化工进展 ›› 2020, Vol. 39 ›› Issue (4): 1493-1499.DOI: 10.16085/j.issn.1000-6613.2019-0811
杨建成1,2(),张芹1,沈伯雄1,2(),袁世磊1,王诗宁1
收稿日期:
2019-05-17
出版日期:
2020-04-05
发布日期:
2020-04-28
通讯作者:
沈伯雄
作者简介:
杨建成(1981—),男,博士,硕士生导师,研究方向为烟气污染控制理论及技术。E-mail:基金资助:
Jiancheng YANG1,2(),Qin ZHANG1,Boxiong SHEN1,2(),Shilei YUAN1,Shining WANG1
Received:
2019-05-17
Online:
2020-04-05
Published:
2020-04-28
Contact:
Boxiong SHEN
摘要:
柱撑黏土(PILC)由于其结构可控的二维层状多孔特性,在选择性催化还原(SCR)技术中已得到广泛应用。本文综述了近年来PILC和改性PILC的结构特性、化学性质、层间掺杂活性物质及脱硝效率的研究成果,分析表明,经过添加不同活性物质改性后的PILC具有更高的比表面积、更大的层间距和良好的耐热稳定性等特点,催化剂的表面活性及催化活性得到明显的提高,对NOx具有更好的脱除效果。此外,本文还介绍了基于密度泛函理论(DFT)的改性PILC的吸附机理研究进展。由此指出,对PILC的改性和理论的深入研究,为设计和改造高效SCR脱硝催化剂具有重要意义,而将密度泛函理论引入PILC改性及脱硝机理研究中也为PILC的改性研究提供了新的理论思路。
中图分类号:
杨建成,张芹,沈伯雄,袁世磊,王诗宁. 改性柱撑黏土用于烟气脱硝的研究进展[J]. 化工进展, 2020, 39(4): 1493-1499.
Jiancheng YANG,Qin ZHANG,Boxiong SHEN,Shilei YUAN,Shining WANG. Review on denitrification mechanism of modified pillared clays[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1493-1499.
PILC | SBET/m2·g-1 | Vp/cm3·g-1 | Dp/nm | 参考文献 |
---|---|---|---|---|
黏土(膨润土) | 70.47 | 0.1128 | 6.402 | [ |
Ti-PILC | 148.97 | 0.139 | 5.95 | [ |
Al-PILC | 279 | 0.09 | 9.09 | [ |
Ce-PILC | 306 | 0.48 | 7.50 | [ |
9Fe/Al-PILC | 186 | 0.264 | 4.91 | [ |
12%CeOx/Ti-PILC | 105.08 | 0.1195 | 4.159 | [ |
8%Mn-2%Ce/TiO2-PILC | 125.6 | 0.1053 | 3.968 | [ |
V2O5/Ti-Ce-PILC | 179 | 0.27 | 6.77 | [ |
Mn-Ce/Ti-Zr-OPILC | 100.45 | 0.081 | 3.76 | [ |
表1 PILC的孔结构及比表面积
PILC | SBET/m2·g-1 | Vp/cm3·g-1 | Dp/nm | 参考文献 |
---|---|---|---|---|
黏土(膨润土) | 70.47 | 0.1128 | 6.402 | [ |
Ti-PILC | 148.97 | 0.139 | 5.95 | [ |
Al-PILC | 279 | 0.09 | 9.09 | [ |
Ce-PILC | 306 | 0.48 | 7.50 | [ |
9Fe/Al-PILC | 186 | 0.264 | 4.91 | [ |
12%CeOx/Ti-PILC | 105.08 | 0.1195 | 4.159 | [ |
8%Mn-2%Ce/TiO2-PILC | 125.6 | 0.1053 | 3.968 | [ |
V2O5/Ti-Ce-PILC | 179 | 0.27 | 6.77 | [ |
Mn-Ce/Ti-Zr-OPILC | 100.45 | 0.081 | 3.76 | [ |
1 | 中华人民共和国国家统计局. 中国统计年鉴—2018[M]. 北京: 中国统计出版社, 2018. |
National Bureau of Statistics of People's Republic of China. China statistical yearbook—2018[M]. Beijing: China Statistics Press, 2018. | |
2 | 张道军, 马子然, 孙琦, 等. 选择催化还原(SCR)反应机理研究进展[J]. 化工进展, 2019, 38(4): 1611-1623. |
ZHANG D J, MA Z R, SUN Q, et al. Progress in the mechanism of selective catalytic reduction (SCR) reaction[J]. Chemical Industry and Engineering Progress, 2019, 38(4): 1611-1623. | |
3 | HUANG J, HUANG H, LIU L C, et al. Revisit the effect of manganese oxidation state on activity in low-temperature NO-SCR[J]. Molecular Catalysis, 2018, 446: 49-57. |
4 | LI J, HU M, ZUO S, et al. Catalytic combustion of volatile organic compounds on pillared interlayered clay (PILC)-based catalysts[J]. Current Opinion in Chemical Engineering, 2018, 20: 93-98. |
5 | SHEN B X, MA H Q, HE C, et al. Low temperature NH3-SCR over Zr and Ce pillared clay based catalysts[J]. Fuel Processing Technology, 2014, 119: 121-129. |
6 | SHEN B X, YAO Y, CHEN J, et al. Alkali metal deactivation of Mn-CeOx/Zr-delaminated-clay for the low-temperature selective catalytic reduction of NOx with NH3[J]. Microporous and Mesoporous Materials, 2013, 180: 262-269. |
7 | SHEN B X, MA H Q, YAO Y. Mn-CeOx/Ti-PILCs for selective catalytic reduction of NO with NH3 at low temperature[J]. Journal of Environmental Sciences, 2012, 24(3): 499-506. |
8 | FIGUERAS F. Pillared clays as catalysts[J]. Catalysis Reviews, 1988, 30(3): 457-499. |
9 | YANG S J, LIANG G Z, GU A J, et al. Synthesis of TiO2 pillared montmorillonite with ordered interlayer mesoporous structure and high photocatalytic activity by an intra-gallery templating method[J]. Materials Research Bulletin, 2013, 48: 3948-3954. |
10 | MNASRI S, SRASRA F N. Evolution of Brønsted and Lewis acidity of single and mixed pillared bentonite[J]. Infrared Physics & Technology, 2013, 58: 15-20. |
11 | BAHRANOWSKI K, WŁODARCZYK W, WISŁA-WALSH E, et al. [Ti,Zr]-pillared montmorillonite-A new quality with respect to Ti- and Zr-pillared clays[J]. Microporous and Mesoporous Materials, 2015, 202: 155-164. |
12 | 蒋月秀, 郭尚伟, 童张法, 等. 铝柱撑膨润土的微波制备及其表征[J]. 非金属矿, 2004, 7(26): 19-21. |
JIANG Y X, GUO S W, TONG Z F, et al. Microwave preparation and characterization of aluminum pillared bentonites[J]. Non-Metallic Mines, 2004, 7(26): 19-21. | |
13 | 王琪莹, 刘自力, 郑成. 钛柱撑黏土的核磁共振和漫反射红外光谱[J]. 化工学报, 2010, 65(1): 255-258. |
WANG Q Y, LIU Z L, ZHENG C. MASNMR and DRIFTS study of inorganic TiO2 pillared clays[J]. Journal of Chemical Industry and Engineering, 2010, 65(1): 255-258. | |
14 | HE C, SHEN B X, CHEN J, et al. Adsorption and oxidation of elemental mercury over Ce-MnOx/Ti-PILCs[J]. Environmental Science & Technology, 2014, 48(14): 7891-7898. |
15 | CHAE H J, NAM I S, HAM S W, et al. Physicochemical characteristics of pillared interlayered clays[J]. Catalysis Today, 2001, 68: 31-40. |
16 | GONZALEZ R B, TRUJILLANO R, RIVES V, et al. Structural, textural and acidic properties of Cu-, Fe- and Cr-doped Ti-pillared montmorillonites[J]. Applied Clay Science, 2015, 118: 124-130. |
17 | 沈伯雄, 马宏卿, 杨晓燕, 等. Mn-CeOx/Ti-PILC的制备、表征及脱硝性能研究[J]. 燃料化学学报, 2012, 40(5): 615-620. |
SHEN B X, MA H Q, YANG X Y, et al. Study on preparation, characterization and de-NO activity of Mn-CeOx/Ti-PILC[J]. Journal of Fuel Chemistry and Technology, 2012, 40(5): 615-620. | |
18 | SHEN B X, CHEN J, YUE S. Removal of elemental mercury by titanium pillared clay impregnated with potassium iodine[J]. Microporous and Mesoporous Materials, 2015, 203: 216-223. |
19 | CHEN D S, CEN C P, FENG J X, et al. Co-catalytic effect of Al-Cr pillared montmorillonite as a new SCR catalytic support[J]. Journal of Chemical Technology & Biotechnology, 2016, 91(11): 2842-2851. |
20 | 董雁春, 李洋, 张金刚, 等. V2O5/Ti-Ce-PILC在H2S选择性催化氧化过程中的催化性能[J]. 燃料化学学报, 2016, 44(11): 1401-1408. |
DONG Y C, LI Y, ZHANG J G, et al. Catalytic performance of V2O5/Ti-Ce-PILC in the selective oxidation of H2S[J]. Journal of Fuel Chemistry and Technology, 2016, 44(11): 1401-1408. | |
21 | QIAN W Y, SU Y, YANG X, et al. Experimental study on selective catalytic reduction of NO with propene over iron based catalysts supported on aluminum pillared clays[J]. Journal of Fuel Chemistry and Technology. 2017, 45(12): 1499-1507. |
22 | 何川, 沈伯雄, 蔡记, 等. 铈锰负载钛基柱撑黏土脱除单质汞的研究[J]. 工程热物理学报, 2014, 35(10): 2087-2092. |
HE C, SHEN B X, CAI J, et al. Removal of elecmental mercury from flue gas by Ce-Mn modified titania-iillared clays[J]. Journal of Engineering Thermophysics, 2014, 35(10): 2087-2092. | |
23 | SHEN B X, YAO Y, MA H Q, et al. Ceria modified MnOx/TiO2-pillared clays catalysts for the selective catalytic reduction of NO with NH3 at low temperature[J]. Chinese Journal of Catalysis, 2011, 32(11/12): 1803-1811. |
24 | 沈伯雄, 吴姁徐, 马宏卿, 等. Mn-Ce/Ti-Zr-柱撑膨润土催化剂低温选择性催化还原法脱硝[J]. 化工环保, 2012, 32(6): 552-556. |
SHEN B X, WU X X, MA H Q, et al. NO removal by low-temperature selective catalytic reduction on Mn-Ce/Ti-Zr-OPILC catalyst[J]. Environmental Protection of Chemical Industry, 2012, 32(6): 552-556. | |
25 | QI G S, YANG R T, THOMPSON L T. Catalytic reduction of nitric oxide with hydrogen and carbon monoxide in the presence of excess oxygen by Pd supported on pillared clays[J]. Applied Catalysis A: General, 2004, 259(2): 261-267. |
26 | 马宏卿, 姚燕, 马娟, 等. MnOx/Ti-PILC低温NH3-SCR脱除NO研究[J]. 工程热物理学报, 2013, 34(1): 164-167. |
MA H Q, YAO Y, MA J, et al. Study on MnOx/Ti-PILC for NH3-SCR of NO at low temperature[J]. Journal of Engineering Thermophysics, 2013, 34(1): 164-167. | |
27 | 马宏卿, 丁亮, 陈雯君. Ti-PILC制备条件对MnOx/Ti-PILC低温SCR脱硝活性的影响[J]. 环境保护与循环经济, 2016(5): 48-51. |
MA H Q, DING L, CHEN W J. Effect of preparation conditions of Ti-PILC on denitrification activity of MnOx/Ti-PILC at low temperature SCR[J]. Environmental Protection and Circular Economy, 2016(5): 48-51. | |
28 | 沈伯雄, 马宏卿, 杨晓燕. 钛基柱撑黏土负载锰铈催化剂低温选择性催化还原脱除NOx研究[J]. 中国电机工程学报, 2011, 31(25): 53-58. |
SHEN B X, MA H Q, YANG X Y. Study on Ti-Pillared interlayered clays supported MnOx-CeO2 catalysts for selective catalytic reduction of NO by NH3 at low temperature[J]. Proceedings of the Chinese Society for Electrical Engineering, 2011, 31(25): 53-58. | |
29 | 沈伯雄, 孙喜, 杨晓燕. 不同柱撑物负载Mn-Ce层柱黏土制备及脱硝性能[J]. 中国电机工程学报, 2013, 33(11): 7-13. |
SHEN B X, SUN X, YANG X Y. Preparation of PILCs with different pillar materials loading Mn-Ce and de-NO activity[J]. Proceedings of the CSEE, 2013, 33(11): 7-13. | |
30 | ZHONG L, CAI W, YU Y, et al. Insights into synergistic effect of chromium oxides and ceria supported on Ti-PILC for NO oxidation and their surface species study[J]. Applied Surface Science, 2015, 325: 52-63. |
31 | JEONG C H, SIK N I, WON H S, et al. Characteristics of vanadia on the surface of V2O5/Ti-PILC catalyst for the reduction of NOx by NH3[J]. Applied Catalysis B: Environmental, 2004, 53(2): 117-126. |
32 | CHENG J, SONG Y, YE Q, et al. A mechanistic investigation on the selective catalytic reduction of NO with ammonia over the V-Ce/Ti-PILC catalysts[J]. Molecular Catalysis, 2018, 445: 111-123. |
33 | 董士林, 苏亚欣, 刘欣, 等. Fe/Ti-PILC用于C3H6选择性催化还原NO的研究[J]. 燃料化学学报, 2018, 46(10): 1231-1239. |
DONG S L, SU Y X, LIU X, et al. Experimental study on selective catalytic reduction of NO by C3H6 over Fe/Ti-PILC catalysts[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1231-1239. | |
34 | LI X Y, LU G, QU Z P, et al. The role of titania pillar in copper-ion exchanged titania pillared clays for the selective catalytic reduction of NO by propylene[J]. Applied Catalysis A: General, 2011, 398(1/2): 82-87. |
35 | 陆光, 张锦宁, 曲振平, 等. Ag对Cu-Ti-PILC结构和催化性能的影响[J]. 材料导报B: 研究篇, 2015, 29(9): 36-39. |
LU G, ZHANG J N, QU Z P, et al. Influence of Ag species on structure and catalytic performence of Cu-Ti-PILC[J]. Material Introduction B: Research, 2015, 29(9): 36-39. | |
36 | VALVERDE J L, LUCAS A D, DORADO F, et al. Study by in situ FTIR of the SCR of NO by propene on Cu2+ ion-exchanged Ti-PILC[J]. Journal of Molecular Catalysis A: Chemical, 2005, 230(1/2): 23-28. |
37 | 文焱炳, 董新法, 林维明. Cu/Ce-Ti-PILC上丙烯选择催化还原NO的研究[J]. 广州大学学报(自然科学版), 2008, 7(1): 53-57. |
WEN Y B, DONG X F, LIN W M. Study on Cu/Ce-Ti-PILC for selective catalytic reduction of NO by propylene[J]. Journal of Guangzhou University(Natural Science Edition), 2008, 7(1): 53-57. | |
38 | 林绮纯, 董新法, 林维明. 丙烯选择还原一氧化氮反应铜基交联黏土催化剂的研究[J]. 现代化工, 2004, 24(3): 39-42. |
LIN Q C, DONG X F, LIN W M. Cu-based pillared clay catalysts for selective catalytic reduction of NO by propylene[J]. Modern Chemical Industry, 2004, 24(3): 39-42. | |
39 | QIAN W Y, SU Y X, YANG X, et al. Experimental study on selective catalytic reduction of NO with propene over iron based catalysts supported on aluminum pillared clays[J]. Journal of Fuel Chemistry and Technology, 2017, 45(12): 1499-1507. |
40 | 朱斌, 费兆阳, 陈献, 等. Al-PILC负载铜铁复合氧化物在NH3选择性催化还原NO中的协同作用[J]. 燃料化学学报, 2014, 42(9): 1102-1110. |
ZHU B, FEI Z Y, CHEN X, et al. Synergetic effect of Cu-Fe composite oxides supported on Al-PILC for SCR of NO with NH3[J]. Journal of Fuel Chemistry and Technology, 2014, 42(9): 1102-1110. | |
41 | 林绮纯, 郝吉明, 李俊华, 等. Cu/Al-Ce-PILC在丙烯选择性催化还原NO反应中的失活研究[J]. 环境科学, 2007, 8(23): 489-492. |
LIN Q C, HAO J M, LI J H, et al. Study on deactivation of Cu/Al-Ce-PILC in the selective catalytic reduction of NO by propylene[J]. Environmental Science, 2007, 8(23): 489-492. | |
42 | 李前程, 苏亚欣, 董士林, 等. Fe-PILC在贫燃条件下催化丙烯选择性还原NO[J]. 燃料化学学报, 2018, 46(10): 1240-1248. |
LI Q C, SU Y X, DONG S L, et al. Fe-PILC for selective catalytic reduction of NO by propene under lean-burn conditions[J]. Journal of Fuel Chemistry and Technology, 2018, 46(10): 1240-1248. | |
43 | PENG C, MIN F, LIU L, et al. A periodic DFT study of adsorption of water on sodium-montmorillonite (001) basal and (010) edge surface[J]. Applied Surface Science, 2016, 387: 308-316. |
44 | PENG C, MIN F, LIU L, et al. The adsorption of CaOH+ on (001) basal and (010) edge surface of Na-montmorillonite: a DFT study[J]. Surface and Interface Analysis, 2017, 49(4): 267-277. |
45 | PAN H, HOU H, CHEN J, et al. Adsorption of arsenic on iron modified attapulgite (Fe/ATP): surface complexation model and DFT studies[J]. Adsorption, 2018, 24(5): 459-469. |
46 | KHALED E A, THOMAS G, JEAN F L, et al. Cysteine-montmorillonite composites for heavy metal cation complexation: a combined experimental and theoretical study[J]. Chemical Engineering Journal, 2017, 314: 406-417. |
47 | YANG Z, LIU W, ZHANG H, et al. DFT study of the adsorption of 3-chloro-2-hydroxypropyl trimethylammonium chloride on montmorillonite surfaces in solution[J]. Applied Surface Science, 2018, 436: 58-65. |
48 | ZHAO J, HE M C. Theoretical study of heavy metal Cd, Cu, Hg, and Ni(II) adsorption on the kaolinite(001) surface[J]. Applied Surface Science, 2014, 317: 718-723. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[6] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[7] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[8] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[9] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[10] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[11] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[12] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[13] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[14] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[15] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |