIER K, et al. Selective conversion of concentrated feeds of furfuryl alcohol to alkyl levulinates catalyzed by metal triflates[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(3): 4405-4411. |
105 | WANG Xiaoda, WANG Hongxing, CHEN Jinyi, et al. High conversion of methyl acetate hydrolysis in a reactive dividing wall column by weakening the self-catalyzed esterification reaction[J]. Industrial & Engineering Chemistry Research, 2017, 56(32): 9177-9187. |
106 | MUTHIA R, VAN DER HAM A G J, JOBSON M, et al. Effect of boiling point rankings and feed locations on the applicability of reactive distillation to quaternary systems[J]. Chemical Engineering Research and Design, 2019, 145: 184-193. |
107 | MUTHIA R, JOBSON M, KISS A A. A systematic framework for assessing the applicability of reactive distillation for quaternary mixtures using a mapping method[J]. Computers & Chemical Engineering, 2020, 136: 106804. |
108 | MUTHIA R, REIJNEVELD A G T, VAN DER HAM A G J, et al. Novel method for mapping the applicability of reactive distillation[J]. Chemical Engineering and Processing: Process Intensification, 2018, 128: 263-275. |
109 | BESSLING B. Zur reaktivdestillation in der prozesssynthese(ph.D.thesis)[D]. Dortmund: TU Dortmund, 1998. |
110 | TUNG Shih-Tse, YU Cheng-Ching. Effects of relative volatility ranking to the design of reactive distillation[J]. AIChE Journal, 2007, 53(5): 1278-1297. |
111 | WANG Xiaoda, WANG Qinglian, YE Changshen, et al. Feasibility study of reactive distillation for the production of propylene glycol monomethyl ether acetate through transesterification[J]. Industrial & Engineering Chemistry Research, 2017, 56(25): 7149-7159. |
112 | WANG Qinglian, YANG Chen, WANG Hongxing, et al. Optimization of process-specific catalytic packing in catalytic distillation process: a multi-scale strategy[J]. Chemical Engineering Science, 2017, 174: 472-486. |
113 | LI Jinming, DING Huidian, XIANG Wenyu, et al. Hydraulic performance of Winpak-C modular catalytic structured packing[J]. The Canadian Journal of Chemical Engineering, 2016, 94(3): 556-564. |
114 | 吕晓东, 周洪涛, 王晓达, 等. 国产轻汽油醚化催化精馏模块的工业应用[J]. 精细与专用化学品, 2019, 27(1): 15-19. |
Xiaodong LYU, ZHOU Hongtao, WANG Xiaoda, et al. Industrial application of catalytic distillation module for etherification of domestic light gasoline[J]. Fine and Specialty Chemicals, 2019, 27(1): 15-19. | |
115 | KLÖKER M, KENIG E Y, GÓRAK A. On the development of new column internals for reactive separations via integration of CFD and process simulation[J]. Catalysis Today, 2003, 79: 479-485. |
116 | NAVALHO J E P, PEREIRA J M C, PEREIRA J C F. Multiscale modeling of methane catalytic partial oxidation: from the mesopore to the full-scale reactor operation[J]. AIChE Journal, 2018, 64(2): 578-594. |
117 | YANG Chen, LIN Yixiong, DEBENEST G, et al. Lattice Boltzmann simulation of asymptotic longitudinal mass dispersion in reconstructed random porous media[J]. AIChE Journal, 2018, 64(7): 2770-2780. |
118 | DIXON A G. Local transport and reaction rates in a fixed bed reactor tube: endothermic steam methane reforming[J]. Chemical Engineering Science, 2017, 168: 156-177. |
119 | HEGELY L, ROESLER J, ALIX P, et al. Absorption methods for the determination of mass transfer parameters of packing internals: a literature review[J]. AIChE Journal, 2017, 63(8): 3246-3275. |
[1] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[2] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[3] | 张凤岐, 崔成东, 鲍学伟, 朱炜玄, 董宏光. 胺液吸收-分步解吸脱硫工艺的设计与评价[J]. 化工进展, 2023, 42(S1): 518-528. |
[4] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[5] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[6] | 王子宗, 刘罡, 王振维. 乙烯丙烯生产过程强化技术进展及思考[J]. 化工进展, 2023, 42(4): 1669-1676. |
[7] | 王子宗, 索寒生, 赵学良, 闫雅琨. 数字孪生智能乙烯工厂工业互联网平台的设计与构建[J]. 化工进展, 2023, 42(10): 5029-5036. |
[8] | 王川东, 张君奇, 刘丁源, 马媛媛, 李锋, 宋浩. 微生物共利用木糖和葡萄糖生产化学品研究进展[J]. 化工进展, 2023, 42(1): 354-372. |
[9] | 肖周荣, 李国柱, 王涖, 张香文, 谷建民, 王德松. 液体碳氢燃料蒸汽重整制氢催化剂研究进展[J]. 化工进展, 2022, 41(S1): 97-107. |
[10] | 赵华琮, 朱炜玄, 叶昊天, 董宏光. 装置蒸汽动力系统与热电厂运行同步优化[J]. 化工进展, 2022, 41(S1): 44-53. |
[11] | 杨友麒, 陈丙珍. 中国过程系统工程30年:回顾与展望[J]. 化工进展, 2022, 41(8): 3991-4008. |
[12] | 闫鹏, 程易. 用于分布式制氢的甲烷蒸汽重整膜反应器的数值模拟[J]. 化工进展, 2022, 41(7): 3446-3454. |
[13] | 石一慈, 潘艳秋, 王成宇, 范嘉禾, 俞路. 焦耳效应强化气隙式膜蒸馏脱盐过程的实验研究[J]. 化工进展, 2022, 41(5): 2285-2291. |
[14] | 孙逊, 赵越, 玄晓旭, 赵珊, YOON Joon Yong, 陈颂英. 基于水力空化的化工过程强化研究进展[J]. 化工进展, 2022, 41(5): 2243-2255. |
[15] | 曲艺源, 张景新, 何义亮. 铁电极辅助餐厨垃圾高温厌氧消化及微生物的耐盐机理[J]. 化工进展, 2022, 41(4): 2060-2067. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |