化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5600-5614.DOI: 10.16085/j.issn.1000-6613.2020-2080
邓建辉1,2(), 杨晓青1, 方称辉1, 曹栋清1, 李梁君2, 张国庆1(), 郭建维2()
收稿日期:
2020-10-15
修回日期:
2021-01-09
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
张国庆,郭建维
作者简介:
邓建辉(1995—),男,博士研究生,研究方向为静电纺丝。E-mail:基金资助:
DENG Jianhui1,2(), YANG Xiaoqing1, FANG Chenghui1, CAO Dongqing1, LI Liangjun2, ZHANG Guoqing1(), GUO Jianwei2()
Received:
2020-10-15
Revised:
2021-01-09
Online:
2021-10-10
Published:
2021-10-25
Contact:
ZHANG Guoqing,GUO Jianwei
摘要:
在制备纳米材料的各种方法中,静电纺丝和静电喷雾技术在过去数十年中开辟了低成本、简便、高效和可连续的纳米纤维制造技术路线,引起了科研工作者的广泛关注。本文介绍了静电纺丝和静电喷雾技术的基本原理、影响参数及种类(溶液静电纺丝、熔融静电纺丝、气流静电纺丝、乳液静电纺丝、同轴静电纺丝、多喷嘴静电纺丝和无针静电纺丝),并阐明了不同静电纺丝技术种类的原理及特点。文章进一步着重介绍了静电纺丝和静电喷雾技术的优势及其在电池领域的前沿应用,特别是在锂离子电池、燃料电池、太阳能电池及超级电容器的应用,最后展望了静电纺丝和静电喷雾先进制造技术面临的挑战和发展前景。
中图分类号:
邓建辉, 杨晓青, 方称辉, 曹栋清, 李梁君, 张国庆, 郭建维. 静电纺丝/静电喷雾技术在电池领域的应用进展[J]. 化工进展, 2021, 40(10): 5600-5614.
DENG Jianhui, YANG Xiaoqing, FANG Chenghui, CAO Dongqing, LI Liangjun, ZHANG Guoqing, GUO Jianwei. Application of electrospinning and electrospray technology in battery/cell field[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5600-5614.
溶液参数 | 工艺参数 | 环境参数 |
---|---|---|
聚合物溶液浓度 | 外加电压 | 温度 |
聚合物分子量 | 纺丝距离 | 湿度 |
溶液黏度 | 纺丝速率 | 压强 |
电导率 | 针管内径 | |
表面张力 | 收集器类型 |
表1 静电纺丝过程的主要影响参数
溶液参数 | 工艺参数 | 环境参数 |
---|---|---|
聚合物溶液浓度 | 外加电压 | 温度 |
聚合物分子量 | 纺丝距离 | 湿度 |
溶液黏度 | 纺丝速率 | 压强 |
电导率 | 针管内径 | |
表面张力 | 收集器类型 |
1 | SORRELL S. Reducing energy demand: a review of issues, challenges and approaches[J]. Renewable and Sustainable Energy Reviews, 2015, 47: 74-82. |
2 | SUN C, TANG X, YIN Z, et al. Self-supported GaN nanowires with cation-defects, lattice distortion, and abundant active sites for high-rate lithium-ion storage[J]. Nano Energy, 2020, 68: 104376. |
3 | SILVA L M DA, CESAR R, MOREIRA C M R, et al. Reviewing the fundamentals of supercapacitors and the difficulties involving the analysis of the electrochemical findings obtained for porous electrode materials[J]. Energy Storage Materials, 2020, 27: 555-590. |
4 | DONG Z, KENNEDY S J, WU Y. Electrospinning materials for energy-related applications and devices[J]. Journal of Power Sources, 2011, 196(11): 4886-4904. |
5 | MA R, ZHOU Y, BI H, et al. Multidimensional graphene structures and beyond: unique properties, syntheses and applications[J]. Progress in Materials Science, 2020, 113: 100665. |
6 | ZHENG Y, LI X, PI C, et al. Recent advances of two-dimensional transition metal nitrides for energy storage and conversion applications[J]. Flat Chem., 2020, 19: 100149. |
7 | SHENG LAU K, CHIN S X, TAN S T, et al. Silver nanowires as flexible transparent electrode: role of PVP chain length[J]. Journal of Alloys and Compounds, 2019, 803: 165-171. |
8 | ZHAI Z, YAN W, DONG L, et al. Multi-dimensional materials with layered structures for supercapacitors: advanced synthesis, supercapacitor performance and functional mechanism[J]. Nano Energy, 2020, 78: 105193. |
9 | CHOI S Y, KIM S, LEE K J, et al. Solar hydrogen peroxide production on carbon nanotubes wired to titania nanorod arrays catalyzing As(Ⅲ) oxidation[J]. Applied Catalysis B: Environmental, 2019, 252: 55-61. |
10 | KUNDU S, MOGERA U, GEORGE S J, et al. A planar supercapacitor made of supramolecular nanofibre based solid electrolyte exhibiting 8V window[J]. Nano Energy, 2019, 61:259-266. |
11 | ZHAO Y, HUANG C, HE Y, et al. High-performance asymmetric supercapacitors realized by copper cobalt sulfide crumpled nanoflower and N,F co-doped hierarchical nanoporous carbon polyhedron[J]. Journal of Power Sources, 2020, 456: 228023. |
12 | BENCHEIKH Y, HARNOIS M, JIJIE R, et al. High performance silicon nanowires/ruthenium nanoparticles micro-supercapacitors[J]. Electrochimica Acta, 2019, 311: 150-159. |
13 | ZHAO R, LU X, WANG C. Electrospinning based all-nano composite materials: recent achievements and perspectives[J]. Composites Communications, 2018, 10: 140-150. |
14 | LEE J K Y, CHEN N, PENG S, et al. Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons[J]. Progress in Polymer Science, 2018, 86: 40-84. |
15 | ZONG H, XIA X, LIANG Y, et al. Designing function-oriented artificial nanomaterials and membranes via electrospinning and electrospraying techniques[J]. Materials Science and Engineering C, 2018, 92: 1075-1091. |
16 | JIANG K, LI Q, FAN S. Spinning continuous carbon nanotube yarns[J]. Nature, 2002, 419(6909): 801. |
17 | WANG X, YU G, ZHANG J, et al. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications[J]. Progress in Materials Science, 2021, 115: 100704. |
18 | AHMED F E, LALIA B S, HASHAIKEH R. A review on electrospinning for membrane fabrication: challenges and applications[J]. Desalination, 2015, 356: 15-30. |
19 | LIU X, SONG K, LU C, et al. Electrospun PU@GO separators for advanced lithium ion batteries[J]. Journal of Membrane Science, 2018, 555: 1-6. |
20 | SOLARAJAN A K, MURUGADOSS V, ANGAIAH S. Montmorillonite embedded electrospun PVDF-HFP nanocomposite membrane electrolyte for Li-ion capacitors[J]. Applied Materials Today, 2016, 5: 33-40. |
21 | SUBRAMANIAN C, WEISS R A, SHAW M T. Fabrication and characterization of conductive nanofiber-based composite membranes[J]. Industrial & Engineering Chemistry Research, 2013, 52: 15088-15093. |
22 | LIU Y, HAO M, CHEN Z, et al. A review on recent advances in application of electrospun nanofiber materials as biosensors[J]. Current Opinion in Biomedical Engineering, 2020, 13: 174-189. |
23 | CHOI J, HWANG I, KIM S, et al. Design of selective gas sensors using electrospun Pd-doped SnO2 hollow nanofibers[J]. Sensors and Actuators B: Chemical, 2010, 150(1): 191-199. |
24 | WANG X, DREW C, LEE S, et al. Electrospun nanofibrous membranes for highly sensitive optical sensors[J]. Nano Letters. 2002, 2(11): 1273-1275. |
25 | XU H, CAO Y, LI X, et al. An electrospun chitosan-based nanofibrous membrane reactor immobilized by the non-glycosylated rPGA for hydrolysis of pectin-rich biomass[J]. Renewable Energy, 2018, 126: 573-582. |
26 | LIAN H, MENG Z. A novel and highly photocatalytic “TiO2 wallpaper” made of electrospun TiO2/bioglass hybrid nanofiber[J]. Materials Science in Semiconductor Processing, 2018, 80: 68-73. |
27 | HALDER K, BENGTSON G, FILIZ V, et al. Catalytically active (Pd) nanoparticles supported by electrospun PIM-1: influence of the sorption capacity of the polymer tested in the reduction of some aromatic nitro compounds[J]. Applied Catalysis A: General, 2018, 555: 178-188. |
28 | KADAM V, TRUONG Y B, EASTON C, et al. Electrospun polyacrylonitrile/β-cyclodextrin composite membranes for simultaneous air filtration and adsorption of volatile organic compounds[J]. ACS Applied Nano Materials, 2018, 1(8): 4268-4277. |
29 | LAKAYAN S, BEHROOZSARAND A, SAMADI A, et al. Electrospun polystyrene/cloisite 20A fiber for selective separation of oil from water surface[J]. Journal of Environmental Chemical Engineering, 2020, 8(4): 103775. |
30 | LIAO Y, LOH C, TIAN M, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment: fabrication, modification and applications[J]. Progress in Polymer Science, 2018, 77: 69-94. |
31 | RESHMI C R, SUNDARAN S P, SUBIJA T, et al. “Nano in micro” architecture composite membranes for controlled drug delivery[J]. Applied Clay Science, 2018, 166: 262-275. |
32 | SHOKROLLAHI M, BAHRAMI S H, NAZARPAK M H, et al. Multilayer nanofibrous patch comprising chamomile loaded carboxyethyl chitosan/poly(vinyl alcohol) and polycaprolactone as a potential wound dressing[J]. International Journal of Biological Macromolecules, 2020, 147: 547-559. |
33 | MASSOUMI B, HATAMZADEH M, FIROUZI N, et al. Electrically conductive nanofibrous scaffold composed of poly(ethylene glycol)-modified polypyrrole and poly(ε-caprolactone) for tissue engineering applications[J]. Materials Science and Engineering C, 2019, 98: 300-310. |
34 | 李卫昌. 静电纺丝/静电喷雾制备生物医用材料[D]. 广州: 华南理工大学, 2017. |
LI Weichang. Fabrication of biomedical materials via electrospinning and electrospraying [D]. Guangzhou: South China University of Technology, 2017. | |
35 | GHOSAL K, AGATEMOR C, SPITALSKY Z, et al. Electrospinning tissue engineering and wound dressing scaffolds from polymer-titanium dioxide nanocomposites[J]. Chemical Engineering Journal, 2019, 358: 1262-1278. |
36 | SCHUEREN L VAN DER, DE SCHOENMAKER B, KALAOGLU Ö I, et al. An alternative solvent system for the steady state electrospinning of polycaprolactone[J]. European Polymer Journal, 2011, 47(6): 1256-1263. |
37 | GHORANI B, TUCKER N. Fundamentals of electrospinning as a novel delivery vehicle for bioactive compounds in food nanotechnology[J]. Food Hydrocolloids, 2015, 51: 227-240. |
38 | BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010, 28(3): 325-347. |
39 | JIANG T, CARBONE E J, LO K W H, et al. Electrospinning of polymer nanofibers for tissue regeneration[J]. Progress in Polymer Science, 2015, 46: 1-24. |
40 | HU X, LIU S, ZHOU G, et al. Electrospinning of polymeric nanofibers for drug delivery applications[J]. Journal of Controlled Release, 2014, 185: 12. |
41 | RAMAKRISHNA S, FUJIHARA K, TEO W, et al. Electrospun nanofibers: solving global issues[J]. Materials Today, 2006, 9(3): 40-50. |
42 | LEE J K Y, CHEN N, PENG S, et al. Polymer-based composites by electrospinning: preparation & functionalization with nanocarbons[J]. Progress in Polymer Science, 2018, 86: 40-84. |
43 | PENG M, LI D, SHEN L, et al. Nanoporous structured submicrometer carbon fibers prepared via solution electrospinning of polymer blends[J]. Langmuir, 2006, 22(22): 9368-9374. |
44 | 姚子琪, 马东明, 雷文龙, 等. 熔体静电纺丝直写技术在组织工程中的应用进展[J]. 化工进展, 2019, 38(8): 3756-3762. |
YAO Ziqi, MA Dongming, LEI Wenlong, et al. Progress in melt electrospinning direct writing technology intissue engineering[J]. Chemical Industry and Engineering Progress, 2019, 38(8): 3756-3762. | |
45 | YAN X, DUAN X, YU S, et al. Portable melt electrospinning apparatus without an extra electricity supply[J]. RSC Advances, 2017, 7(53): 33132-33136. |
46 | ZHMAYEV E, CHO D, JOO Y L. Nanofibers from gas-assisted polymer melt electrospinning[J]. Polymer, 2010, 51(18): 4140-4144. |
47 | CHO D, ZHOU H, CHO Y, et al. Structural properties and superhydrophobicity of electrospun polypropylene fibers from solution and melt[J]. Polymer, 2010, 51(25): 6005-6012. |
48 | 姚永毅, 朱谱新, 叶海, 等. 静电纺丝法和气流静电纺丝法制备聚砜纳米纤维[J]. 高分子学报, 2005(5): 687-692. |
YAO Yongyi, ZHU Puxin, YE Hai, et al. Polysulfone nanofibers prepared by electrospinning and gas-jet/electrospinning[J]. Acta Polymerica Sinica, 2005(5): 687-692. | |
49 | LARSEN G, SPRETZ R, VELARDE-ORTIZ R. Use of coaxial gas jackets to stabilize taylor cones of volatile solutions and to induce particle-to-fiber transitions[J]. Advanced Materials, 2004, 16(2): 166-169. |
50 | MA L, SHI X, ZHANG X, et al. Electrospinning of polycaprolacton/chitosan core-shell nanofibers by a stable emulsion system[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583: 123956. |
51 | ZHANG C, FENG F, ZHANG H. Emulsion electrospinning: fundamentals, food applications and prospects[J]. Trends in Food Science & Technology, 2018, 80: 175-186. |
52 | CHENG H, YANG X, CHE X, et al. Biomedical application and controlled drug release of electrospun fibrous materials[J]. Materials Science and Engineering C, 2018, 90: 750-763. |
53 | 马亮, 时学娟, 张笑笑, 等. 可控核/壳结构聚合物电纺纤维的制备与应用[J]. 化学进展, 2019, 31(9): 1213-1220. |
MA Liang, SHI Xuejuan, ZHANG Xiaoxiao, et al. Preparation of the controllable core-shell structured electrospun polymer fibers and their application[J]. Progress in Chemistry, 2019, 31(9): 1213-1220. | |
54 | ZHENG G, JIANG J, WANG X, et al. Nanofiber membranes by multi-jet electrospinning arranged as arc-array with sheath gas for electrodialysis applications[J]. Materials & Design, 2020, 189: 108504. |
55 | WANG D, YUE Y, WANG Q, et al. Preparation of cellulose acetate-polyacrylonitrile composite nanofibers by multi-fluid mixing electrospinning method: morphology, wettability, and mechanical properties[J]. Applied Surface Science, 2020, 510: 145462. |
56 | THERON S A, YARIN A L, ZUSSMAN E, et al. Multiple jets in electrospinning: experiment and modeling[J]. Polymer, 2005, 46(9): 2889-2899. |
57 | ZHENG Y, ZHUANG C, GONG R H, et al. Electric field design for multijet electropsinning with uniform electric field[J]. Industrial & Engineering Chemistry Research. 2014, 53(38): 14876-14884. |
58 | NIU H, LIN T, BHAT G S. Fiber generators in needleless electrospinning[J]. Journal of Nanomaterials, 2012, 2012: 725950. |
59 | NIU H, WANG X, LIN T. Needleless electrospinning: influences of fibre generator geometry[J]. The Journal of The Textile Institute, 2012, 103(7): 787-794. |
60 | HAPIDIN D A, SALEH I, MUNIR M M, et al. Design and development of a series-configuration mazzilli zero voltage switching flyback converter as a high-voltage power supply for needleless electrospinning[J]. Procedia Engineering, 2017, 170: 509-515. |
61 | LI X, ZHOU B, WANG W, et al. Superior cyclability of branch-like TiO2 embedded on the mesoporous carbon nanofibers as free-standing anodes for lithium-ion batteries[J]. Journal of Alloys and Compounds, 2017, 706: 103-109. |
62 | PARK S, SHIM H, KIM J, et al. Uniform Si nanoparticle-embedded nitrogen-doped carbon nanofiber electrodes for lithium ion batteries[J]. Journal of Alloys and Compounds, 2017, 728: 490-496. |
63 | PARK S, KIM J, DAR M A, et al. Superior lithium storage in nitrogen-doped carbon nanofibers with open-channels[J]. Chemical Engineering Journal, 2017, 315: 1-9. |
64 | SUN C, CHEN S, LI Z. Controllable synthesis of Fe2O3-carbon fiber composites via a facile sol-gel route as anode materials for lithium ion batteries[J]. Applied Surface Science, 2018, 427: 476-484. |
65 | WANG J, YANG Y, HUANG Z, et al. MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries[J]. Electrochimica Acta, 2015, 170: 164-170. |
66 | PARK H, SONG T, HAN H, et al. Electrospun Li4Ti5O12 nanofibers sheathed with conductive TiN/TiOxNylayer as an anode material for high power Li-ion batteries[J]. Journal of Power Sources, 2013, 244: 726-730. |
67 | OH J H, SU JO M, JEONG S M, et al. New synthesis strategy for hollow NiO nanofibers with interstitial nanovoids prepared via electrospinning using camphene for anodes of lithium-ion batteries[J]. Journal of Industrial and Engineering Chemistry, 2019, 77: 76-82. |
68 | XU Y, YUAN T, BIAN Z, et al. Electrospun flexible Si/C@CNF nonwoven anode for high capacity and durable lithium-ion battery[J]. Composites Communications, 2019, 11: 1-5. |
69 | MIN J W, YIM C J, IM W B. Preparation and electrochemical characterization of flower-like Li1.2Ni0.17Co0.17Mn0.5O2 microstructure cathode by electrospinning[J]. Ceramics International, 2014, 40(1): 2029-2034. |
70 | WANG H, MA D, HUANG Y, et al. Electrospun V2O5 nanostructures with controllable morphology as high-performance cathode materials for lithium-Ion batteries[J]. Chemistry: A European Journal, 2012, 18(29): 8987-8993. |
71 | ZHANG S, LI Y, XU G, et al. High-capacity Li2Mn0.8Fe0.2SiO4/carbon composite nanofiber cathodes for lithium-ion batteries[J]. Journal of Power Sources, 2012, 213: 10-15. |
72 | ZHU M, WU J, WANG Y, et al. Recent advances in gel polymer electrolyte for high-performance lithium batteries[J]. Journal of Energy Chemistry, 2019, 37: 126-142. |
73 | LEE Y, LIU Y. Crosslinked electrospun poly(vinylidene difluoride) fiber mat as a matrix of gel polymer electrolyte for fast-charging lithium-ion battery[J]. Electrochimica Acta, 2017, 258: 1329-1335. |
74 | KANG W, MA X, ZHAO H, et al. Electrospun cellulose acetate/poly(vinylidene fluoride) nanofibrous membrane for polymer lithium-ion batteries[J]. Journal of Solid State Electrochemistry, 2016, 20(10): 2791-2803. |
75 | HE Z, CAO Q, JING B, et al. Gel electrolytes based on poly(vinylidenefluoride-co-hexafluoropropylene)/thermoplastic polyurethane/poly(methyl methacrylate) with in situ SiO2 for polymer lithium batteries[J]. RSC Advances, 2017, 7(6): 3240-3248. |
76 | KONG L, YAN Y, QIU Z, et al. Robust fluorinated polyimide nanofibers membrane for high-performance lithium-ion batteries[J]. Journal of Membrane Science, 2018, 549: 321-331. |
77 | ZHAI Y, WANG N, MAO X, et al. Sandwich structured PVDF/PMIA/PVDF nanofibrous separators with robust mechanical strength and thermal stability for lithium ion battery[J]. Journal of Materials Chemistry A, 2014, 2(35): 14511-14518. |
78 | ZHAO M, WANG J, CHONG C, et al. An electrospun lignin/polyacrylonitrile nonwoven composite separator with high porosity and thermal stability for lithium-ion battery[J]. RSC Advances, 2015, 5(122): 101115-101120. |
79 | SHI C, DAI J, HUANG S, et al. A simple method to prepare a polydopamine modified core-shell structure composite separator for application in high-safety lithium-ion batteries[J]. Journal of Membrane Science, 2016, 518: 168-177. |
80 | SONG G, MENG H. Numerical modeling and simulation of PEM fuel cells: progress and perspective[J]. Acta Mechanica Sinica, 2013, 29(3): 318-334. |
81 | LENG Y, MING P, YANG D, et al. Stainless steel bipolar plates for proton exchange membrane fuel cells: materials, flow channel design and forming processes[J]. Journal of Power Sources, 2020, 451: 227783. |
82 | SONG Y, ZHANG C, LING C, et al. Review on current research of materials, fabrication and application for bipolar plate in proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29832-29847. |
83 | BARAKAT N A M, ABDELKAREEM M A, SHIN G, et al. Pd-doped Co nanofibers immobilized on a chemically stable metallic bipolar plate as novel strategy for direct formic acid fuel cells[J]. International Journal of Hydrogen Energy, 2013, 38(18): 7438-7447. |
84 | ANTUNES R A, DE OLIVEIRA M C L, ETT G, et al. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: a review of the main challenges to improve electrical performance[J]. Journal of Power Sources, 2011, 196(6): 2945-2961. |
85 | WALDROP K, WYCISK R, PINTAURO P N. Application of electrospinning for the fabrication of proton-exchange membrane fuel cell electrodes[J]. Current Opinion in Electrochemistry, 2020, 21: 257-264. |
86 | HONG S, HOU M, ZHANG H, et al. A high-performance PEM fuel cell with ultralow platinum electrode via electrospinning and underpotential deposition[J]. Electrochimica Acta, 2017, 245: 403-409. |
87 | SUN Y, CUI L, GONG J, et al. Design of a catalytic layer with hierarchical proton transport structure: the role of nafion nanofiber[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(3): 2955-2963. |
88 | HOU J, YANG M, KE C, et al. Platinum-group-metal catalysts for proton exchange membrane fuel cells: from catalyst design to electrode structure optimization[J]. EnergyChem, 2020, 2(1): 100023. |
89 | YIN J, QIU Y, YU J. Onion-like graphitic nanoshell structured Fe-N/C nanofibers derived from electrospinning for oxygen reduction reaction in acid media[J]. Electrochemistry Communications, 2013, 30: 1-4. |
90 | LIU C, WANG J, LI J, et al. Fe/N decorated mulberry-like hollow mesoporous carbon fibers as efficient electrocatalysts for oxygen reduction reaction[J]. Carbon, 2017, 114: 706-716. |
91 | DU Q, WU J, YANG H. Pt@Nb-TiO2 catalyst membranes fabricated by electrospinning and atomic layer deposition[J]. ACS Catalysis, 2014, 4(1): 144-151. |
92 | SHIRVANIAN P, BERKEL F VAN. Novel components in proton exchange membrane (PEM) water electrolyzers (PEMWE): status, challenges and future needs. A mini review[J]. Electrochemistry Communications, 2020, 114: 106704. |
93 | BOARETTI C, PASQUINI L, SOOD R, et al. Mechanically stable nanofibrous sPEEK/Aquivion® composite membranes for fuel cell applications[J]. Journal of Membrane Science, 2018, 545: 66-74. |
94 | POWERS D, WYCISK R, PINTAURO P N. Electrospun tri-layer membranes for H2/Air fuel cells[J]. Journal of Membrane Science, 2019, 573: 107-116. |
95 | HATAMVAND M, KAMRANI E, LIRA-CANTU M, et al. Recent advances in fiber-shaped and planar-shaped textile solar cells[J]. Nano Energy, 2020, 71: 104609. |
96 | MATHEW S, YELLA A, GAO P, et al. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers[J]. Nature Chemistry, 2014, 6(3): 242-247. |
97 | DISSANAYAKE M A K L, DIVARATHNE H K D W, THOTAWATTHAGE C A, et al. Dye-sensitized solar cells based on electrospun polyacrylonitrile (PAN) nanofibre membrane gel electrolyte[J]. Electrochimica Acta, 2014, 130: 76-81. |
98 | VIJAYAKUMAR E, SUBRAMANIA A, FEI Z, et al. High-performance dye-sensitized solar cell based on an electrospun poly(vinylidene fluoride-co-hexafluoropropylene)/cobalt sulfide nanocomposite membrane electrolyte[J]. RSC Advances, 2015, 5(64): 52026-52032. |
99 | DING Y, YANG I S, LI Z, et al. Nanoporous TiO2 spheres with tailored textural properties: controllable synthesis, formation mechanism, and photochemical applications[J]. Progress in Materials Science, 2020, 109: 100620. |
100 | HU B, LIU B. Dye-sensitized solar cells fabricated by the TiO2 nanostructural materials synthesized by electrospray and hydrothermal post-treatment[J]. Applied Surface Science, 2015, 358: 412-417. |
101 | MOHAMED I M A, DAO V, YASIN A S, et al. Design of an efficient photoanode for dye-sensitized solar cells using electrospun one-dimensional GO/N-doped nanocomposite SnO2/TiO2[J]. Applied Surface Science, 2017, 400: 355-364. |
102 | JEONG I, LEE J, VINCENT JOSEPH K L, et al. Low-cost electrospun WC/C composite nanofiber as a powerful platinum-free counter electrode for dye sensitized solar cell[J]. Nano Energy, 2014, 9: 392-400. |
103 | ZHANG C, DENG L, ZHANG P, et al. Electrospun FeS nanorods with enhanced stability as counter electrodes for dye-sensitized solar cells[J]. Electrochimica Acta, 2017, 229: 229-238. |
104 | PARK S, KIM B, LEE W. Electrospun activated carbon nanofibers with hollow core/highly mesoporous shell structure as counter electrodes for dye-sensitized solar cells[J]. Journal of Power Sources, 2013, 239: 122-127. |
105 | YOUSEF A, BROOKS R M, EL-NEWEHY M H, et al. Electrospun Co-TiC nanoparticles embedded on carbon nanofibers: active and chemically stable counter electrode for methanol fuel cells and dye-sensitized solar cells[J]. International Journal of Hydrogen Energy, 2017, 42(15): 10407-10415. |
106 | WANG F, WU X, YUAN X, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854. |
107 | 李祥业, 白天娇, 翁昕, 等. 电纺聚丙烯腈基碳纳米纤维在超级电容器中的应用[J]. 化工进展, 2021, 40(6): 3314-3329. |
LI Xiangye, BAI Tianjiao, WENG Xin, et al. Application of electrospun polyacrylonitrile-based carbon nanofibers in supercapacitors[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3314-3329. | |
108 | KUMAR M, SUBRAMANIA A, BALAKRISHNAN K. Preparation of electrospun Co3O4 nanofibers as electrode material for high performance asymmetric supercapacitors[J]. Electrochimica Acta, 2014, 149: 152-158. |
109 | LEE D G, KIM B. MnO2 decorated on electrospun carbon nanofiber/graphene composites as supercapacitor electrode materials[J]. Synthetic Metals, 2016, 219: 115-123. |
110 | JEONG J H, KIM Y A, KIM B. Electrospun polyacrylonitrile/cyclodextrin-derived hierarchical porous carbon nanofiber/MnO2 composites for supercapacitor applications[J]. Carbon, 2020, 164: 296-304. |
[1] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[2] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[3] | 杨莹, 侯豪杰, 黄瑞, 崔煜, 王兵, 刘健, 鲍卫仁, 常丽萍, 王建成, 韩丽娜. 利用煤焦油中酚类物质Stöber法制备碳纳米球用于CO2吸附[J]. 化工进展, 2023, 42(9): 5011-5018. |
[4] | 尹新宇, 皮丕辉, 文秀芳, 钱宇. 特殊浸润性材料在防治油气管道中水合物成核与聚集的应用[J]. 化工进展, 2023, 42(8): 4076-4092. |
[5] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[6] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[7] | 徐沛瑶, 陈标奇, KANKALA Ranjith Kumar, 王士斌, 陈爱政. 纳米材料用于铁死亡联合治疗的研究进展[J]. 化工进展, 2023, 42(7): 3684-3694. |
[8] | 孙旭东, 赵玉莹, 李诗睿, 王琦, 李晓健, 张博. 我国地方性氢能发展政策的文本量化分析[J]. 化工进展, 2023, 42(7): 3478-3488. |
[9] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[10] | 徐国彬, 刘洪豪, 李洁, 郭家奇, 王琪. ZnO量子点水性喷墨荧光墨水制备及性能[J]. 化工进展, 2023, 42(6): 3114-3122. |
[11] | 金涌, 程易, 白丁荣, 张晨曦, 魏飞. 中国流态化技术研发史略[J]. 化工进展, 2023, 42(6): 2761-2780. |
[12] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[13] | 符淑瑢, 王丽娜, 王东伟, 刘蕊, 张晓慧, 马占伟. 析氧助催化剂增强光阳极光电催化分解水性能研究进展[J]. 化工进展, 2023, 42(5): 2353-2370. |
[14] | 陈少华, 王义华, 胡强飞, 胡坤, 陈立爱, 李洁. 电化学修饰电极在检测Cr(Ⅵ)中的研究进展[J]. 化工进展, 2023, 42(5): 2429-2438. |
[15] | 殷铭, 郭晋, 庞纪峰, 吴鹏飞, 郑明远. 铜催化剂在涉氢反应中的失活机制和稳定策略[J]. 化工进展, 2023, 42(4): 1860-1868. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |