1 |
华政, 梁风, 姚耀春. 电动汽车电池的发展现状与趋势[J]. 化工进展, 2017, 36(8): 2874-2881.
|
|
HUAZ, LIANGF, YAOY C. Development status and trends of electric vehicle batteries[J]. Chemical Industry and Engineering Progress, 2017, 36(8): 2874-2881.
|
2 |
FANGX, PENGH. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries[J]. Small, 2015, 11(13): 1488-1511.
|
3 |
YUZ, SONGJ, GORDINM L, et al. Phosphorus-graphene nanosheet hybrids as lithium-ion anode with exceptional high-temperature cycling stability[J]. Advanced Science, 2015, 2(1/2): 1400020.
|
4 |
LARCHERD, TARASCONJ. Towards greener and more sustainable batteries for electrical energy storage[J]. Nature Chemistry, 2014, 7(1): 19.
|
5 |
KIMS, SEO D, MAX, et al. Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries[J]. Advanced Energy Materials, 2012, 2(7): 710-721.
|
6 |
SONGJ, YUZ, GORDINM L, et al. Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries[J]. Nano Letters, 2014, 14(11): 6329-6335.
|
7 |
李骄阳, 王莉, 何向明. 磷基复合负极在二次电池中的研究进展[J]. 化学进展, 2016(s2): 193-203.
|
|
LIJ Y, WANGL, HEX M. Research progress of phosphorus-based composite cathode in secondary battery[J]. Progress in Chemistry, 2016(s2): 193-203.
|
8 |
WANGL, HEX M, LIJ J, et al. Nano-structured phosphorus composite as high-capacity anode materials for lithium batteries[J]. Angewandte Chemie International Edition, 2012, 51(36): 9034-9037.
|
9 |
周朝辉, 王莉, 李建刚, 等. 单质磷复合材料在二次电池中的应用研究进展[J]. 储能科学与技术, 2016, 5(4): 430-435.
|
|
ZHOUC H, WANGL, LIJ G, et al. Advances in the application of phosphor composite material in secondary batteries[J]. Energy Storage Science and Technology, 2016, 5(4): 430-435.
|
10 |
PARKC M, SOHNH J. Black phosphorus and its composite for lithium rechargeable batteries[J]. Advanced Materials, 2007, 19(18): 2465-2468.
|
11 |
田丽媛, 姚志恒, 李凤, 等. 红磷/碳复合材料的制备及电化学性能研究[J]. 无机材料学报, 2015, 30(6): 653-661.
|
|
TIANL Y, YAOZ H, LIF, et al. Preparation and electrochemical properties of red phosphorus/carbon composites[J]. Journal of Inorganic Materials, 2015, 30(6): 653-661.
|
12 |
BAIA J, WANGL, LIJ Y, et al. Composite of graphite/phosphorus as anode for lithium-ion batteries[J]. Journal of Power Sources, 2015, 289: 100-104.
|
13 |
WUX, ZHAOW, WANGH, et al. Enhanced capacity of chemically bonded phosphorus/carbon composite as an anode material for potassium-ion batteries[J]. Journal of Power Sources, 2018, 378: 460-467.
|
14 |
LIJ Y, QIANY, WANGL, et al. Nitrogen-doped carbon for red phosphorous based anode materials for lithium ion batteries[J]. Materials, 2018, 11(1): 134.
|
15 |
GAOH, ZHOUT, ZHENGY, et al. Integrated carbon/red phosphorus/graphene aerogel 3D architecture via advanced vapor-redistribution for high-energy sodium-ion batteries[J]. Advanced Energy Materials, 2016, 6(21): 1601037.
|
16 |
DINGX, HUANGY, LIG, et al. Phosphorus nanoparticles combined with cubic boron nitride and graphene as stable sodium-ion battery anodes[J]. Electrochimica Acta, 2017, 235: 150-157.
|
17 |
ZHUX, YUANZ, WANGX, et al. Hydrothermal synthesis of red phosphorus@reduced graphene oxide nanohybrid with enhanced electrochemical performance as anode material of lithium-ion battery[J]. Applied Surface Science, 2018, 433: 125-132.
|
18 |
YUEZ, GUPTAT, WANGF, et al. Utilizing a graphene matrix to overcome the intrinsic limitations of red phosphorus as an anode material in lithium-ion batteries[J]. Carbon, 2018, 127: 588-595.
|
19 |
LIUY, ZHANGA, SHENC, et al. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries[J]. ACS Nano, 2017, 11(6): 5530-5537.
|
20 |
LIUS, XUH, BIANX, et al. Nanoporous red phosphorus on reduced graphene oxide as superior anode for sodium-ion batteries[J]. ACS Nano, 2018, 12(7): 7380-7387.
|
21 |
YUANT, RUANJ, PENGC, et al. 3D red phosphorus/sheared CNT sponge for high performance lithium-ion battery anodes[J]. Energy Storage Materials, 2018, 13: 267-273.
|
22 |
LIW, CHOUS, WANGJ, et al. Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage[J]. Nano Letters, 2013, 13(11): 5480-5484.
|
23 |
XUG, CHENZ, ZHONGG, et al. Nanostructured black phosphorus/ketjenblack-multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries[J]. Nano Letters, 2016, 16(6): 3955-3965.
|
24 |
ZHUY, WENY, FANX, et al. Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J]. ACS Nano, 2015, 9(3): 3254-3264.
|
25 |
PANZ W, XIES S, LUL, et al. Tensile tests of ropes of very long aligned multiwall carbon nanotubes[J]. Applied Physics Letters, 1999, 74(21): 3152-3154.
|
26 |
LIF, CHENGH M, BAIS, et al. Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes[J]. Applied Physics Letters, 2000, 77(20): 3161-3163.
|
27 |
YUM, FILESB S, AREPALLIS, et al. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties[J]. Physical Review Letters, 2000, 84(24): 5552-5555.
|
28 |
YUM F, LOURIEO, DYERM J, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load[J]. Science, 2000, 287(5453): 637-640.
|
29 |
ZHAOD, ZHANGJ, FUC, et al. Enhanced cycling stability of ring-shaped phosphorus inside multi-walled carbon nanotubes as anodes for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(6): 2540-2548.
|
30 |
MAX, CHENL, RENX, et al. High-performance red phosphorus/carbon nanofibers/graphene free-standing paper anode for sodium ion batteries[J]. Journal of Materials Chemistry A, 2018, 6(4): 1574-1581.
|
31 |
LID, WANGD, RUIK, et al. Flexible phosphorus doped carbon nanosheets/nanofibers: electrospun preparation and enhanced Li-storage properties as free-standing anodes for lithium ion batteries[J]. Journal of Power Sources, 2018, 384: 27-33.
|
32 |
LIUY, ZHANGN, LIUX, et al. Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries[J]. Energy Storage Materials, 2017, 9: 170-178.
|
33 |
WANGY, TIANL, YAOZ, et al. Enhanced reversibility of red phosphorus/active carbon composite as anode for lithium ion batteries[J]. Electrochimica Acta, 2015, 163: 71-76.
|
34 |
LIM, FENGN, LIUM, et al. Hierarchically porous carbon/red phosphorus composite for high-capacity sodium-ion battery anode[J]. Science Bulletin, 2018, 63(15): 40-47.
|
35 |
王晓丹, 马洪芳, 刘志宝, 等. 多孔生物质碳材料的制备及应用研究进展[J]. 功能材料, 2017(7): 7035-7040.
|
|
WANGX D, MAH F, LIUZ B, et al. Progress in preparation and application of porous biomass carbon materials[J]. Functional Materials, 2017(7): 7035-7040.
|
36 |
XUT, LID, CHENS, et al. Nanoconfinement of red phosphorus nanoparticles in seaweed-derived hierarchical porous carbonaceous fibers for enhanced lithium ion storage[J]. Chemical Engineering Journal, 2018, 345: 604-610.
|
37 |
XUJ, DINGJ, ZHUW, et al. Nano-structured red phosphorus/porous carbon as a superior anode for lithium and sodium-ion batteries[J]. Science China Materials, 2018, 61(3): 371-381.
|
38 |
WANGQ, LIANP, WANGB, et al. Red phosphorus encapsulated in porous carbon derived from cigarette filter solid waste as a promising anode material for lithium-ion batteries[J]. Ionics, 2018(5):1-11.
|
39 |
SOUZAD C S, PRALONGV , ACOBSONA J , et al. A reversible solid-state crystalline transformation in a metal phosphide induced by redox chemistry[J]. Science, 2002, 296(5575): 2012-2015.
|
40 |
WANGK, YANGJ, XIEJ, et al. Electrochemical reactions of lithium with CuP2 and Li1.75Cu1.25P2 synthesized by ballmilling[J]. Electrochemistry Communications, 2003, 5(6): 480-483.
|
41 |
MUN Y S, YOONY, HUR J, et al. Copper-antimony-red phosphorus composites as promising anode materials for sodium-ion batteries[J]. Journal of Power Sources, 2017, 362: 115-122.
|
42 |
ALCÁNTARAR, TIREDOJ, JUMAS JC, et al. Electrochemical reaction of lithium with CoP3[J]. Journal of Power Sources, 2002, 109: 308-312.
|
43 |
LIUQ, LUOY, CHENW, et al. CoP3@PPy microcubes as anode for lithium-ion batteries with improved cycling and rate performance[J]. Chemical Engineering Journal, 2018, 347: 455-461.
|
44 |
BOYANOVS, ZITOUND, MÉNÉTRIERM, et al. Comparison of the electrochemical lithiation/delitiation mechanisms of FePx (x= 1, 2, 4) based electrodes in Li-Ion batteries[J]. The Journal of Physical Chemistry C, 2009, 113(51): 21441-21452.
|
45 |
SILVAD C C, CROSNIERO, OUVRARDG, et al. Reversible lithium uptake by FeP2[J]. Electrochemical and Solid-State Letters, 2003, 6(8): A162.
|
46 |
CHINL, YIY, CHANGW, et al. Significantly improved performance of red phosphorus sodium-ion anodes with the addition of iron[J]. Electrochimica Acta, 2018, 266: 178-184.
|
47 |
LIUY, XIAOX, FANX, et al. GeP5/C composite as anode material for high power sodium-ion batteries with exceptional capacity[J]. Journal of Alloys and Compounds, 2018, 744: 15-22.
|
48 |
LIW, KEL, WEIY, et al. Highly reversible sodium storage in a GeP5/C composite anode with large capacity and low voltage[J]. Journal of Materials Chemistry A, 2017, 5(9): 4413-4420.
|
49 |
ZHANGW, MAOJ, LIS, et al. Phosphorus-based alloy materials for advanced potassium-ion battery anode[J]. Journal of the American Chemical Society, 2017, 139(9): 3316-3319.
|
50 |
KIMY, CHO B W, SOHNH. The reaction mechanism of lithium insertion in vanadium tetraphosphide[J]. Journal of the Electrochemical Society, 2005, 152(8): A1475.
|
51 |
GILLOTF, MÉNÉTRIERM, BEKAERTE, et al. Vanadium diphosphides as negative electrodes for secondary Li-ion batteries[J]. Journal of Power Sources, 2007, 172(2): 877-885.
|
52 |
KIMM G, LEE S, CHO J. Highly reversible Li-ion intercalating MoP2 nanoparticle cluster anode for lithium rechargeable batteries[J]. Journal of The Electrochemical Society, 2009, 156(2): A89.
|
53 |
HWANGH, KIMM G, CHO J. Li reaction behavior of GaP nanoparticles prepared by a sodium naphthalenide reduction method[J]. The Journal of Physical Chemistry C, 2006, 111(3): 1186-1193.
|
54 |
CUIY, XUEM, WANGX, et al. InP as new anode material for lithium ion batteries[J]. Electrochemistry Communications, 2009, 11(5): 1045-1047.
|
55 |
DANGS, ZHUQ, XUQ. Nanomaterials derived from metal–organic frameworks[J]. Nature Reviews Materials, 2017, 3(1): 17075.
|
56 |
DOWNESC A, MARINESCUS C. Electrocatalytic metal-organic frameworks for energy applications[J]. ChemSusChem, 2017, 10(22): 4374-4392.
|
57 |
LIZ, LIC, GEX, et al. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries[J]. Nano Energy, 2016, 23: 15-26.
|
58 |
YINGJ, JIANGG, PAULC Z, et al. Nitrogen-doped hollow porous carbon polyhedrons embedded with highly dispersed Pt nanoparticles as a highly efficient and stable hydrogen evolution electrocatalyst[J]. Nano Energy, 2017, 40: 88-94.
|
59 |
GEX, LIZ, WANGC, et al. Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery[J]. ACS Applied Materials & Interfaces, 2015, 7(48): 26633-26642.
|
60 |
HUANGG, ZHANGF, DUX, et al. Metal organic frameworks route toin situ insertion of multiwalled carbon nanotubes in Co3O4 polyhedra as anode materials for lithium-ion batteries[J]. ACS Nano, 2015, 9(2): 1592-1599.
|
61 |
LIUB, ZHANGX, SHIOYAMAH, et al. Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery[J]. Journal of Power Sources, 2010, 195(3): 857-861.
|
62 |
LIZ, ZHANGL, GEX, et al. Core-shell structured CoP/FeP porous microcubes interconnected by reduced graphene oxide as high performance anodes for sodium ion batteries[J]. Nano Energy, 2017, 32: 494-502.
|
63 |
GEX, LIZ, YINL. Metal-organic frameworks derived porous core/shellCoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery[J]. Nano Energy, 2017, 32: 117-124.
|
64 |
DONGS, LIC, GEX, et al. ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries[J]. ACS Nano, 2017, 11(6): 6474-6482.
|
65 |
GUANC, LIUX, ELSHAHAWYA M, et al. Metal-organic framework derived hollow CoS2 nanotube arrays: an efficient bifunctional electrocatalyst for overall water splitting[J]. Nanoscale Horiz, 2017, 2(6): 342-348.
|
66 |
YUL, YANGJ F, LOUX W D. Formation of CoS2 nanobubble hollow prisms for highly reversible lithium storage[J]. Angewandte Chemie, 2016, 128(43): 13620-13624.
|
67 |
LIZ, YINL. Efficient gel route to embed phosphorus into MOF-derived porous FePx as anodes for high performance lithium-ion batteries[J]. Energy Storage Materials, 2018, 14: 367-375.
|
68 |
CHANGW, TSENGK, TUANH. Solution synthesis of iodine-doped red phosphorus nanoparticles for lithium-ion battery anodes[J]. Nano Letters, 2017, 17(2): 1240-1247.
|
69 |
LUY, ZHOUP, LEIK, et al. Selenium phosphide (Se4P4) as a new and promising anode material for sodium-ion batteries[J]. Advanced Energy Materials, 2017, 7(7): 1601973.
|