1 | 蔡博峰, 庞凌云, 曹丽斌, 等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》实施2年(2016—2018年)评估[J]. 环境工程, 2018, 3(22): 1-7. | 1 | CAI Bofeng, PANG Lingyun, CAO Libin, et al. Two-year implementation assessment (2016-2018) of china’s technical guideline on environmental risk assessment for carbon dioxide capture, utilization and storage (on trial)[J]. Environmental Engineering, 2018, 3(22): 1-7. | 2 | 张墨翰. 二氧化碳捕集、运输与储存技术进展及趋势[J]. 当代化工, 2017, 46(9): 1886-1993. | 2 | ZHANG Mohan. Research progress and development trends of CO2 capture, transport and storage technologies[J]. Contemporary Chemical Industry, 2017, 46(9): 1886-1993. | 3 | 李晓玉, 窦烨炜, 张悦, 等. 氨基功能化多孔材料吸附二氧化碳研究进展[J]. 材料导报, 2018, 32(31): 208-213. | 3 | LI Xiaoyu, DOU Yewei, ZHANG YUE, et al. A reciew on the amine-functionalized porous materials for CO2 capture[J]. Materials Review, 2018, 32(31): 208-213. | 4 | 林海周, 杨晖, 罗海中, 等. 烟气二氧化碳捕集胺类吸收剂研究进展[J]. 南方能源建设, 2019, 6(1): 16-21. | 4 | LIN Haizhou, YANG Hui, LUO Haizhong, et al. Research progress on amine absorbent for CO2 capture from flue gas[J]. Southern Energy Construction, 2019, 6(1): 16-21. | 5 | 王照成, 晏双华. 碳捕集技术在燃气电厂中的应用[J]. 现代化工, 2018, 38(9): 195-197. | 5 | WANG Zhaocheng, YAN Shuanghua. Application of carbon capture technology in gas power plant[J]. Modern Chemical Industry, 2018, 38(9): 195-197. | 6 | WANG Shaofei, LI Xueqin, WU Hong, et al. Advances in high permeability polymer-based membrane materials for CO2 separations[J]. Energy & Environmental Science, 2016, 9(6): 1863-1890. | 7 | ABTIN Ebadi Amooghina, SAMANEH Mashhadikhana, HAMIDREZA Sanaeepura, et al. Substantial breakthroughs on function-led design of advanced materials used in mixed matrix membranes (MMMs): a new horizon for efficient CO2 separation[J]. Progress in Materials Science, 2019, 102: 222-295. | 8 | LI Yifan, HE Guangwei, WANG Shaofei, et al. Recent advances in the fabrication of advanced composite membranes[J]. Journal of Materials Chemistry A, 2013, 1(35): 10058-10077. | 9 | FREEMAN Benny D. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes[J]. Macromolecules, 1999, 32(2): 375-380. | 10 | PARK Ho Bum, KAMCEY Jovan, ROBESON Lloyd M, et al. Maximizing the right stuff: the trade-off between membrane permeability and selectivity[J]. Science, 2017, 356(6343): 1137-1147. | 11 | ROBESON Lloyd M. The upper bound revisited[J]. Journal of Membrane Science, 2008, 320(1/2): 390-400. | 12 | 龚之宝, 孙伟振, 李朋洲, 等. 无机膜分离技术及其研究进展[J]. 应用化工, 2019, 48(8): 1985-1989. | 12 | GONG Zhibao, SUN Weizhen, LI Pengzhou, et al. Inorganic membrane separation technology and its research progress[J]. Applied Chemical Industry, 2019, 48(8): 1985-1989. | 13 | De Q VU, KOROUS William J, MILLER Stephen J. Mixed matrix membranes using carbon molecular sieves Ⅰ. Preparation and experimental results[J]. Journal of Membrane Science, 2003, 211(2): 311-334. | 14 | DONG Guangxi, LI Hongyu, CHEN Vicki, et al. Challenges and opportunities for mixed-matrix membranes for gas separation[J]. Journal of Materials Chemistry A, 2013(15): 4610-4630. | 15 | NASIR Rizwan, MUKHTAR Hilmi, MAN Zakaria, et al. Material advancements in fabrication of mixed-matrix membranes[J]. Chemical Engineering & Technology, 2013, 36(6): 717-725. | 16 | LI Yifan, WANG Shaofei, HE Guangwei, et al. Facilitated transport of small molecules and ions for energy-efficient membranes[J]. Chemical Society Review, 2015, 44: 103-118. | 17 | 田志章, 李奕帆, 姜忠义, 等. 用于生物气提纯的促进传递膜[J]. 化工学报, 2014, 65(5): 1594-1601. | 17 | TIAN Zhizhang, LI Yifan, JIANG Zhongyi, et al. Facilitated transport membranes for biogas upgrading[J]. CIESC Journal, 2014, 65(5): 1594-1601. | 18 | WU Hong, LI Xueqin, LI Yifan, et al. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties[J]. Journal of Membrane Science, 2014, 465: 48-90. | 19 | ZHU Bin, LIU Jindun, WANG Shaofei, et al. Mixed matrix membranes containing well-designed composite microcapsules for CO2 separation[J]. Journal of Membrane Science, 2019, 572: 650–657. | 20 | KIM Jae Hoon, Young Moo LEE. Gas permeation properties of poly(amide-6-b-ethylene oxide)–silica hybrid membranes[J]. Journal of Membrane Science, 2001, 193(2): 209-225. | 21 | ZHU Haipeng, YUAN Jianwei, ZHAO Jing, et al. Enhanced CO2/N2 separation performance by using dopamine/polyethyleneimine-grafted TiO2 nanoparticles filled PEBA mixed-matrix membranes[J]. Separation and Purification Technology, 2019, 214: 78-86. | 22 | WANG Shaofei, TIAN Zhizhang, FENG Jiangyan, et al. Enhanced CO2 separation properties by incorporating poly(ethylene glycol)-containing polymeric submicrospheres into polyimide membrane[J]. Journal of Membrane Science, 2015, 473: 310-317. | 23 | 孙俊霞, 刘金盾, 李奕帆. 二维片层材料用于构筑气体分离膜的研究进展[J]. 化工新型材料, 2019, 47(3): 43-47. | 23 | SUN Junxia, LIU Jindun, LI Yifan. Construction of gas separation membrane by 2-D layered material: a review[J]. New Chemical Materials, 2019, 47(3): 43-47. | 24 | SHEN Jie, LIU Gongping, HUANG Kang, et al. Membranes with fast and selective gas-transport channels of laminar graphene oxide for efficient CO2 capture[J]. Angewandte Chemie: International Edition, 2015, 54(2): 588-592. | 25 | SHEN Jie, ZHANG Mengchen, LIU Gongping, et al. Size effects of graphene oxide on mixed matrix membranes for CO2 separation[J]. AIChE Journal, 2016, 62(8): 2843-2852. | 26 | HUANG Guoji, Pournaghshband Isfahania ALI, ANSORI Muchtara, et al. Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture[J]. Journal of Membrane Science, 2018, 565: 370-379. | 27 | ZHANG Jinhui, XIN Qingping, LI Xu, et al. Mixed matrix membranes comprising aminosilane-functionalized graphene oxide for enhanced CO2 separation[J]. Journal of Membrane Science, 2019, 570/571: 343-354. | 28 | LI Xueqin, CHENG Youdong, ZHANG Haiyang, et al. Efficient CO2 capture by functionalized graphene oxide nanosheets as fillers to fabricate multi-permselective mixed matrix membranes[J]. ACS Applied Materials & Interfaces, 2015, 7: 5528-5537. | 29 | DONG Liangliang, CHEN Mingqing, LI Jie, et al. Metal-organic framework-graphene oxide composites: a facile method to highly improve the CO2 separation performance of mixed matrix membranes[J]. Journal of Membrane Science, 2016, 520: 801-811. | 30 | ALBERTO Monica, BHAVSAR Rupesh, LUQUE-ALLED Jose Miguel, et al. Impeded physical aging in PIM-1 membranes containing graphene-like fillers[J]. Journal of Membrane Science, 2018, 563: 513-520. | 31 | LIU Yucheng, CHEN Cianyu, LIN Gengsheng, et al. Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement[J]. Journal of Membrane Science, 2019, 582: 358-366. | 32 | SHEN Yijia, WANG Huixian, ZHANG Xiang, et al. MoS2 nanosheets functionalized composite mixed matrix membrane for enhanced CO2 capture via surface drop-coating method[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 23371-23378. | 33 | TIAN Zhizhang, WANG Shaofei, WANG Yutong, et al. Enhanced gas separation performance of mixed matrix membranes from graphitic carbon nitride nanosheets and polymers of intrinsic microporosity[J]. Journal of Membrane Science, 2016, 514: 15-24. | 34 | QIAO Zhihua, ZHAO Song, WANG Jixiao, et al. A highly permeable aligned montmorillonite mixed‐matrix membrane for CO2 separation[J]. Angewandte Chemie: International Edition, 2016, 128: 9467-9471. | 35 | DUTTA Ravi C, BHATIA Suresh K. Structure and gas transport at the polymer-zeolite interface: insights from molecular dynamics simulations[J]. ACS Applied Materials & Interfaces, 2018, 10(6): 5992-6005. | 36 | MOOREA Theodore T, KOROS William J. Non-ideal effects in organic–inorganic materials for gas separation membranes[J]. Journal of Molecular Structure, 2005, 739(1/2/3): 87-98. | 37 | AMOOGHIN A E, OMIDKHAH M, KARGAR A. The effects of aminosilane grafting on NaY zeolite-Matrimid? 5218 mixed matrix membranes for CO2/CH4 separation[J]. Journal of Membrane Science, 2015, 490: 364-379. | 38 | HUANG Zhen, SU Junfeng, SU Xiaoqun, et al. Preparation and permeation characterization of β-zeolite-incorporated composite membranes[J]. Journal of Applied Polymer Science, 2009, 112(1): 9-18. | 39 | 周胜, 侯倩倩, 魏嫣莹, 等. 金属有机骨架膜的制备与应用进展[J]. 化工进展, 2019, 38(1): 467-484. | 39 | ZHOU Sheng, HOU Qianqian, WEI Yanying, et al. Recent progress on the preparation and applications of metal organic framework[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 467-484. | 40 | 张晶晶, 张亚涛. 基于MOFs的混合基质膜在气体分离中的研究进展[J]. 现代化工, 2019,39(8): 38-42. | 40 | ZHANG Jingjing, ZHANG Yatao. Research progress of MOFs-based mixed matrix membrane in gas separation[J]. Modern Chemical Industry, 2019,39(8): 38-42. | 41 | HATEM Yehia, FERRARIS T J, Balkus JOHN P, et al. Methane facilitated transport using copper (Ⅱ) biphenyl dicarboxylate-triethylenediamine/poly (3-acetoxyethylthiophene) mixed matrix membranes[J]. Abstracts of Papers of the American Chemical Society, 2004, 227: U351. | 42 | LIU Gongping, CHERNIKOVA Valeriya, LIU Yang, et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations[J]. Nature Materials, 2018, 17: 283-289. | 43 | GHALEI Behnam, SAKURAI Kento, KINOSHITAL Yosuke, et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles[J]. Nature Energy, 2017 2(7): 17086. | 44 | Tae-Hyun BAE, Jong Suk LEE, QIU Wulin, et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals[J]. Angewandte Chemie: International Edition, 2010, 49(51): 9863-9866. | 45 | ABOLFAZL Jomekiana, BAHAMIN Bazooyar, BEHBAHANI Reza Mosayebi, et al. Ionic liquid-modified Pebax? 1657 membrane filled by ZIF-8 particles for separation of CO2 from CH4, N2 and H2[J]. Journal of Membrane Science, 2017, 524: 652-662. | 46 | MONTEIRO Bernardo, NABAIS Ana R, CASIMIRO Maria H, et al. Impact on CO2/N2 and CO2/CH4 separation performance using Cu-BTC with supported ionic liquids-based mixed matrix membranes[J]. Membranes, 2018, 8(4): 93. | 47 | XIE Ke, FU Qiang, WEBLEY Paul A, et al. MOF scaffold for a high-performance mixed-matrix membrane[J]. Angewandte Chemie: International Edition, 2018, 57: 8597-8602. | 48 | SHAN Meixia, SEOANEB Beatriz, ANDRES -GARCIAA Eduardo, et al. Mixed-matrix membranes containing an azine-linked covalent organic framework: influence of the polymeric matrix on post-combustion CO2 capture[J]. Journal of Membrane Science, 2018, 549: 377-384. | 49 | CHENG Youdong, ZHAI Linzhi, YING Yunpan, et al. Highly efficient CO2 capture by mixed matrix membranes containing three-dimensional covalent organic framework fillers[J]. Journal of Materials Chemistry A, 2019, 7: 4549-4560. | 50 | WANG Shaofei, LIU Ye, HUANG Shixin, et al. Pebax-PEG-MWCNT hybrid membranes with enhanced CO2 capture properties[J]. Journal of Membrane Science, 2014, 460: 62-70. | 51 | ZHANG Yatao, SHEN Yijia, HOU Jingwei, et al. Ultraselective pebax membranes enabled by templated microphase separation[J]. ACS Applied Materials & Interfaces, 2018, 10(23): 20006-20013. | 52 | HASHEMIFARD S A, ISMAILA A F, MATSUURA T. Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNTs) as filler for gas separation: morphological diagram[J]. Chemical Engineering Journal, 2011, 172(2/3): 581-590. | 53 | DONG Guanying, HOU Jingwei, WANG Jing, et al. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax[J]. Journal of Membrane Science, 2016, 520: 860-868. | 54 | RODENAS Tania, Ignacio LUZ, PRIETO Gonzalo, et al. Metal-organic framework nanosheets in polymer composite materials for gas separation[J]. Nature Materials, 2015, 14: 48-55. | 55 | BUSHELL Alexandra F, BUDD Peter M, ATTFIELD Martin P, et al. Nanoporous organic polymer/cage composite membranes[J]. Angewandte Chemie: International Edition, 2013, 52: 1253-1256. | 56 | PALLAVI Iyer, GANESH Iyer, MARIA Coleman. Gas transport properties of polyimide-POSS nanocomposites[J]. Journal of Membrane Science, 2010, 358: 26-32. | 57 | ZORNOZA Beatriz, ESEKHILE Omoyemen, KOROS William J, et al. Hollow silicalite-1 sphere-polymer mixed matrix membranes for gas separation[J]. Separation and Purification Technology, 2011, 77: 137-145. | 58 | WANG Jingtao, YUE Xiujun, ZHANG Zizhuo, et al. Enhancement of proton conduction at low humidity by incorporating imidazole microcapsules into polymer electrolyte membranes[J]. Advanced Functional Materials, 2012, 22: 4539-4546. |
|