化工进展 ›› 2021, Vol. 40 ›› Issue (10): 5237-5250.DOI: 10.16085/j.issn.1000-6613.2021-0657
收稿日期:
2021-03-30
修回日期:
2021-06-28
出版日期:
2021-10-10
发布日期:
2021-10-25
通讯作者:
杨越
作者简介:
王林松(1997—),男,博士研究生,主要从事铜渣回收利用方面的研究。E-mail:基金资助:
WANG Linsong(), GAO Zhiyong, YANG Yue(), HAN Haisheng, WANG Li, SUN Wei
Received:
2021-03-30
Revised:
2021-06-28
Online:
2021-10-10
Published:
2021-10-25
Contact:
YANG Yue
摘要:
铜渣是火法炼铜的副产物,中国90%以上的铜是通过火法冶炼生产的,随着科学技术进步和人们生活需要,我国铜产量呈逐年上升的趋势。铜渣中含有大量可回收的有价金属,且铜渣本身也是一种优异的无机材料。综合回收铜渣中有价金属可以减少资源不足带来的压力,对余渣进行资源化利用既能减少环境污染,又能生产出有经济价值的产品。本文分析和讨论了火法贫化、湿法浸出、选矿富集和联合工艺等手段回收铜渣中有价金属的原理、现状和优缺点,总结了铜渣作为硅酸盐无机材料的在建筑材料和功能材料中的应用,并对铜渣未来的金属回收与资源化利用发展方向进行了展望。
中图分类号:
王林松, 高志勇, 杨越, 韩海生, 王丽, 孙伟. 铜渣综合回收利用研究进展[J]. 化工进展, 2021, 40(10): 5237-5250.
WANG Linsong, GAO Zhiyong, YANG Yue, HAN Haisheng, WANG Li, SUN Wei. Research progress on comprehensive recovery and utilization of copper slag[J]. Chemical Industry and Engineering Progress, 2021, 40(10): 5237-5250.
铜冶炼方法 | Cu | Fe | Fe3O4 | SiO2 | S | Al2O3 | CaO | MgO |
---|---|---|---|---|---|---|---|---|
密闭鼓风炉 | 0.42 | 29.0 | — | 38 | — | 7.5 | 11 | 0.74 |
奥托昆普闪速熔炼 | 0.78 | 44.06 | — | 29.7 | 1.4 | 7.8 | 0.6 | — |
Inco闪速熔炼 | 0.9 | 44.0 | 10.8 | 33 | 1.1 | 4.72 | 1.73 | 1.61 |
诺兰达法 | 2.6 | 40 | 15 | 25.1 | 1.7 | 5.0 | 1.5 | 1.5 |
瓦纽科夫法 | 0.5 | 40 | 5 | 34 | — | 4.2 | 2.6 | 1.4 |
白银法 | 0.45 | 35 | 3.15 | 35 | 0.7 | 3.3 | 8 | 1.4 |
特尼恩特转炉熔炼 | 4.6 | 43 | 20 | 26.5 | 0.8 | — | — | — |
奥斯迈特熔炼 | 0.65 | 34 | 7.5 | 31 | 2.8 | 7.5 | 5.0 | — |
三菱法 | 0.6 | 38.2 | — | 32.2 | 0.6 | 2.9 | 5.9 | — |
表1 几种铜熔炼炉渣的化学成分(质量分数)[3]单位:%
铜冶炼方法 | Cu | Fe | Fe3O4 | SiO2 | S | Al2O3 | CaO | MgO |
---|---|---|---|---|---|---|---|---|
密闭鼓风炉 | 0.42 | 29.0 | — | 38 | — | 7.5 | 11 | 0.74 |
奥托昆普闪速熔炼 | 0.78 | 44.06 | — | 29.7 | 1.4 | 7.8 | 0.6 | — |
Inco闪速熔炼 | 0.9 | 44.0 | 10.8 | 33 | 1.1 | 4.72 | 1.73 | 1.61 |
诺兰达法 | 2.6 | 40 | 15 | 25.1 | 1.7 | 5.0 | 1.5 | 1.5 |
瓦纽科夫法 | 0.5 | 40 | 5 | 34 | — | 4.2 | 2.6 | 1.4 |
白银法 | 0.45 | 35 | 3.15 | 35 | 0.7 | 3.3 | 8 | 1.4 |
特尼恩特转炉熔炼 | 4.6 | 43 | 20 | 26.5 | 0.8 | — | — | — |
奥斯迈特熔炼 | 0.65 | 34 | 7.5 | 31 | 2.8 | 7.5 | 5.0 | — |
三菱法 | 0.6 | 38.2 | — | 32.2 | 0.6 | 2.9 | 5.9 | — |
1 | GORAI B, JANA R K, PREMCHAND. Characteristics and utilisation of copper slag—A review[J]. Resources, Conservation and Recycling, 2003, 39(4): 299-313. |
2 | 曹志成. 铜渣转底炉直接还原回收铁锌工艺及机理研究[D]. 北京: 北京科技大学, 2018. |
CAO Zhicheng. Study on process and mechanism of iron and zinc from copper slag by rotary hearth furnace direct reduction[D]. Beijing: University of Science and Technology Beijing, 2018. | |
3 | 王琛, 田庆华, 王亲猛, 等. 铜渣有价金属综合回收研究进展[J]. 金属材料与冶金工程, 2014, 42(6): 50-56. |
WANG Chen, TIAN Qinghua, WANG Qinmeng, et al. Research progress in comprehensive recovery of valuable metals from copper slag[J]. Metal Materials and Metallurgical Engineering, 2014, 42(6): 50-56. | |
4 | SÁNCHEZ M, SUDBURY M. Physicochemical characterization of copper slag and alternatives of friendly environmental management[J]. Journal of Mining and Metallurgy B: Metallurgy, 2013, 49: 161-168. |
5 | ALTER H. The composition and environmental hazard of copper slags in the context of the Basel convention[J]. Resources, Conservation and Recycling, 2005, 43(4): 353-360. |
6 | WANG X, GEYSEN D, TINOCO S V P, et al. Characterisation of copper slag in view of metal recovery[J]. Transactions of the Institutions of Mining and Metallurgy: Section C, 2015, 124(2): 83-87. |
7 | SHI Caijun, MEYER C, BEHNOOD A. Utilization of copper slag in cement and concrete[J]. Resources, Conservation and Recycling, 2008, 52(10): 1115-1120. |
8 | ALTUNDOǦAN H S, BOYRAZLI M, TÜMEN F. A study on the sulphuric acid leaching of copper converter slag in the presence of dichromate[J]. Minerals Engineering, 2004, 17(3): 465-467. |
9 | BANZA A N, GOCK E, KONGOLO K. Base metals recovery from copper smelter slag by oxidising leaching and solvent extraction[J]. Hydrometallurgy, 2002, 67: 63-69. |
10 | DAS B, MISHRA B K, ANGADI S, et al. Characterization and recovery of copper values from discarded slag[J]. Waste Management & Research, 2010, 28: 561-567. |
11 | YANG Z H, LIN Q, LU S C, et al. Effect of CaO/SiO2 ratio on the preparation and crystallization of glass-ceramics from copper slag[J]. Ceramics International, 2014, 40(5): 7297-7305. |
12 | HEO J H, KIM B S, PARK J H. Effect of CaO addition on iron recovery from copper smelting slags by solid carbon[J]. Metallurgical and Materials Transactions B, 2013, 44(6): 1352-1363. |
13 | 叶钟林, 史谊峰, 施哲, 等. 铜转炉渣火法还原贫化与生产实践[J]. 云南冶金, 2014, 43(6): 28-31, 49. |
YE Z L, SHI Y F, SHI Z, et al. The pyrogenic reducing impoverishment and production practice of copper converter slag[J]. Yunnan Metallurgy, 2014, 43(6): 28-31, 49. | |
14 | 张林楠, 张力, 王明玉, 等. 铜渣贫化的选择性还原过程[J]. 有色金属, 2005, 57(3): 44-47. |
ZHANG L N, ZHANG L, WANG M Y, et al. Research on selective reducing impoverishment process of copper slag[J]. Nonferrous Metals, 2005, 57(3): 44-47. | |
15 | 昂正同. 降低闪速熔炼渣含铜实践[J]. 矿冶工程, 2002, 11(4): 69-76. |
Zhengtong ANG. Practice in lowering copper content in flash smelting slag[J]. Nonferrous Metals (Extractive Metallurgy), 2002, 11(4): 69-76. | |
16 | MOSKAL R R, ALFANTANZI A M. Review of copper pyrometallurgical practice: today and tomorrow[J]. Minerals Engineering, 2003, 16: 893-919. |
17 | 张浩, 王广, 张诗瀚, 等. 铜渣直接还原动力学[J]. 有色金属科学与工程, 2019, 10(1): 28-33. |
ZHANG H, WANG G, ZHANG S H, et al. Direct reduction kinetics of copper slag[J]. Nonferrous Metals Science and Engineering, 2019, 10(1): 28-33. | |
18 | 杜清枝. 炉渣真空贫化的物理化学[J]. 昆明工学院学报, 1995(2): 107-110. |
DU Qingzhi. Physical chemistry of slag vacuum dilution[J]. Journal of Kunming University of Science and Technology (Natural Science), 1995(2): 107-110. | |
19 | 张林楠. 铜渣中有价组分的选择性析出研究[D]. 沈阳:东北大学, 2005: 60-75. |
ZHANG Linnan. Study on selective precipitation valuable constituent in copper smelting slags[D]. Shenyang: Northeastern University, 2005: 60-75 | |
20 | NADIROV R K, TURAN M D, KARAMYRZAYEV G A. Copper ammonia leaching from smelter slag[J]. International Journal of Biology and Chemistry, 2019, 12(2): 135-140. |
21 | BANDA W, MORGAN N, EKSTEEN J J. The role of slag modifiers on the selective recovery of cobalt and copper from waste smelter slag[J]. Minerals Engineering, 2002, 15(11): 899-907. |
22 | TOPKAYA Y A. Extraction of Co and Cu from historical slags of Kure[J]. ATB Metall., 1990, 30: 23-28. |
23 | YUCEL O, SAHIN F C, SIRIN B, et al. A reduction study of copper slag in a DC arc furnace[J]. Scand. J. Metal, 1999, 28: 93-99. |
24 | REDDY R G, PRABHU V L, MANTHA D. Recovery of copper from copper blast furnace slag[J]. Mining, Metallurgy & Exploration, 2006, 23(2): 97-103. |
25 | 杨涛, 胡建杭, 王华, 等. 铜电炉冶炼贫化渣焙烧富集Fe3O4[J]. 过程工程学报, 2011, 11(4): 613-619. |
YANG Tao, HU Jianhang, WANG Hua, et al. Concentration of Fe3O4 in roasted slag from copper impoverishment smelting[J]. The Chinese Journal of Process Engineering, 2011, 11(4): 613-619. | |
26 | 吴龙, 郝以党, 张艺伯, 等. 贫化铜渣熔融还原提铁试验研究[J]. 中国有色冶金, 2015, 44(4): 13-17. |
WU L, HAO Y D, ZHANG Y B, et al. Experimental study on smelting reduction and iron extraction of dilution copper slag[J]. China Nonferrous Metallurgy, 2015, 44(4): 13-17. | |
27 | GUO Z Q, PAN J, ZHU D Q, et al. Co-reduction of copper smelting slag and nickel laterite to prepare Fe-Ni-Cu alloy for weathering steel[J]. JOM, 2018, 70(2): 150-154. |
28 | ZHU D Q, PAN L T, GUO Z Q, et al. Smelting process of direct reduction iron bearing Ni and Cu to prepare Fe-Ni-Cu ternary alloy[J]. Journal of Mining and Metallurgy, Section B: Metallurgy, 2019, 55(3): 325-330. |
29 | KANARI N, GABALLAH I, ALLAIN E. A low temperature chlorination-volatilization process for the treatment of chalcopyrite concentrates[J]. Thermochimica Acta, 2001, 373(1): 75-93. |
30 | OROSCO R P, RUIZ M C, BARBOSA L I, et al. Purification of talcs by chlorination and leaching[J]. International Journal of Mineral Processing, 2011, 101(1/2/3/4): 116-120. |
31 | NOWAK B, PESSL A, ASCHENBRENNER P, et al. Heavy metal removal from municipal solid waste fly ash by chlorination and thermal treatment[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 323-331. |
32 | KANARI N, GABALLAH I, ALLAIN E. Use of chlorination for chromite upgrading[J]. Thermochimica Acta, 2000, 351(1): 109-117. |
33 | 王谦, GRAYDON J W, KIRK D W. FeCl2处理电炉炉尘的热力学计算[J]. 重庆大学学报(自然科学版), 2003, 26(6): 73-77. |
WANG Q, GRAYDON J W, KIRK D W. Thermodynamic calculation on chlorinating treatment for EAF dust with FeCl2[J]. Journal of Chongqing University (Natural Science Edition), 2003, 26(6): 73-77. | |
34 | PICKLES C A. Thermodynamic analysis of the selective chlorination of electric arc furnace dust[J]. Journal of Hazardous Materials, 2009, 166(2/3): 1030-1042. |
35 | LI Lei, WANG Hua, HU Jianhang. Smelting chlorination method applied to removal of copper from copper slags[J]. Journal of Central South University, 2015, 22(1): 59-65. |
36 | 戴广平, 石瑀, 周世伟, 等. 铜熔渣喷吹地沟油还原贫化[J]. 过程工程学报, 2019, 19(4): 759-766. |
DAI Guangping, SHI Yu, ZHOU Shiwei, et al. Reduction and dilution of melting copper slag by blowing waste cooking oil[J]. The Chinese Journal of Process Engineering, 2019, 19(4): 759-766. | |
37 | 王冲, 郑敏, 王华, 等. 柴油在氮气存在条件下还原铜渣中磁性铁的模拟[J]. 化工进展, 2014, 33(5): 1101-1107. |
WANG C, ZHENG M, WANG H, et al. Reduction of Fe3O4 in copper slag by diesel oil in the presence of nitrogen[J]. Chemical Industry and Engineering Progress, 2014, 33(5): 1101-1107. | |
38 | ZHANG B J, ZHANG T A, NIU L P, et al. Moderate dilution of copper slag by natural gas[J]. JOM, 2018, 70(1): 47-52. |
39 | 石瑀, 李博, 戴广平, 等. 硼酸钙对铜渣中夹杂铜沉降效果的影响[J]. 过程工程学报, 2019, 19(3): 553-559. |
SHI Yu, LI Bo, DAI Guangping, et al. Effect of calcium borate on sedimentation of copper inclusions in copper slag[J]. The Chinese Journal of Process Engineering, 2019, 19(3): 553-559. | |
40 | 张侯文, 范兴祥, 吴红林, 等. 从铜渣中加压酸浸铜的试验研究[J]. 湿法冶金, 2013, 32(5): 305-308. |
ZHANG Houwen, FAN Xingxiang, WU Honglin, et al. Experimental research on pressure leaching of copper using sulfuric acid[J]. Hydrometallurgy of China, 2013, 32(5): 305-308. | |
41 | KHALID M K, HAMUYUNI J, AGARWAL V, et al. Sulfuric acid leaching for capturing value from copper rich converter slag[J]. Journal of Cleaner Production, 2019, 215: 1005-1013. |
42 | MURAVYOV M I, BULAEV A G, KONDRAT'EVA T F. Complex treatment of mining and metallurgical wastes for recovery of base metals[J]. Minerals Engineering, 2014, 64: 63-66. |
43 | ZHANG Yang, MAN Ruilin, NI Wangdong, et al. Selective leaching of base metals from copper smelter slag[J] Hydrometallurgy, 2010, 103(1/2/3/4): 25-29. |
44 | MESHRAM P, BHAGAT L, PRAKASH U, et al. Organic acid leaching of base metals from copper granulated slag and evaluation of mechanism[J]. Canadian Metallurgical Quarterly, 2017, 56(2): 168-178. |
45 | BIDARI E, AGHAZADEH V. Investigation of copper ammonia leaching from smelter slags: characterization, leaching and kinetics[J]. Metallurgical and Materials Transactions B, 2015, 46(5): 2305-2314. |
46 | NADIROV R, SYZDYKOVA L, ZHUSSUPOVA A. Copper smelter slag treatment by ammonia solution: Leaching process optimization[J]. Journal of Central South University, 2017, 24(12): 2799-2804. |
47 | GARGUL K. Ammonia leaching of slag from direct-to-blister copper smelting technology[J]. Aims Materials Science, 2020, 7(5): 565-580. |
48 | NADIROV R K, TURAN M D, KARAMYRZAYEV G A. Copper ammonia leaching from smelter slag[J]. International Journal of Biology and Chemistry, 2019, 12(2): 135-140. |
49 | ROY S, SARKAR S, DATTA A, et al. Importance of mineralogy and reaction kinetics for selecting leaching methods of copper from copper smelter slag[J]. Separation Science and Technology, 2016, 51(1): 135-146. |
50 | 徐家振, 金哲男, 焦万丽. 生物法贫化铜熔炼炉渣[J]. 有色矿冶, 2001, 17(1): 28-30. |
XU J Z, JIN Z N, JIAO W L. Cleaning copper smelting slag with bacteria[J]. Non-Ferous Mining and Metallurgy, 2001, 17(1): 28-30. | |
51 | 成应向, 王强强, 戴友芝, 等. 土著微生物浸出有色冶炼废渣中的镉[J]. 环境化学, 2011, 30(3): 703-707. |
CHENG Y X, WANG Q Q, DAI Y Z, et al. Investigation on leaching of Cd from Cd smelting with indigenous microorganisms slag[J]. Environmental Chemistry, 2011, 30(3): 703-707. | |
52 | CARRANZA F, IGLESIAS N, MAZUELOS A, et al. Ferric leaching of copper slag flotation tailings[J]. Minerals Engineering, 2009, 22(1): 107-110. |
53 | 黄自力, 罗凡, 李密, 等. 从炼铜水淬渣中回收铁的试验研究[J]. 矿产保护与利用, 2009(3): 51-54. |
HUANG Z L, LUO F, LI M, et al. Experimental study on iron recovery from water quenched slag of copper smelting[J]. Conservation and Utilization of Mineral Resources, 2009(3): 51-54. | |
54 | 杨慧芬, 景丽丽, 党春阁. 铜渣中铁组分的直接还原与磁选回收[J]. 中国有色金属学报, 2011, 21(5): 1165-1170. |
YANG H F, JING L L, DANG C G. Iron recovery from copper-slag with lignite-based direct reduction followed by magnetic separation[J]. The Chinese Journal of Nonferrous Metals, 2011, 21(5): 1165-1170. | |
55 | 刘纲, 朱荣, 王昌安, 等. 铜渣熔融氧化提铁的试验研究[J]. 中国有色冶金, 2009, 38(1): 71-74. |
LIU G, ZHU R, WANG C A, et al. Eeperiment of molten oxidation iron extraction in copper slag[J]. China Nonferrous Metallurgy, 2009, 38(1): 71-74. | |
56 | BRUCKARD W J, SOMERVILLE M, HAO Fuping. The recovery of copper, by flotation, from calcium-ferrite-based slags made in continuous pilot plant smelting trials[J]. Minerals Engineering, 2004, 17(4): 495-504. |
57 | 包迎春, 代淑娟. 某铜炉渣中铜的浮选回收试验研究[J]. 有色矿冶, 2012, 28(3): 24-26, 30. |
BAO Y C, DAI S J. Study on the recovery of copper from copper smelting slag by floatation[J]. Non-Ferrous Mining and Metallurgy, 2012, 28(3): 24-26, 30. | |
58 | 王子涛, 闫国辉, 杨利平. 组合捕收剂在某铜冶炼渣选矿厂的试验研究与生产实践[J]. 世界有色金属, 2019(14): 32-34. |
WANG Zitao, YAN Guohui, YANG Liping. Experimental study and production practice for reducing the tailing grade in a copper smelting slag concentrator[J]. World Nonferrous Metals, 2019(14): 32-34. | |
59 | 王鹏, 高利坤, 董方, 等. 铜冶炼渣浮选回收铜的研究现状[J]. 矿产综合利用, 2017(1): 16-20. |
WANG P, GAO L K, DONG F, et al. Status of copper recovery from copper smelting slag by flotation[J]. Multipurpose Utilization of Mineral Resources, 2017(1): 16-20. | |
60 | ALTUNDOǦAN H S, TÜMEN F. Metal recovery from copper converter slag by roasting with ferric sulphate[J]. Hydrometallurgy, 1997, 44(1/2): 261-267. |
61 | 何耀. 利用废铜渣生产硫酸铜及回收有价金属的研究[J]. 有色冶炼, 1999, 28(4): 38-40. |
HE Yao. Producing copper sulfate and recovering valuable metals from waste copper slag[J]. China Nonferrous Metallurgy, 1999, 28(4): 38-40. | |
62 | 黄红军. 含铜炉渣晶相调控浮选新工艺研究[J]. 有色金属(选矿部分), 2012(6): 16-24. |
HUANG Hongjun. A new technology for crystal phase regulating flotation of copper-containing slag[J]. Nonferrous Metals (Mineral Processing Section), 2012(6): 16-24. | |
63 | 云南冶炼厂, 昆明冶金研究所, 昆明工学院. 铜转炉渣中二氧化硅含量对浮选的影响[J]. 有色金属(冶炼部分), 1975(8): 50-55. |
Smelter Yunnan, Kunming Institute of Metallurgy, Kunming Institute of Technology. Effect of silicon dioxide content in copper converter slag on flotation[J]. Nonferrous Metals (Extractive Metallurgy), 1975(8): 50-55. | |
64 | 刘玉飞, 黄自力, 杨蘖, 等. 铜渣浸出提铁的试验研究[J]. 矿业研究与开发, 2015, 35(11): 53-55. |
LIU Y F, HUANG Z L, YANG N, et al. Experiment study on extracting iron from copper slag by leaching[J]. Mining Research and Development, 2015, 35(11): 53-55. | |
65 | 詹保峰, 黄自力, 杨孽, 等. 焙烧-浸出-磁选回收铜渣中的铁[J]. 矿冶工程, 2015, 35(2): 103-106. |
ZHAN B F, HUANG Z L, YANG N, et al. Recovery of iron from copper-slag with process of roasting-leaching-magnetic separation[J]. Mining and Metallurgical Engineering, 2015, 35(2): 103-106. | |
66 | BUSOLIC D, PARADA F, PARRA R, et al. Recovery of iron from copper flash smelting slags[J]. Miner. Process. Extr. Metall., 2011, 120(1): 32-36. |
67 | IMRIS, I, SANCHEZ M, ACHURRA G. Copper losses to slags obtained from the El Teniente process[J]. Mineral Processing and Extractive Metallurgy IMM Transactions Section C, 2005, 114(3): 135-140. |
68 | 黄克良. 冶炼铜矿渣在水泥生产中的应用[J]. 四川水泥, 2001(4): 25-27. |
HUANG Keliang. Use of copper slag in cement production[J]. Sichuan Cement, 2001(4): 25-27. | |
69 | 郭宏. 利用废渣生产新标准水泥的探讨[J]. 环境监测与管理, 2003, 17(3): 177-179. |
GUO Hong. Discussion on using waste residue produce new standard cement[J]. Arid Environmental Monitoring, 2003, 17(3): 177-179. | |
70 | ALP I, DEVECI H, SÜNGÜN H. Utilization of flotation wastes of copper slag as raw material in cement production[J]. Journal of Hazardous Materials, 2008, 159(2/3): 390-395. |
71 | ALI M M, AGARWAL S K, PAHUJA A. Potentials of copper slag utilisation in the manufacture of ordinary Portland cement[J]. Advances in Cement Research, 2013, 25(4): 208-216. |
72 | SONG J W, FENG S L, XIONG R R, et al. Mechanical properties, pozzolanic activity and volume stability of copper slag-filled cementitious materials[J]. Materials Science-Medziagotyra, 2020, 26(2): 218-224. |
73 | EDWIN R S, DE SCHEPPER M, GRUYAERT E, et al. Effect of secondary copper slag as cementitious material in ultra-high performance mortar[J]. Construction and Building Materials, 2016, 119: 31-44. |
74 | PAVEZ O, NAZER A, RIVERA O, et al. Copper slag from different dumps in the Atacama Region used in mortars as partial replacement of cement[J]. Materia-Rio de Janeiro, 2019, 24(2): e12349. |
75 | KORENTZ J, JURCZAK R, SZMATULA F. Properties of concrete with the addition of copper slag aggregate[J]. Cement Wapno Beton, 2020, 25(5): 367-375. |
76 | 丁银贵, 倪文, 薛逊, 等. 利用铜渣二次尾矿制备加气混凝土试验研究[J]. 新型建筑材料, 2018, 45(10): 102-105. |
DING Y G, NI W, XUE X, et al. Experimental study on autoclaved aerated concrete made of copper slag tailings[J]. New Building Materials, 2018, 45(10): 102-105. | |
77 | KHANZADI M, BEHNOOD A. Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate[J]. Construction and Building Materials, 2009, 23(6): 2183-2188. |
78 | LORI A R, HASSANI A, SEDGHI R. Investigating the mechanical and hydraulic characteristics of pervious concrete containing copper slag as coarse aggregate[J]. Construction and Building Materials, 2019, 197: 130-142. |
79 | THOMAS J, MOHAN A, DHANNYA K K. Copper slag cold-bonded aggregate concrete exposed to elevated temperature[J]. ACI Materials Journal, 2020, 177(6): 215-230. |
80 | PANDA S, SARKAR P, DAVIS R. Abrasion resistance and slake durability of copper slag aggregate concrete[J]. Journal of Building Engineering, 2021, 35: 101987. |
81 | SHARMA R, KHAN R A. Durability assessment of self compacting concrete incorporating copper slag as fine aggregates[J]. Construction and Building Materials, 2017, 155: 617-629. |
82 | GONG W, UEDA T. Properties of self-compacting concrete containing copper slag aggregate after heating up to 400℃[J]. Structural Concrete, 2018, 19(6): 1873-1880. |
83 | 邓景明, 唐怀志. 低硅铜铁尾矿生产蒸压砖的技术研究[J]. 砖瓦, 2013(1): 9-13. |
DENG Jingming, TANG Huaizhi. Production technology of low silicon iron copper tailings autoclaved brick[J]. Brick-Tile, 2013(1): 9-13. | |
84 | 母维宏, 和森, 周新涛, 等. 铜渣/电解锰渣基磷酸盐胶凝材料的制备及其形成机理探讨[J]. 化学工程, 2020, 48(10): 23-28, 51. |
MU Weihong, HE Sen, ZHOU Xintao, et al. Preparation and mechanism of copper slag/electrolytic manganese residue-based phosphate cementitious materials[J]. Chemical Engineering (China), 2020, 48(10): 23-28, 51. | |
85 | 郑彪, 黎雪冰, 李健生. 用碳质页岩、冰铜渣配料生产普通硅酸盐水泥[J]. 山东建材, 2003, 24(5): 29-31. |
ZHENG Biao, LI Xuebing, LI Jiansheng. Production of portland cement with carbon shale and matte slag[J]. Shandong Building Materials, 2003, 24(5): 29-31 | |
86 | 李然, 潘洁, 蒋明, 等. 黄磷炉渣和铜渣协同制备微晶玻璃[J]. 人工晶体学报, 2018, 47(8): 1722-1727. |
LI R, PAN J, JIANG M, et al. Synergistic preparation of glass-ceramics from yellow phosphorus furnace slag and copper slag[J]. Journal of Synthetic Crystals, 2018, 47(8): 1722-1727. | |
87 | 林巧, 杨志红, 谢红佳, 等. 利用铜渣制备微晶玻璃的研究[J]. 硅酸盐通报, 2012, 31(5): 1204-1207, 1211. |
LIN Q, YANG Z H, XIE H J, et al. Research on preperation of glass ceramics with copper slag[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(5): 1204-1207, 1211. | |
88 | YEKTA B E,TABATABAEI B, NIA S H. Preparation of acid-resistance glass and glass-ceramic using copper slag[J]. Ind. Ceram, 2004, 24(2): 115-120 |
89 | YANG Z H, LIN Q, XIA J X, et al. Preparation and crystallization of glass-ceramics derived from iron-rich copper slag[J]. Journal of Alloys and Compounds, 2013, 574: 354-360. |
90 | YANG Z H, MA Z H. The effect of basicity and calcium fluoride on glass-ceramic production and iron recovery from copper slag[J]. Steel Research International, 2017, 88(3): 1600145. |
91 | 史公初, 廖亚龙, 张宇, 等. 铜冶炼渣制备建筑材料及功能材料的研究进展[J]. 材料导报, 2020, 34(13): 13044-13049, 13057. |
SHI G C, LIAO Y L, ZHANG Y, et al. Research progress on preparation of building materials and functional materials with copper metallurgical slag[J]. Materials Review, 2020, 34(13): 13044-13049, 13057. | |
92 | KAMBHAM K, SANGAMESWARAN S, DATAR S R, et al. Copper slag: optimization of productivity and consumption for cleaner production in dry abrasive blasting[J]. The Journal of Cleaner Production, 2007, 15(5): 465-473. |
93 | MUGFORD C, GIBBS J L, BOYLSTEIN R. Elemental properties of copper slag and measured airborne exposures at a copper slag processing facility[J]. Journal of Occupational and Environmental Hygiene, 2017, 14(8): D120-D129. |
94 | STEPHENSON D, SPEAR T, SEYMOUR M, et al. Airborne exposure to heavy metals and total particulate during abrasive blasting using copper slag abrasive[J]. Applied Occupational and Environmental Hygiene, 2002, 17(6): 437-443. |
95 | MACKAY G R, STETTLER L E, KOMMINENI C, et al. Fibrogenic potential of slags used as substitutes for sand in abrasive blasting operations[J]. American Industrial Hygiene Association Journal, 1980, 41(11): 836-842. |
96 | MONTOYA-BAUTISTA C V, AVELLA E, RAMIREZ-ZAMORA R M, et al. Metallurgical wastes employed as catalysts and photocatalysts for water treatment: a review[J]. Sustainability, 2019, 11(9): 2470. |
97 | 袁晓涛, 胡建杭, 张凤霞. 铜渣载镍催化剂催化气化松木屑的实验研究[J]. 化工进展, 2018, 37(10): 3919-3927. |
YUAN Xiaotao, HU Jianhang, ZHANG Fengxia. Experimental study on the catalytic gasification of pine sawdust over nickel catalyst supported by copper slag[J]. Chemical Industry and Engineering Progress, 2018, 37(10): 3919-3927. | |
98 | ZEYNOLABEDIN R, MAHANPOOR K. Preparation and characterization of nano-spherical CoFe2O4 supported on copper slag as a catalyst for photocatalytic degradation of 2-nitrophenol in water[J]. Journal of Nanostructure in Chemistry, 2017, 7(1): 67-74. |
99 | MALEKHOSSEINI H, MAHANPOOR K, KHOSRAVI M, et al. Kinetic modeling and photocatalytic reactor designed for removal of resorcinol in water by nano ZnFe2O4/copper slag as catalyst: using full factorial design of experiment[J]. Iranian Journal of Chemistry & Chemical Engineering, 2019, 38(3): 257-266. |
100 | FUENTES I, ULLOA C, JIMÉNEZ R, et al. The reduction of Fe-bearing copper slag for its use as a catalyst in carbon oxide hydrogenation to methane. A contribution to sustainable catalysis[J]. Journal of Hazardous Materials, 2020, 387: 121693. |
101 | LI H L, ZHANG W L, WANG J, et al. Copper slag as a catalyst for mercury oxidation in coal combustion flue gas[J]. Waste Management, 2018, 74: 253-259. |
[1] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[2] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[3] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[4] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[5] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[6] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[7] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[8] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[9] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[10] | 侯殿保, 贺茂勇, 陈育刚, 杨海云, 李海民. 资源优化配置与循环经济在钾资源开发利用中的应用[J]. 化工进展, 2023, 42(6): 3197-3208. |
[11] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[12] | 王昊, 霍进达, 曲国瑞, 杨家琪, 周世伟, 李博, 魏永刚. 退役锂电池正极材料资源化回收技术研究进展[J]. 化工进展, 2023, 42(5): 2702-2716. |
[13] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[14] | 胡亚飞, 冯自平, 田佳垚, 黄冲, 宋文吉. 燃料驱动无电热泵系统的节能模拟与运行经济性分析[J]. 化工进展, 2023, 42(3): 1217-1227. |
[15] | 王毅斌, 冯敬武, 谭厚章, 李良钰. 市政污泥热化学处置中磷元素形态转变与回收利用研究进展[J]. 化工进展, 2023, 42(2): 985-999. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |