化工进展 ›› 2021, Vol. 40 ›› Issue (4): 1715-1735.DOI: 10.16085/j.issn.1000-6613.2020-1908
收稿日期:
2020-09-19
出版日期:
2021-04-05
发布日期:
2021-04-14
通讯作者:
白志山
作者简介:
王炳捷(1989—),男,博士后,研究方向为污染物防治方法与设备。E-mail:基金资助:
WANG Bingjie(), LI Hui, YANG Xiaoyong, BAI Zhishan()
Received:
2020-09-19
Online:
2021-04-05
Published:
2021-04-14
Contact:
BAI Zhishan
摘要:
高集成化的微流控系统具有界面面积大、传递距离短、混合速度快等优势,已被广泛应用于许多科学领域。然而,微通道内多相流间的相互作用及动力学行为受多方面的影响,仅依靠试验观测技术和理论预测方法难以全面了解多相流传质传热过程、获取流场特性参数、揭示多相流相互作用规律。当下CFD数值模拟技术的快速发展为预测和分析微流控通道内的多相流问题提供了更为直观、有效、准确的帮助。本文对数值模拟技术在液滴微流控多相流特性研究的应用进展进行全面综述,涵盖液滴微流控装置结构及演变、液滴微流控模拟方法及优化以及微通道内多相流作用过程及原理。
中图分类号:
王炳捷, 李辉, 杨晓勇, 白志山. CFD数值模拟技术在液滴微流控多相流特性研究的应用进展[J]. 化工进展, 2021, 40(4): 1715-1735.
WANG Bingjie, LI Hui, YANG Xiaoyong, BAI Zhishan. Application process of CFD-numerical simulation technology for multiphase flow characteristics study in droplet-microfluidic systems[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1715-1735.
1 | ASSMANN N, ŁADOSZ A, ROHR P R VON. Continuous micro liquid-liquid extraction[J]. Chemical Engineering & Technology, 2013, 36(6): 921-936. |
2 | XU Bujian, CAI Wangfeng, LIU Xiaolei, et al. Mass transfer behavior of liquid-liquid slug flow in circular cross-section microchannel[J]. Chemical Engineering Research and Design, 2013, 91(7): 1203-1211. |
3 | YANG Liqiu, ZHAO Yuchao, SU Yuanhai, et al. An experimental study of copper extraction characteristics in a T-junction microchannel[J]. Chemical Engineering & Technology, 2013, 36(6): 985-992. |
4 | GUNTHER A, JENSEN K F. Multiphase microfluidics: from flow characteristics to chemical and materials synthesis[J]. Lab on a Chip, 2006, 6(12): 1487-1503. |
5 | SONG H, CHEN Delai L, ISMAGILOV R F. Reactions in droplets in microfluidic channels[J]. Angewandte Chemie International Edition, 2006, 45(44): 7336-7356. |
6 | KUMEMURA M, KORENAGA T. Quantitative extraction using flowing nano-liter droplet in microfluidic system[J].Analytica Chimica Acta, 2006, 558(1): 75-79. |
7 | GRODRIAN A, METZE J, HENKEL T, et al. Segmented flow generation by chip reactors for highly parallelized cell cultivation[J]. Biosensors and Bioelectronics, 2004, 19(11): 1421-1428. |
8 | ZHENG Bo, TICE J, ISMAGILOV R F. Formation of arrayed droplets by soft lithography and two-phase fluid flow, and application in protein crystallization[J]. Advanced Materials, 2004, 16(15 SPEC. ISS.): 1365-1368. |
9 | NIE Zhihong, XU Shengqing, Minseok SEO, et al. Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors[J]. Journal of the American Chemical Society, 2005, 127(22): 8058-8063. |
10 | BURNS J R, RAMSHAW C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries[J]. Lab on a Chip, 2001, 1(1): 10-15. |
11 | JOVANOVIĆ J, REBROV E V, NIJHUIS T A, et al. Liquid-liquid flow in a capillary microreactor: hydrodynamic flow patterns and extraction performance[J]. Industrial & Engineering Chemistry Research, 2012, 51(2): 1015-1026. |
12 | KASHID M, GERLACH I, GOETZ S, et al. Internal circulation within the liquid slugs of a liquid-liquid slug-flow capillary microreactor[J]. Industrial & Engineering Chemistry Research, 2005, 44(14): 5003-5010. |
13 | OKUBO Y, MAKI T, AOKI N, et al. Liquid-liquid extraction for efficient synthesis and separation by utilizing micro spaces[J]. Chemical Engineering Science, 2008, 63(16): 4070-4077. |
14 | CHU Liangyin, UTADAA S, SHAH R K, et al. Controllable monodisperse multiple emulsions[J]. Angewandte Chemie International Edition, 2007, 46(47): 8970-8974. |
15 | ERB R M, OBRIST D, CHEN P W, et al. Predicting sizes of droplets made by microfluidic flow-induced dripping[J]. Soft Matter, 2011, 7(19): 8757-8761. |
16 | TRYGGVASON G, ESMAEELI A, LU Jiacai, et al. Direct numerical simulations of gas/liquid multiphase flows[J]. Fluid Dynamics Research, 2006, 38(9): 660-681. |
17 | GUTIÉRREZ E, FAVRE F, BALCÁZAR N, et al. Numerical approach to study bubbles and drops evolving through complex geometries by using a level set-moving mesh-immersed boundary method[J]. Chemical Engineering Journal, 2018, 349: 662-682. |
18 | MARK D, HAEBERLE S, ROTH G, et al. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications[J]. Chemical Society Reviews, 2010, 39(3): 1153-1182. |
19 | Shia-Yen TEH, LIN R, HUNG Lung-Hsin, et al. Droplet microfluidics[J]. Lab on a Chip, 2008, 8(2): 198-220. |
20 | KIM Ju Hyeon, JEON Tae Yoon, CHOI Tae Min, et al. Droplet microfluidics for producing functional microparticles[J]. Langmuir, 2013, 30(6): 1473-1488. |
21 | TUMARKIN E, KUMACHEVA E. Microfluidic generation of microgels from synthetic and natural polymers[J]. Chemical Society Reviews, 2009, 38(8): 2161-2168. |
22 | HAEBERLE S, ZENGERLE R. Microfluidic platforms for lab-on-a-chip applications[J]. Lab on a Chip, 2007, 7(9): 1094-1110. |
23 | WANG Bingjie, PRINSEN P, WANG Huizhi, et al. Macroporous materials: microfluidic fabrication, functionalization and applications[J]. Chemical Society Reviews, 2017, 46(3): 855-914. |
24 | NAEIMIRAD M, ZADHOUSH A. Melt-spun liquid core fibers: a CFD analysis on biphasic flow in coaxial spinneret die[J]. Fibers and Polymers, 2018, 19(4): 905-913. |
25 | TRIVEDI V, DOSHI A, KURUP G K, et al. A modular approach for the generation, storage, mixing, and detection of droplet libraries for high throughput screening[J]. Lab on a Chip, 2010, 10(18): 2433-2442. |
26 | XIONG Qiqiang, CHEN Zhuo, LI Shaowei, et al. Micro-PIV measurement and CFD simulation of flow field and swirling strength during droplet formation process in a coaxial microchannel[J]. Chemical Engineering Science, 2018, 185: 157-167. |
27 | LAN Wenjie, LI Shaowei, LUO Guangsheng. Numerical and experimental investigation of dripping and jetting flow in a coaxial micro-channel[J]. Chemical Engineering Science, 2015, 134: 76-85. |
28 | LAN Wenjie, LI Shaowei, WANG Yujun, et al. CFD simulation of droplet formation in microchannels by a modified level set method[J]. Industrial & Engineering Chemistry Research, 2014, 53(12): 4913-4921. |
29 | WONG Voon Loong, LOIZOU K, Phei Li LAU, et al. Numerical studies of shear-thinning droplet formation in a microfluidic T-junction using two-phase level-set method[J]. Chemical Engineering Science, 2017, 174: 157-173. |
30 | LI Yuehao, JAIN M, MA Yongting, et al. Control of the breakup process of viscous droplets by external electric field inside a microfluidic device[J]. Soft Matter, 2015, 11(19): 3884-3899. |
31 | HEUBERGER M, GOTTARDO L, DRESSLER M, et al. Biphasic fluid oscillator with coaxial injection and upstream mass and momentum transfer[J]. Microfluidics and Nanofluidics, 2015, 19(3): 653-663. |
32 | CHEKIFI T. Computational study of droplet breakup in a trapped channel configuration using volume of fluid method[J]. Flow Measurement and Instrumentation, 2018, 59: 118-125. |
33 | DAI Zhenhui, GUO Zhenyi, FLETCHER D F, et al. Taylor flow heat transfer in microchannels-unification of liquid-liquid and gas-liquid results[J]. Chemical Engineering Science, 2015, 138: 140-152. |
34 | SONTTI S G, ATTA A. CFD analysis of microfluidic droplet formation in non-Newtonian liquid[J]. Chemical Engineering Journal, 2017, 330: 245-261. |
35 | CHANDRA A K, KISHOR K, ALAM M S, et al. Numerical investigations of two-phase flows through enhanced microchannels[J]. Chemical and Biochemical Engineering Quarterly, 2016, 30(2): 149-159. |
36 | ZHU Xun, LIAO Qiang, Pangchieh SUI, et al. Numerical investigation of water droplet dynamics in a low-temperature fuel cell microchannel: effect of channel geometry[J]. Journal of Power Sources, 2010, 195(3): 801-812. |
37 | CHEN Nicheng, WU Jizhou, JIANG Hanmei, et al. CFD simulation of droplet formation in a wide-type microfluidic T-Junction[J]. Journal of Dispersion Science and Technology, 2012, 33(11): 1635-1641. |
38 | LI Qi, ANGELI P. Experimental and numerical hydrodynamic studies of ionic liquid-aqueous plug flow in small channels[J]. Chemical Engineering Journal, 2017, 328: 717-736. |
39 | KASHID M, RENKEN A, KIWI-MINSKER L. CFD modelling of liquid-liquid multiphase microstructured reactor: slug flow generation[J]. Chemical Engineering Research and Design, 2010, 88(3): 362-368. |
40 | KOBAYASHI I, VLADISAVLJEVIĆ G T, UEMURA K, et al. CFD analysis of microchannel emulsification: droplet generation process and size effect of asymmetric straight flow-through microchannels[J]. Chemical Engineering Science, 2011, 66(22): 5556-5565. |
41 | KOBAYASHI I, MUKATAKA S, NAKAJIMA M. CFD simulation and analysis of emulsion droplet formation from straight-through microchannels[J]. Langmuir, 2004, 20(22): 9868-9877. |
42 | DIJKE K VAN, DE RUITER R, SCHROËN K, et al. The mechanism of droplet formation in microfluidic EDGE systems[J]. Soft Matter, 2010, 6(2): 321-330. |
43 | PADOIN N, SOUZA A Z D, ROPELATO K, et al. Numerical simulation of isothermal gas-liquid flow patterns in microchannels with varying wettability[J]. Chemical Engineering Research and Design, 2016, 109: 698-706. |
44 | REN Yong, W Woon Fong LEUNG. Numerical investigation of cell encapsulation for multiplexing diagnostic assays using novel centrifugal microfluidic emulsification and separation platform[J]. Micromachines, 2016, 7(2):17. |
45 | DENG Chaojun, WANG Haoyuan, HUANG Weixing, et al. Numerical and experimental study of oil-in-water (O/W) droplet formation in a co-flowing capillary device[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533: 1-8. |
46 | WANG Zhiliang. Speed up bubbling in a tapered co-flow geometry[J]. Chemical Engineering Journal, 2015, 263: 346-355. |
47 | GUILLAUMENT R, ERRIGUIBLE A, AYMONIER C, et al. Numerical simulation of dripping and jetting in supercritical fluids/liquid micro co-flows[J]. The Journal of Supercritical Fluids, 2013, 81: 15-22. |
48 | Gim Yau SOH, YEOH Guan Heng, TIMCHENKO V. A CFD model for the coupling of multiphase, multicomponent and mass transfer physics for micro-scale simulations[J]. International Journal of Heat and Mass Transfer, 2017, 113: 922-934. |
49 | RIAUD A, WANG Kai, LUO Guangsheng. A combined lattice-Boltzmann method for the simulation of two-phase flows in microchannel[J]. Chemical Engineering Science, 2013, 99: 238-249. |
50 | DANG Minhui, YUE Jun, CHEN Guangwen. Numerical simulation of Taylor bubble formation in a microchannel with a converging shape mixing junction[J]. Chemical Engineering Journal, 2015, 262: 616-627. |
51 | Chia-Hsien YEH, ZHAO Qiaole, Sheng-Ji LEE, et al. Using a T-junction microfluidic chip for monodisperse calcium alginate microparticles and encapsulation of nanoparticles[J]. Sensors and Actuators A: Physical, 2009, 151(2): 231-236. |
52 | DZIUBIŃSKI M. Hydrodynamic focusing for micro-rheological single-particle study[J]. Korea-Australia Rheology Journal, 2015, 27:11-15. |
53 | UMBANHOWAR P, PRASAD V, WEITZ D A. Monodisperse emulsion generation via drop break-off in a co-flowing stream[J]. Langmuir, 2000, 16(2):347-351. |
54 | ANNA S L. Droplets and bubbles in microfluidic devices[J]. Annual Review of Fluid Mechanics, 2016, 48(1): 285-309. |
55 | THORSEN T, ROBERTS R, ARNOLD F H, et al. Dynamic pattern formation in vesicle-generating microfluidic device[J]. Physical Review Letters, 2001, 86(18): 4163-4166. |
56 | REN Yong, Ming-Cheung CHOW L, W Woon Fong LEUNG. Cell culture using centrifugal microfluidic platform with demonstration on Pichia pastoris[J]. Biomedical Microdevices, 2012, 15(2): 321-337. |
57 | CHRISTOPHER G, BERGSTEIN J, END N B, et al. Coalescence and splitting of confined droplets at microfluidic junctions[J]. Lab on a Chip, 2009, 9(8): 1102-1109. |
58 | HUA Jinsong, ZHANG Baili, LOU Jing. Numerical simulation of microdroplet formation in coflowing immiscible liquids[J]. AIChE Journal, 2007, 53(10): 2534-2548. |
59 | CUBAUD T, TATINENI M, ZHONG Xiaolin, et al. Bubble dispenser in microfluidic devices[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2005, 72(3Pt 2): 037302. |
60 | DAVIDSON M R, HARVIE D J E, COOPER-WHITE J J. Flow focusing in microchannels[J]. Anziam J., 2005, 45(E): C47-C58. |
61 | WEBER M W, SHANDAS R. Computational fluid dynamics analysis of microbubble formation in microfluidic flow-focusing devices[J]. Microfluidics and Nanofluidics, 2007, 3(2): 195-206. |
62 | DUPIN M M, HALLIDAY I, CARE C M. Simulation of a microfluidic flow-focusing device[J]. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(5Pt 2): 055701. |
63 | GRAAF S VAN DER, NISISAKO T, SCHROËN C G P H, et al. Lattice Boltzmann simulations of droplet formation in a T-shaped microchannel[J]. Langmuir, 2006, 22(9): 4144-4152. |
64 | YU Zhao, HEMMINGER O, FAN Liang-Shih. Experiment and lattice Boltzmann simulation of two-phase gas-liquid flows in microchannels[J]. Chemical Engineering Science, 2007, 62(24): 7172-7183. |
65 | LEI Lei, BERGSTROM D, ZHANG Bing, et al. Micro/nanospheres generation by fluid-fluid interaction technology: a literature review[J]. Recent Patents on Nanotechnology, 2017, 11(1): 15-33. |
66 | OSHER S, SETHIAN J A. Fronts propagating with curvature dependent speed algorithms based on Hamilton-Jacobi[J]. Journal of Computational Physics, 1988, 79(1): 12-49. |
67 | BASHIR S, REES J M, ZIMMERMAN W B. Simulations of microfluidic droplet formation using the two-phase level set method[J]. Chemical Engineering Science, 2011, 66(20): 4733-4741. |
68 | MARCHANDISE E, REMACLE JF. A stabilize finite element method using a discontinuous level set approach for solving two phase incompressible flow[J]. Journal of Computational Physics, 2006, 219(2): 780-800. |
69 | MARCHANDISE E, J-F REMACLE, CHEVAUGEON N. A quadrature-free discontinuous Galerkin method for the level set equation[J]. Journal of Computational Physics, 2006, 212(1): 338-357. |
70 | OLSSON E, KREISS G. A conservative level set method for two phase flow[J]. Journal of Computational Physics, 2005, 210(1): 225-246. |
71 | OLSSON E, KREISS G, ZAHEDI S. A conservative level set method for two phase flow II[J].Journal of Computational Physics, 2007, 225(1): 785-807. |
72 | HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundary[J]. Journal of Computational Physics, 1981, 39(1): 201-225. |
73 | KOTHE D, RIDER W, MOSSO S, et al. Volume tracking of interfaces having surface tension in two and three dimensions[J]. AIAA Paper, 1999, 96(0859): 1-18. |
74 | YOUNGS D L. Time-dependent multi-material flow with large fluid distortion[M]//MORTON K W, BAINES M J. Numerical methods for dynamics. New York: Academic Press, 1982: 274-285. |
75 | GLATZEL T, LITTERST C, CUPELLI C, et al. Computational Fluid Dynamics (CFD) software tools for microfluidic applications—A case study[J]. Computers & Fluids, 2008, 37(3): 218-235. |
76 | RAEINI A Q, BLUNT M J, BIJELJIC B. Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method[J]. Journal of Computational Physics, 2012, 231(17): 5653-5668. |
77 | HOANG D, STEIJN V VAN, PORTELA L M, et al. Benchmark numerical simulations of segmented two-phase flows in microchannels using the volume of fluid method[J]. Computers & Fluids, 2013, 86: 28-36. |
78 | HORGUE P, PRAT M, QUINTARD M. A penalization technique applied to the “volume-of-fluid” method: wettability condition on immersed boundaries[J]. Computers & Fluids, 2014, 100: 255-266. |
79 | Gim Yau SOH, YEOH Guan Heng, TIMCHENKO V. Improved volume-of-fluid (VOF) model for predictions of velocity fields and droplet lengths in microchannels[J]. Flow Measurement and Instrumentation, 2016, 51: 105-115. |
80 | FRISCH U. Relation between the lattice Boltzmann equation and the Navier-Stokes equations[J]. Physica D, 1991, 47(1/2): 231-232. |
81 | WANG Jinku, WANG Moran, LI Zhixin. A lattice Boltzmann algorithm for fluid-solid conjugate heat transfer[J]. International Journal of Thermal Sciences, 2007, 46(3): 228-234. |
82 | GELLER S, KRAFCZYK M, TÖLKE J, et al. Benchmark computations based on lattice-Boltzmann, finite element and finite volume methods for laminar flows[J]. Computers & Fluids, 2006, 35(8): 888-897. |
83 | LAI Yong G, LIN Ching-Long, HUANG Jianchun. Accuracy and efficiency study of lattice Boltzmann method for steady flow simulations[J]. Numerical Heat Transfer B: Fundamentals, 2001, 39(1): 21-43. |
84 | ZHANG Junfeng. Lattice Boltzmann method for microfluidics: models and applications[J]. Microfluidics and Nanofluidics, 2010, 10(1): 1-28. |
85 | 付宇航, 赵述芳, 王文坦, 等. 多相/多组分LBM模型及其在微流体领域的应用[J]. 化工学报, 2014, 65(7): 2535-2543. |
FU Yuhang, ZHAO Shufang, WANG Wentan, et al. Application of lattice Boltzmann method for simulation of multiphase/multicomponent flow in microfluidics[J]. CIESC Journal, 2014, 65(7): 2535-2543. | |
86 | YANG Hui, ZHOU Qiang, FAN Liang-Shih. Three-dimensional numerical study on droplet formation and cell encapsulation process in a micro T-junction[J]. Chemical Engineering Science, 2013, 87: 100-110. |
87 | ALBADAWI A, DONOGHUE D B, ROBINSON A, et al. On the analysis of bubble growth and detachment at low capillary and bond numbers using volume of fluid and level set methods[J]. Chemical Engineering Science, 2013, 90: 77-91. |
88 | SEEMANN R, BRINKMANN M, PFOHL T, et al. Droplet based microfluidics[J]. Reports on Progress in Physics, 2012, 75(1): 016601. |
89 | ZHU Pingan, WANG Liqiu. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34-75. |
90 | UTADA A S, FERNANDEZ-NIEVES A, STONE H A, et al. Dripping to jetting transitions in coflowing liquid streams[J]. Physical Review Letters, 2007, 99(9): 094502. |
91 | CHERLO S K R, KARIVETI S, PUSHPAVANAM S. Experimental and numerical investigations of two-phase (liquid-liquid) flow behavior in rectangular microchannels[J]. Industrial & Engineering Chemistry Research, 2010, 49(2): 893-899. |
92 | XU Jianhong, LUO Guangsheng, LI Shaowei, et al. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties[J]. Lab on a Chip, 2006, 6(1): 131-136. |
93 | ANANDAN P, GAGLIANO S, BUCOLO M. Computational models in microfluidic bubble logic[J]. Microfluidics and Nanofluidics, 2015, 18(2): 305–321. |
94 | MAO Xiaole, WALDEISEN J R, HUANG T Jun. "Microfluidic drifting"-implementing three-dimensional hydrodynamic focusing with a single-layer planar microfluidic device[J]. Lab on a Chip, 2007, 7(10): 1260-1262. |
95 | MAO Xiaole, LIN Sz-Chin S, DONG Cheng, et al. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing[J]. Lab on a Chip, 2009, 9(11): 1583-1589. |
[1] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[2] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[3] | 王云飞, 秦蕊, 郑利军, 李焱, 李清平. 旋转填充床CFD模拟研究进展[J]. 化工进展, 2023, 42(S1): 1-9. |
[4] | 王太, 苏硕, 李晟瑞, 马小龙, 刘春涛. 交流电场中贴壁气泡的动力学行为[J]. 化工进展, 2023, 42(S1): 133-141. |
[5] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[6] | 陈匡胤, 李蕊兰, 童杨, 沈建华. 质子交换膜燃料电池气体扩散层结构与设计研究进展[J]. 化工进展, 2023, 42(S1): 246-259. |
[7] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[8] | 赵曦, 马浩然, 李平, 黄爱玲. 错位碰撞型微混合器混合性能的模拟分析与优化设计[J]. 化工进展, 2023, 42(9): 4559-4572. |
[9] | 叶振东, 刘涵, 吕静, 张亚宁, 刘洪芝. 基于钙镁二元盐的热化学储能反应器的性能优化[J]. 化工进展, 2023, 42(8): 4307-4314. |
[10] | 刘卫孝, 刘洋, 高福磊, 汪伟, 汪营磊. 微反应器在含能材料合成与品质提升中的应用[J]. 化工进展, 2023, 42(7): 3349-3364. |
[11] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[12] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[13] | 王硕, 张亚新, 朱博韬. 基于灰色预测模型的水煤浆输送管道冲蚀磨损寿命预测[J]. 化工进展, 2023, 42(7): 3431-3442. |
[14] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[15] | 卢兴福, 戴波, 杨世亮. 转鼓内圆柱形颗粒混合的超二次曲面离散单元法模拟[J]. 化工进展, 2023, 42(5): 2252-2261. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |