1 |
SANTOSH K N, PUMA C M, SUJAY KUMAR S P. Influence of spray characteristics on heat flux in dual phase spray impingement cooling of hot surface[J]. Alexandria Engineering Journal, 2016, 55(3): 1995-2004.
|
2 |
CLAY M A, MIKSIS M J. Effects of surfactant on droplet spreading[J]. Physics of Fluids, 2004, 16(8): 3070-3078.
|
3 |
AZIZ S D, CHANDRA S. Impact, recoil and splashing of molten metal droplets[J] Int. J. Heat Mass Transfer., 2000, 43: 2841-2857.
|
4 |
MURAO Y, SUGIMOTO J. Correlation of heat-transfer coefficient for saturated film boiling during reflood phase prior to quenching[J]. J. Nucl. Sci. Technol., 1981, 18: 275-284.
|
5 |
WONG T S, CHEN T H, SHEN X, et al. Nanochromatography driven by the coffee ring effect[J]. Analytical Chemistry, 2011, 83(6): 1871-1873.
|
6 |
YEOUG Y H, BURTON J, LOTH E, et al. Drop impact and rebound dynamics on an inclined super hydrophobic surface[J]. Langmuir, 2014, 30(40): 12027-12038.
|
7 |
LIANG G, GUO Y, SHEN S, et al. A study of a single liquid drop impact on inclined wetted surfaces[J]. Acta Mechanica, 2014, 225(12): 3353-3363.
|
8 |
LECLEAR S, LECLEAR J, ABHIJEET, et al. Drop impact on inclined super hydrophobic surfaces[J]. Journal of Colloid and Interface Science, 2015, 461(3): 114-121.
|
9 |
WANG Z, LOPEZ C, HIRSA A, et al. Impact dynamics and rebound of water droplets on super hydrophobic carbon nanotube arrays[J]. Applied Physics Letters, 2007, 91(2): 023105.
|
10 |
PATRL N D, GADA V H, SHARMA A, et al. On dual-grid level-set method for contact line modeling during impact of a droplet on hydrophobic and superhydrophobic surfaces[J]. International Journal of Multiphase Flow, 2016, 81: 54-66.
|
11 |
LEE C, NAM Y, LASTAKOWSKI H, et al. Two types of Cassie-to-Wenzel wetting transitions on super hydrophobic surfaces during drop impact[J]. Soft Matter, 2015, 11(23): 4592-4599.
|
12 |
刘冬薇, 宁智, 吕明, 等. 液滴撞击超疏水壁面反弹及破碎行为研究[J]. 计算力学学报, 2016, 33(1): 106-112.
|
|
LIU D W, NING Z, LV M, et al. Study on the rebound and breakup of droplet after impacting on the super-hydrophobic wall[J]. Chinese Journal of Computational Mechanics, 2016, 33(1): 106-112.
|
13 |
ERBIL H, MCHALE G, NEWTON M. Drop evaporation on solid surfaces: constant contact angle mode[J]. Langmuir, 2002, 18(7): 2636-2641.
|
14 |
LU G, DUAN Y Y, WANG X D, et al. Internal flow in evaporating droplet on heated solid surface[J]. International Journal of Heat and Mass Transfer, 2011, 54(19/20): 4437-4447.
|
15 |
XU W, CHOI C H. Effects of surface topography and colloid particles on the evaporation kinetics of sessile droplets on superhydrophobic surfaces[J]. Journal of Heat Transfer, 2012, 134(5): 1-13.
|
16 |
罗黎明,贾志海. 液滴撞击高温梯度表面的动态行为特性[J].化工进展, 2018, 37(3): 906-912.
|
|
LUO L M,JIA Z H. Dynamic behavior of droplets impact on a hot microstructured surface with wetting gradient[J]. Chemical Industry and Engineering Progress, 2018, 37(3): 906-912.
|
17 |
施其明, 贾志海, 林琪焱. 液滴撞击微结构疏水表面的动态特性[J]. 化工进展, 2016, 35(12): 3818-3824.
|
|
SHI Q M,JIA Z H,LIN Q Y. Dynamic behavior of dropletsimpacting on microstructured hydrophobic surfaces[J]. Chemical Industry and Engineering Progress,2016, 35(12): 3818-3824.
|
18 |
CHEN L, XIAO Z, CHAN P C H, et al. A comparative study of droplet impact dynamics on a dual-scaled super hydrophobic surface and lotus leaf[J]. Applied Surface Science, 2011, 257(21): 8857-8863.
|
19 |
RAZA M A, SWIGCHEM J VAN, JANSEN H P, et al. Droplet impact on hydrophobic surfaces with hierarchical roughness[J]. Surface Topography Metrology & Properties, 2014, 2(2): 1-9.
|
20 |
LV C, HAO P, ZHANG X, et al. Drop impact upon super hydrophobic surfaces with regular and hierarchical roughness[J]. Applied Physics Letters, 2016, 108(14): 1-7.
|
21 |
HAO P F, LV C J, NIU F L, et al. Water droplet impact on super hydrophobic surfaces with microstructures and hierarchical roughness[J]. Science China Physics Mechanics & Astronomy, 2014, 57(7): 1376-1381.
|
22 |
WILDEMAN S, VISSER C W, SUN C, et al. On the spreading of impacting drops[J]. J. Fluid Mech., 2016, 805: 636-655.
|
23 |
QIN M X, TANG C L, TONG S Q, et al. On the role of liquid viscosity in affecting droplet spreading on a smooth solid surface[J]. Int. J. Heat Mass Transf., 2019, 117: 53-63.
|
24 |
ROISMAN V I. Inertia dominated drop collisions. Ⅱ. An analytical solution of the Navier-Stokes equations for a spreading viscous film[J]. Phys. Fluids, 2009, 212(5): 1-11.
|
25 |
PARK J, KIM D E. Droplet dynamics on superheated surfaces with circular micropillars[J]. Int. J. Heat Mass Transf., 2019, 142: 118459.
|
26 |
WANG Z F, XIONG J B, YAO W Y, et al. Experimental investigation on the Leidenfrost Phenomenon of droplet impact on heated silicon carbide surfaces[J]. Int. J. Heat Mass Transf., 2019, 128: 1206-1217.
|
27 |
刘红, 何阳, 蔡畅, 等. 乙醇和正丁醇添加剂对喷雾冷却的影响[J].化工学报, 2019, 70(1): 65-71.
|
|
LIU H, HE Y, CAI C, et al. Influence of ethanol and n-butanol additives on spray cooling[J]. CIESC Journal, 2019, 70(1): 65-71.
|
28 |
UEDA T, ENOMOTO T, KANETSUKI M. Heat-transfer characteristics and dynamic behavior of saturated droplets impinging on a heated vertical surface[J]. Bull. Jpn. Soc. Mech. Eng., 1979, 22: 724-732.
|
29 |
PASANDIDEHFARD M, QIAO Y M, CHANDRA S, et al. Capillary effects during droplet impact on a solid surface[J]. Phys. Fluids., 1996, 8: 650-659.
|
30 |
HATTA N, FUJIMOTO H, TAKUDA H. Deformation process of a water droplet impinging on a solid surface[J]. J. Fluid Eng., 1995, 117: 394-401.
|
31 |
SCHELLER B L, BOUSFIELD D W. Newtonian drop impact with solid surface[J]. AIChE J., 1995, 41(6): 1357-1367.
|
32 |
BIANCE A L, CHEVY F, CLANET C, et al. On the elasticity of an inertial liquid shock[J]. J. Fluid Mech., 2006, 554: 47-66.
|
33 |
LASTAKOWSKI H, BOYER F, BIANCE A L, et al. Bridging local to global dynamics of drop impact onto solid substrates[J]. J. Fluid Mech., 2014, 747: 103-118.
|
34 |
ANTONINI C, BERNAGOZZI I, JUNG S, et al. Water drops dancing on ice: how sublimation leads to drop rebound[J]. Physical Rev. Lett., 2013, 111: 014501.
|
35 |
NG B T, HUNG Y M, TAN M K. Suppression of the Leidenfrost effect via low frequency vibrations[J]. Soft Matter., 2015, 11: 775-784.
|