1 |
REICHERT J C, SAIFZADEH S, WULLSCHLEGER M E, et al. The challenge of establishing preclinical models for segmental bone defect research[J]. Biomaterials, 2009, 30(12): 2149-2163.
|
2 |
LI J J, ROOHANI-ESFAHANI S I, DUNSTAN C R, et al. Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiae[J]. Biomedical Materials, 2016, 11(1): 015016.
|
3 |
LI J J, DUNSTAN C R, ENTEZARI A, et al. A novel bone substitute with high bioactivity, strength, and porosity for repairing large and load-bearing bone defects[J]. Advanced Healthcare Materials, 2019, 8(8): e1801298.
|
4 |
鹿鸣, 张雪松, 常丽, 等. 可塑型生物活性骨修复材料的制备及性能表征[J]. 中国组织工程研究, 2015, 19(21): 3323-3328.
|
|
LU Ming, ZHANG Xuesong, CHANG Li, et al. Preparation, performance and characterization of bioactive bone materials with plasticity[J]. Chinese Journal of Tissue Engineering Research, 2015, 19(21): 3323-3328.
|
5 |
ALARÇIN E, LEE T Y, KARUTHEDOM S, et al. Injectable shear-thinning hydrogels for delivering osteogenic and angiogenic cells and growth factors[J]. Biomaterials Science, 2018, 6(6): 1604-1615.
|
6 |
衡立松, 张军, 朱养均, 等. 可注射式磷酸钙骨水泥在肱骨近端骨折中应用观察[J]. 陕西医学杂志, 2016, 45(7): 832-833.
|
|
HENG Lisong, ZHANG Jun, ZHU Yangjun, et al. Application of injectable calcium phosphate cement in proximal humerus fractures[J]. Shaanxi Medical Journal, 2016, 45(7): 832-833.
|
7 |
OEZEL L, BÜREN C, SCHOLZ A O, et al. Effect of antibiotic infused calcium sulfate/hydroxyapatite (CAS/HA) insets on implant-associated osteitis in a femur fracture model in mice[J]. PLoS One, 2019, 14(3): e0213590.
|
8 |
KHURANA K, GUILLEM-MARTI J, SOLDERA F, et al. Injectable calcium phosphate foams for the delivery of Pitavastatin as osteogenic and angiogenic agent[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020, 108(3): 760-770.
|
9 |
SUN W J, ZHOU Y N, ZHANG X R, et al. Injectable nano-structured silicon-containing hydroxyapatite microspheres with enhanced osteogenic differentiation and angiogenic factor expression[J]. Ceramics International, 2018, 44(16): 20457-20464.
|
10 |
JAHAN K, MEKHAIL M, TABRIZIAN M. One-step fabrication of apatite-chitosan scaffold as a potential injectable construct for bone tissue engineering[J]. Carbohydrate Polymers, 2019, 203: 60-70.
|
11 |
KAWASHITA M, KAWAMURA K, LI Z. PMMA-based bone cements containing magnetite particles for the hyperthermia of cancer[J]. Acta Biomaterialia, 2010, 6(8): 3187-3192.
|
12 |
GUELCHER S A. Biodegradable polyurethanes: synthesis and applications in regenerative medicine[J]. Tissue Engineering Part B: Reviews, 2008, 14(1): 3-17.
|
13 |
MCBANE J E, SHARIFPOOR S, CAI K H, et al. Biodegradation and in vivo biocompatibility of a degradable, polar/hydrophobic/ionic polyurethane for tissue engineering applications[J]. Biomaterials, 2011, 32(26): 6034-6044.
|
14 |
FARRAR D F. Bone adhesives for trauma surgery: a review of challenges and developments[J]. International Journal of Adhesion and Adhesives, 2012, 33: 89-97.
|
15 |
MOLINO G, PALMIERI M C, MONTALBANO G, et al. Biomimetic and mesoporous nano-hydroxyapatite for bone tissue application: a short review[J]. Biomedical Materials, 2020, 15(2): 022001.
|
16 |
SUN B, ZUO Y, LI J D, et al. High conversion self-curing sealer based on a novel injectable polyurethane system for root canal filling[J]. Materials Science and Engineering C, 2013, 33(6): 3138-3145.
|
17 |
YANG W, BOTH S K, ZUO Y, et al. Biological evaluation of porous aliphatic polyurethane/hydroxyapatite composite scaffolds for bone tissue engineering[J]. Journal of Biomedical Materials Research Part A, 2015, 103(7): 2251-2259.
|
18 |
CHENG H T, LEE Y S, LIU H C, et al. The effect of component addition order on the properties of epoxy resin/polyurethane resin interpenetrating polymer network structure[J]. Journal of Applied Polymer Science, 2021, 138(7): 49833.
|
19 |
LI L M, ZUO Y, ZOU Q, et al. Hierarchical structure and mechanical improvement of an n-HA/GCO–PU composite scaffold for bone regeneration[J]. ACS Applied Materials & Interfaces, 2015, 7(40): 22618-22629.
|
20 |
李根, 李炯炯, 李丽梅, 等. 原位自发泡制备磷酸钙/聚氨酯复合骨修复支架[J]. 无机材料学报, 2016, 31(7): 719-725.
|
|
LI Gen, LI Jiongjiong, LI Limei, et al. Preparation of calcium phosphate/polyurethane composite porous scaffolds for bone repair by in situ self-foaming method[J]. Journal of Inorganic Materials, 2016, 31(7): 719-725.
|
21 |
WOODARD J R, HILLDORE A J, LAN S K, et al. The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity[J]. Biomaterials, 2007, 28(1): 45-54.
|
22 |
CHEN F P, SONG Z Y, LIU C S. Fast setting and anti-washout injectable calcium-magnesium phosphate cement for minimally invasive treatment of bone defects[J]. Journal of Materials Chemistry B, 2015, 3(47): 9173-9181.
|
23 |
HULBERT S F, YOUNG F A, MATHEWS R S, et al. Potential of ceramic materials as permanently implantable skeletal prostheses[J]. Journal of Biomedical Materials Research, 1970, 4(3): 433-456.
|
24 |
ZARGHAMI DEHAGHANI M, KAFFASHI B, HAPONIUK J T, et al. Shape memory thin films of polyurethane: does graphene content affect the recovery behavior of Polyurethane nanocomposites?[J]. Polymer Composites, 2020, 41(8): 3376-3388.
|
25 |
MOTHÉ C G, DE ARAÚJO C R. Properties of polyurethane elastomers and composites by thermal analysis[J]. Thermochimica Acta, 2000, 357/358: 321-325.
|