29 |
ZHANG H, GUO R, HOU J, et al. Mixed-matrix membranes containing carbon nanotubes composite with hydrogel for efficient CO2 separation[J]. ACS Applied Materials & Interfaces, 2016, 8(42): 29044-29051.
|
30 |
MOSLEH S, MOZDIANFARD M, HEMMATI M, et al. Mixed matrix membranes of Pebax1657 loaded with iron benzene-1,3,5-tricarboxylate for gas separation[J]. Polymer Composites, 2017, 38(7): 1363-1370.
|
31 |
LI X Q, CHENG Y D, ZHANG H Y, et al. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes[J]. ACS Applied Materials & Interfaces, 2015, 7(9): 5528-5537.
|
32 |
WU H, LI X Q, LI Y F, et al. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties[J]. Journal of Membrane Science, 2014, 465: 78-90.
|
1 |
高虎. “双碳”目标下中国能源转型路径思考[J]. 国际石油经济, 2021, 29(3): 1-6.
|
|
GAO Hu. China’s energy transformation under the targets of peaking carbon emissions and carbon neutral[J]. International Petroleum Economics, 2021, 29(3): 1-6.
|
2 |
WANG L D, AN S L, YU S H, et al. Mass transfer characteristics of CO2 absorption into a phase-change solvent in a wetted-wall column[J]. International Journal of Greenhouse Gas Control, 2017, 64: 276-283.
|
3 |
YOUSEF A M, EL-MAGHLANY W M, ELDRAINY Y A, et al. New approach for biogas purification using cryogenic separation and distillation process for CO2 capture[J]. Energy, 2018, 156: 328-351.
|
4 |
廉玉姣, 王永洪, 张新儒, 等. N2优先渗透ZIF-8复合膜的制备及其CO2捕集[J]. 化工学报, 2019, 70(9): 3573-3581.
|
|
LIAN Yujiao, WANG Yonghong, ZHANG Xinru, et al. Preparation of N2 selective ZIF-8 composite membrane for CO2 capture[J]. CIESC Journal, 2019, 70(9): 3573-3581.
|
5 |
贝鹏志, 刘红晶, 张莹, 等. 离子液体接枝型PI/GO膜的制备及CO2/N2分离的应用[J]. 化工进展, 2020, 39(11): 4550-4556.
|
|
BEI Pengzhi, LIU Hongjing, ZHANG Ying, et al. Preparation of ionic liquid grafted-PI/GO membranes and its application in CO2/N2 separation[J]. Chemical Industry and Engineering Progress, 2020, 39(11): 4550-4556.
|
6 |
EBADI AMOOGHIN A, MASHHADIKHAN S, SANAEEPUR H, et al. Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): a new horizon for efficient CO2 separation[J]. Progress in Materials Science, 2019, 102: 222-295.
|
7 |
陈丙晨, 徐积斌, 万超, 等. 用于CO2/CH4分离的cPIM-1/ZIF-8混合基质膜的制备[J]. 化工进展, 2020, 39(9): 3518-3524.
|
|
CHEN Bingchen, XU Jibin, WAN Chao, et al. ZIF-8 filled carboxylated polymer of intrinsic microporosity membranes for CO2/CH4 separation[J]. Chemical Industry and Engineering Progress, 2020, 39(9): 3518-3524.
|
8 |
PEREZ E, KARUNAWEERA C, MUSSELMAN I, et al. Origins and evolution of inorganic-based and MOF-based mixed-matrix membranes for gas separations[J]. Processes, 2016, 4(3): 32.
|
9 |
杨凯, 阮雪华, 代岩, 等. 氨基MIL-101(Cr)强化CO2分离性能的混合基质膜优化制备[J]. 化工学报, 2020, 71(1): 329-336.
|
|
YANG Kai, RUAN Xuehua, DAI Yan, et al. Optimized fabrication of mixed matrix membranes based on aminoMIL-101(Cr) for highly efficient CO2 separation [J]. CIESC Journal, 2020, 71(1): 329-336.
|
10 |
ZHAO N, LIU T, LIU Z Z, et al. Synthesis and properties of sulfonated biphenyl poly(ether sulfone) and its mixed-matrix membranes containing carbon nanotubes for gas separation[J]. Journal of Applied Polymer Science, 2017, 134(29): 44995.
|
11 |
MULDOON P F, VENNA S R, GIDLEY D W, et al. Mixed matrix membranes from a microporous polymer blend and nanosized metal-organic frameworks with exceptional CO2/N2 separation performance[J]. ACS Materials Letters, 2020, 2(7): 821-828.
|
12 |
LI Y, GUAN H M, CHUNG T S, et al. Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes[J]. Journal of Membrane Science, 2006, 275(1/2): 17-28.
|
13 |
JAPIP S, XIAO Y, T-S CHUNG. Particle-size effects on gas transport properties of 6FDA-durene/ZIF-71 mixed matrix membranes[J]. Industrial & Engineering Chemistry Research,2016, 55 (35): 9507-9517.
|
14 |
SEOANE B, CORONAS J, GASCON I, et al. Metal-organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? [J]. Chemical Society Reviews, 2015, 44(8): 2421-2454.
|
15 |
VINOBA M, BHAGIYALAKSHMI M, ALQAHEEM Y, et al. Recent progress of fillers in mixed matrix membranes for CO2 separation: a review[J]. Separation and Purification Technology, 2017, 188: 431-450.
|
16 |
ZHENG W J, DING R, YANG K, et al. ZIF-8 nanoparticles with tunable size for enhanced CO2 capture of Pebax based MMMs[J]. Separation and Purification Technology, 2019, 214: 111-119.
|
17 |
MESHKAT S, KALIAGUINE S, RODRIGUE D. Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation[J]. Separation and Purification Technology, 2018, 200: 177-190.
|
18 |
GE B S, XU Y Y, ZHAO H R, et al. High performance gas separation mixed matrix membrane fabricated by incorporation of functionalized submicrometer-sized metal-organic framework[J]. Materials, 2018, 11(8): 1421.
|
19 |
HE T J, XIAO Y H, ZHAO Q D, et al. Ultramicroporous metal-organic framework Qc-5-Cu for highly selective adsorption of CO2 from C2H4 stream[J]. Industrial & Engineering Chemistry Research, 2020, 59(7): 3153-3161.
|
20 |
TANG Y N, WANG S, ZHOU X, et al. Room temperature synthesis of Cu(Qc)2 and its application for ethane capture from light hydrocarbons[J]. Chemical Engineering Science, 2020, 213: 115355.
|
21 |
CHEN K J, MADDEN D G, PHAM T, et al. Tuning pore size in square-lattice coordination networks for size-selective sieving of CO2[J]. Angewandte Chemie, 2016, 128(35): 10424-10428.
|
22 |
NUGENT P, RHODUS V, PHAM T, et al. Enhancement of CO2 selectivity in a pillared pcu MOM platform through pillar substitution[J]. Chemical Communications, 2013, 49(16): 1606.
|
23 |
LI B Y, ZHANG Z J, LI Y, et al. Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework[J]. Angewandte Chemie International Edition, 2012, 51(6): 1412-1415.
|
24 |
PATEL H A, JE S H, PARK J, et al. Unprecedented high-temperature CO2 selectivity in N2-phobic nanoporous covalent organic polymers[J]. Nature Communications, 2013, 4: 1357.
|
25 |
GUAN W X, YANG X C, DONG C Y, et al. Prestructured MXene fillers with uniform channels to enhance CO2 selective permeation in mixed matrix membranes[J]. Journal of Applied Polymer Science, 2021, 138(8): 49895.
|
26 |
GUAN W X, DAI Y, DONG C Y, et al. Zeolite imidazolate framework (ZIF)-based mixed matrix membranes for CO2 separation: a review[J]. Journal of Applied Polymer Science, 2020, 137(33): 48968.
|
27 |
YANG X C, ZHENG W J, XI Y, et al. Constructing low-resistance and high-selectivity transport multi-channels in mixed matrix membranes for efficient CO2 separation[J]. Journal of Membrane Science, 2021, 624: 119046.
|
28 |
HABIB N, SHAMAIR Z, TARA N, et al. Development of highly permeable and selective mixed matrix membranes based on Pebax®1657 and NOTT-300 for CO2 capture[J]. Separation and Purification Technology, 2020, 234: 116101.
|