化工进展 ›› 2019, Vol. 38 ›› Issue (01): 682-691.DOI: 10.16085/j.issn.1000-6613.2018-1062
收稿日期:
2018-05-22
修回日期:
2018-07-18
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
宗保宁
作者简介:
李煦(1986—),男,博士,工程师,研究方向为微藻生物技术。E-mail:<email>lixu.ripp@sinopec.com</email>。|宗保宁,教授级高级工程师,博士生导师。E-mail:<email>zongbn.ripp@sinopec.com</email>。
Xu LI(),Junfeng RONG,Junying ZHU,Baoning ZONG()
Received:
2018-05-22
Revised:
2018-07-18
Online:
2019-01-05
Published:
2019-01-05
Contact:
Baoning ZONG
摘要:
水处理是环境保护与绿色化工生产的重要方面,其中含硝酸废水的处理已经成为工业水处理领域的研究热点。本文首先介绍了生物反硝化法、化学还原法与中和法等对含硝酸废水进行脱硝处理的方法,针对这些方法成本高、形成二次污染和氮元素资源化利用程度低等问题,指出目前仍然缺乏对高含量硝酸废水进行处理的理想技术。随后重点介绍了使用微藻对废水中的硝酸进行脱除的理论基础与技术路线,并对藻种、硝酸废水特征与处理工艺等因素的影响进行了阐述。根据对微藻处理方法进行的初步技术经济性分析,提出了废水处理与微藻生物产品生产相结合这一环保新模式,为降低环保装置的运行成本提供了新的思路。指出微藻应用于废水处理是一种非常有前景的工业废水处理技术,需要进一步加以研究和完善,从而在破解环境保护与经济发展的矛盾中发挥更为重要的作用。
中图分类号:
李煦, 荣峻峰, 朱俊英, 宗保宁. 微藻处理工业排放硝酸废水技术研究进展[J]. 化工进展, 2019, 38(01): 682-691.
Xu LI, Junfeng RONG, Junying ZHU, Baoning ZONG. Research progress on microalgae treatment of nitrate-containing industrial waste water[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 682-691.
微藻培养方式 | 反应器 形式 | 能量来源 | 碳源 | 细胞 密度 | 设备 成本 | 运行 成本 | 微藻采收 成本 | 占地 面积 | 微藻生长速率 | 限制 因素 | 受污染 影响 |
---|---|---|---|---|---|---|---|---|---|---|---|
自养 | 开放池 | 自然光照 | CO2 | 低 | 低 | 低 | 高 | 大 | 低 | 光 | 较大 |
自养 | 光生物反应器 | 人工光照 | CO2 | 较低 | 中等 | 较低 | 较高 | 较大 | 较低 | 光 | 小 |
异养 | 发酵设备 | 有机物 | 有机物 | 高 | 高 | 较高 | 低 | 小 | 高 | 氧气 | 大 |
兼养 | 光照发酵设备 | 有机物+人工光照 | 有机物+ CO2 | 高 | 高 | 高 | 低 | 小 | 高 | 氧气 | 大 |
表1 不同微藻培养方式的比较
微藻培养方式 | 反应器 形式 | 能量来源 | 碳源 | 细胞 密度 | 设备 成本 | 运行 成本 | 微藻采收 成本 | 占地 面积 | 微藻生长速率 | 限制 因素 | 受污染 影响 |
---|---|---|---|---|---|---|---|---|---|---|---|
自养 | 开放池 | 自然光照 | CO2 | 低 | 低 | 低 | 高 | 大 | 低 | 光 | 较大 |
自养 | 光生物反应器 | 人工光照 | CO2 | 较低 | 中等 | 较低 | 较高 | 较大 | 较低 | 光 | 小 |
异养 | 发酵设备 | 有机物 | 有机物 | 高 | 高 | 较高 | 低 | 小 | 高 | 氧气 | 大 |
兼养 | 光照发酵设备 | 有机物+人工光照 | 有机物+ CO2 | 高 | 高 | 高 | 低 | 小 | 高 | 氧气 | 大 |
1 | GRUBER N . The marine nitrogen cycle: overview and challenges[M] //CAPONE D G , BRONK D A , MULHOLLAND M R ,et al . Nitrogen in the marine environment. San Diego: Academic Press,2008:1-50. |
2 | BEDALE W , SINDELAR J J , MILKOWSKI A L . Dietary nitrate and nitrite: benefits, risks, and evolving perceptions[J]. Meat Science, 2016, 120: 85-92. |
3 | CRUZ M D , GLICK J , MERKER S H , et al . Survival after severe methemoglobinemia secondary to sodium nitrate ingestion[J]. Toxicology Communications, 2018, 2(1): 21-23. |
4 | HUANG Y , CHEN X , LI P , et al . Pressurized microcystis can help to remove nitrate from eutrophic water[J]. Bioresource Technology, 2018, 196: 280-287. |
5 | 徐志伟, 张心昱, 任玉芬, 等 . 北京城市生态系统地表水硝酸盐污染空间变化及其来源研究[J]. 环境科学, 2012, 33(8): 2569-2573. |
XU Z W , ZHANG X Y , REN Y F , et al . Spatial changes and sources of nitrate in Beijing urban ecosystem surface water[J]. Environmental Science, 2012, 33(8): 2569-2573. | |
6 | RAJMOHAN K S , GOPINATH M , CHETTY R . Bioremediation of nitrate-contaminated wastewater and soil[M] |
//VARJANI S J , AGARWAL A K , GNANSOUNOU E , et al . Bioremediation: applications for environmental protection and management. Singapore: Springer, 2018: 387-409. | |
7 | ZHOU G J , YING G G , LIU S , et al . Simultaneous removal of inorganic and organic compounds in wastewater by freshwater green microalgae[J]. Environmental Science: Processes & Impacts, 2014, 16(8): 2018-2027. |
8 | XIE T , XIA Y , ZENG Y , et al . Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: over-compensation strategy[J]. Bioresource Technology, 2017, 233: 247-255 |
9 | CAPODICI M , AVONA A , LAUDICINA V A , et al . Biological groundwater denitrification systems: lab-scale trials aimed at nitrous oxide production and emission assessment[J]. Science of the Total Environment, 2018, 630: 462-468. |
10 | 袁怡, 黄勇, 李祥 . 工业废水反硝化技术研究进展[J]. 工业水处理, 2013, 33(4): 1-5. |
YUAN Y , HUANG Y , LI X . Progress in the research on denitrification technologies for industrial wastewater[J]. Industrial Water Treatment, 2013, 33(4): 1-5. | |
11 | RAVISHANKARA A R , DANIEL J S , PORTMANN R W . Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326(5949): 123-125. |
12 | LIOU Y H , LIN C J , WENG S C , et al . Selective decomposition of aqueous nitrate into nitrogen using iron deposited bimetals[J]. Environmental Science & Technology, 2009, 43(7): 2482-2488. |
13 | 陈欢, 张亚平, 阮晓红 . Fe2+在零价铁还原去除NO3 -中的作用效应[J]. 高校地质学报, 2018, 24(1): 109-115. |
CHEN H , ZHANG Y P , RUAN X H . Effect of Fe2+ on nitrate reduction using zero-valent iron[J]. Geological Journal of China Universities, 2018, 24(1): 109-115. | |
14 | 张俊杰, 聂宝军 . 浓硝酸及硝酸铵生产废水综合利用技术研究[J]. 河北化工, 2013, 36(3): 67-71. |
ZHANG J J , NIE B J . Research on technologies of comprehensive utilization of wastewater in the production of concentrated nitric acid and ammonium nitrate[J]. Hebei Chemical Industry, 2013, 36(3): 67-71. | |
15 | 甄毓, 于志刚, 米铁柱 . 分子生物学在微藻分类研究中的应用[J]. 中国海洋大学学报, 2006, 36(6): 875-878. |
ZHEN Y , YU Z G , MI T Z . Application of molecular biology to microalgae classification research[J]. Periodical of Ocean University of China, 2006, 36(6): 875-878. | |
16 | 李斯 . 海洋微藻的分类方法学研究[D]. 青岛: 中国海洋大学, 2012. |
LI S . Development of applicable methodology for the identification of marine microalgae[D]. Qingdao: Ocean University of China, 2012. | |
17 | 李健, 张学成, 胡鸿钧, 等 . 微藻生物技术产业前景和研发策略分析[J]. 科学通报, 2012, 57(1): 23-31. |
LI J , ZHANG X C , HU H J , et al . Prospects and research strategies for the microalgal industry[J]. Chinese Science Bulletin, 2012, 57(1): 23-31. | |
18 | 孔维宝, 牛世全, 马正学, 等 . 微藻生物炼制技术[J]. 生物加工过程, 2008, 6(5): 1-7. |
KONG W B , NIU S Q , MA Z X, et al . Microalgae bio-refinery technology[J]. Chinese Journal of Bioprocess Engineering, 2008, 6(5): 1-7. | |
19 | BARSANTI L , GUALTIERI P . Algae: anatomy, biochemistry, and biotechnology[M]. Boca Raton: CRC Press, 2006: 37-44. |
20 | PEREZ-GARCIA O , ESCALANTE F M E , DE BASHAN L E , et al . Heterotrophic cultures of microalgae: metabolism and potential products[J]. Water Research, 2011, 45(1): 11–36. |
21 | MOORE L R , POST A F , ROCAP G , et al . Utilization of different nitrogen sources by marine cyanobacteria Prochlorococcus and Synechococcus [J]. Limnology & Oceanography, 2002, 47(4): 989–996. |
22 | IMAMURA S , TERASHITA M , OHNUMA M , et al . Nitrate assimilatory genes and their transcriptional regulation in a unicellular red alga Cyanidioschyzon merolae: genetic evidence for nitrite reduction by a sulfite reductase-like enzyme[J]. Plant Cell Physiology, 2010, 51(5): 707–717. |
23 | TAZIKI M , HOSSEIN A , MARCIA A M , et al . Nitrate and nitrite removal from wastewater using algae[J]. Current Biotechnology, 2016, 4(4): 426-440. |
24 | MULHOLLAND M R , LOMAS M W . Nitrogen in the marine environment[M]. Cambridge: Academic Press, 2008: 350-356. |
25 | FERNANDEZ E , GALVAN A . Nitrate assimilation in Chlamydomonas [J]. Eukaryotic Cell, 2008, 7(4): 555-559. |
26 | KUYPERS M M M , MARCHANT H K , KARTAL B . The microbial nitrogen-cycling network[J]. Nature Reviews Microbiology, 2018, 16: 263-276. |
27 | SANZ-LUQUE E , CHAMIZO-AMPUDIA A , LLAMAS A , et al . Understanding nitrate assimilation and its regulation in microalgae[J]. Frontiers in Plant Science, 2015, 6: 1-17. |
28 | LÉRAN S , VARALA K , BOYER J C , et al . A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants[J]. Trends in Plant Science, 2014, 19(1): 5–9. |
29 | FERNANDEZ E , GALVAN A . Inorganic nitrogen assimilation in Chlamydomonas [J]. Journal of Experimental Botany, 2007, 58(9): 2279–2287. |
30 | WANG Y Y , CHENG Y H , CHEN K E , et al . Nitrate transport, signaling, and use efficiency[J]. Annual Review of Plant Biology, 2018, 69(1): 85-122. |
31 | HO C , TSAY Y F . Nitrate, ammonium, and potassium sensing and signaling[J]. Current Opinion in Plant Biology, 2010, 13(5): 604–610. |
32 | SANZ-LUQUE E , OCAÑA-CALAHORRO F , LLAMAS A , et al . Nitric oxide controls nitrate and ammonium assimilation in Chlamydomonas reinhardtii [J]. Journal of Experimental Botany, 2013, 64(11): 3373-3383. |
33 | JIN T , HUPPE H C , TURPIN D H . In vitro reconstitution of electron transport from glucose-6-phosphate and NADPH to nitrite[J]. Plant Physiology, 1998, 117(1): 303-309. |
34 | LARKUM A W D , ROSS I L , KRUSE O , et al . Selection, breeding and engineering of microalgae for bioenergy and biofuel production[J]. Trends in Biotechnology, 2012, 30(4): 198-205. |
35 | LOWREY J , ARMENTA R E , BROOKS M S . Nutrient and media recycling in heterotrophic microalgae cultures[J]. Applied Microbiology and Biotechnology, 2016, 100(3): 1061-1075. |
36 | GIORDANO M , BEARDALL J , RAVEN J A . CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution[J]. Annual Review of Plant Biology, 2005, 56(1): 99-131. |
37 | 杨淼, 施宇震, 施永生, 等 . 微藻去除水中低浓度硝态氮的研究[J]. 价值工程, 2017, 36(15): 196-200. |
YANG M , SHI Y Z , SHI Y S , et al . Research on removing the low concentration nitrate in water by microalgae[J]. Value Engineering, 2017, 36(15): 196-200. | |
38 | DE MORAIS M G , DE MORAIS E G , DA SILVA V B . Industrial effluents as a nutritional source in microalgae cultivation[J]. Mini-Reviews in Organic Chemistry, 2018, 15(1): 20-27. |
39 | 曹云涛, 孔维宝, 葸玉琴, 等 .不同营养方式对普通小球藻生长特性和细胞组成的影响[J]. 食品与发酵工业, 2011, 37(10): 45-51. |
CAO Y T , KONG W B , XI Y Q , et al . The effects of different nutrition modes on growth characteristics and cell components of Chlorella vulgaris [J]. Food and Fermentation Industries, 2011, 37(10): 45-51. | |
40 | DELRUE F , ÁLVAREZ-DÍAZ P D , FONSING S , et al . The environmental biorefinery: using microalgae to remediate wastewater, a win-win paradigm[J]. Energies, 2016, 9(3): 132. |
41 | 刘玉环, 黄磊, 王允圃, 等 . 大规模微藻光生物反应器的研究进展[J]. 生物加工过程, 2016, 14(1): 65-73. |
LIU Y H , HUANG L , WANG Y P , et al . Development of microalgal photobioreactors for mass cultivation[J]. Chinese Journal of Bioprocess Engineering, 2016, 14(1): 65-73. | |
42 | DE ALVA S M , LUNA-PABELLO V M , CADENA E , et al . Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production[J]. Bioresource & Technology, 2013, 146(10): 744-48. |
43 | DORIA E , LONGONI P , SCIBILIA L , et al . Isolation and characterization of a Scenedesmus acutus strain to be used for bioremediation of urban wastewater[J]. Journal of Applied Phycology, 2012, 24(3): 375-383. |
44 | 张庆华, 颜成虎, 薛升长, 等 . 一种用于微藻培养的新型板式光生物反应器[J]. 生物工程学报, 2015, 31(2): 251-257. |
ZHANG Q H , YAN C H , XUE S Z , et al . A novel flat plate photobioreactor for microalgae cultivation[J]. Chinese Journal of Biotechnology, 2015, 31(2): 251-257. | |
45 | XIONG W , LI X , XIANG J , et al . High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production[J]. Applied Microbiology and Biotechnology, 2008, 78(1): 29-36. |
46 | ZHENG H , MA X, GAO Z , et al . Lipid production of heterotrophic Chlorella sp. from hydrolysate mixtures of lipid-extracted microalgal biomass residues and molasses[J]. Applied Biochemistry and Biotechnology, 2015, 177(3): 662-674. |
47 | SCAIFE M A , MERKX-JACQUES A , WOODHALL D L , et al . Algal biofuels in Canada: status and potential[J]. Renewable and Sustainable Energy Reviews, 2015, 44: 620–642. |
48 | DOUCHA J , LÍVANSKÝ K . Production of high-density Chlorella culture grown in fermenters[J]. Journal of Applied Phycology, 2015, 24(1): 35-43. |
49 | VUPPALADADIYAM A K , PRINSEN P , RAHEEM A , et al . Microalgae cultivation and metabolites production: a comprehensive review[J]. Biofuels Bioproducts & Biorefining, 2018, 12(2): 304-324. |
50 | PAGNANELLI F , ALTIMARI P , TRABUCCO F , et al . Mixotrophic growth of Chlorella vulgaris and Nannochloropsis oculata: interaction between glucose and nitrate[J]. Journal of Chemical Technology and Biotechnology, 2014, 89(5): 652-661. |
51 | LI T T , ZHENG Y B , YU L , et al . Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production[J]. Biomass and Bioenergy, 2014, 66(7): 204-213. |
52 | 刘晓娟 . 三角褐指藻的自养、兼养和异养特性研究[D]. 广州: 暨南大学, 2008. |
LIU X J . Characteristics of photoautotrophy, mixotrophy and heterotrophy of Phaeodactylum tricornutum [D]. Guangzhou: Jinan University, 2008. | |
53 | CHEN C Y , YEH K L , AISYAH R , et al . Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review[J]. Bioresource Technology, 2011, 102(1): 71-81. |
54 | CHEN G Q , CHEN F . Growing phototrophic cells without light[J]. Biotechnology Letters, 2006, 28(9): 607-616. |
55 | SYDNEY E B , DA SILVA T E , TOKARSKI A , et al . Screening of microalgae with potential for biodiesel production and nutrient removal from treated domestic sewage[J]. Applied Energy, 2011, 88(10): 3291–3294. |
56 | LI Y , ZHOU W , HU B , et al . Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: strains screening and significance evaluation of environmental factors[J]. Bioresource & Technology, 2011, 102(23): 10861-10867. |
57 | 范勇, 胡光荣, 王丽娟, 等 . 微藻育种研究进展[J]. 生物学杂志, 2017, 34(2): 3-8. |
FAN Y , HU G R , WANG L J , et al . Research progress on microalgae breeding[J]. Journal of Biology, 2017, 34(2): 3-8. | |
58 | LU J , SHEAHAN C , FU P . Metabolic engineering of algae for fourth generation biofuels production[J]. Energy & Environmental Science, 2011, 4(7): 2451-2466. |
59 | LEE J W , NA D Y , PARK J M , et al . Systems metabolic engineering of microorganisms for natural and non-natural chemicals[J]. Nature Chemical Biology, 2012, 8(6): 536-546. |
60 | 苏怡, 高保燕, 张成武 . 微藻生物分子在动物和水产养殖饲料中的应用[J]. 养殖与饲料, 2016(2): 17-25. |
SU Y , GAO B Y , ZHANG C W . Biomolecules from microalgae for animal food and aquaculture[J]. Breeding and Feed, 2016(2): 17-25. | |
61 | 周俊宇, 杨志刚 . 富含HUFA海洋微藻在水产饲料中的应用[J]. 饲料研究, 2017(7): 40-44. |
ZHOU J Y , YANG Z G . Application of HUFA-rich marine microalgae in aquafeed[J]. Feed Research, 2017(7): 40-44. | |
62 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会 . 食用螺旋藻粉: GB/T 16919—1997[S]. 北京: 中国标准出版社, 1997. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China . Food grade spirulina powder: GB/T 16919—1997[S]. Beijing: Standards Press of China, 1997. | |
63 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会 . 饲料卫生标准: GB 13078—2017[S]. 北京: 中国标准出版社, 2017. |
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China . Hygienical standard for feeds: GB 13078—2017[S]. Beijing: Standards Press of China, 2017. | |
64 | COREY P , KIM J K , DUSTON J , et al . Bioremediation potential of Palmaria palmata and Chondrus crispus (Basin Head): effect of nitrate and ammonium ratio as nitrogen source on nutrient removal[J]. Journal of Applied Phycology, 2013, 25(5): 1349-1358. |
65 | FERNANDEZ F G A , SEVILLA J M F , GRIMA E M . Photobioreactors for the production of microalgae[J]. Reviews in Environmental Science & Biotechnology, 2013, 12(2): 131–151. |
66 | 郭祯, 李英, 郭海燕, 等 . 产油微藻生物反应器培养过程优化控制[J]. 计算机与应用化学, 2015, 32(6): 765-768. |
GUO Z , LI Y , GUO H Y , et al . Process optimization of oleaginous microalgae cultivation in bioreactor[J]. Computers and Applied Chemistry, 2015, 32(6): 765-768. | |
67 | HUANG G H , CHEN F , WEI D , et al . Biodiesel production by microalgal biotechnology[J]. Applied Energy, 2010, 87(1): 38–46. |
68 | GOUVEIA L , OLIVEIRA A C . Microalgae as a raw material for biofuels production[J]. Journal of Industrial Microbiology & Biotechnology, 2009, 36(2): 269–274. |
69 | KANG C D , HAN S J , CHOI S P , et al . Fed-batch culture of astaxanthin-rich Haematococcus pluvialis by exponential nutrient feeding and stepwise light supplementation[J]. Bioprocess and Biosystems Engineering, 2010, 33(1): 133-139. |
70 | GARBAYO I , VIGARA A J , CONCHON V , et al . Nitrate consumption alterations induced by alginate entrapment of Chlamydomonas reinhardtii cells[J]. Process Biochemistry, 2000, 36(5): 459-466. |
71 | SU Y , MENNERICH A , URBAN B . Coupled nutrient removal and biomass production with mixed algal culture: impact of biotic and abiotic factors[J]. Bioresource & Technology, 2012, 118(8): 469-476. |
72 | LEE K , LEE C G . Effect of light/dark cycles on wastewater treatments by microalgae[J]. Bioprocess and Biosystems Engineering, 2001, 6(3): 194-199. |
73 | YEH N C , CHUNG J P . High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation[J]. Renewable and Sustainable Energy Reviews, 2009, 13(8): 2175–2180. |
74 | PIRES J C M , ALVIM-FERRAZ M C M , MARTINS F G . Photobioreactor design for microalgae production through computational fluid dynamics: a review[J]. Renewable & Sustainable Energy Reviews, 2017, 79: 248-254. |
75 | BARCLAY W , APT K , DONG X D . Commercial production of microalgae via fermentation[M]//RICHMOND A, HU Q. Handbook of microalgal culture: applied phycology and biotechnology. 2nd ed. Chichester: Wiley-Blackwell, 2013: 134–145. |
76 | MA X, ZHENG H , MIN A . Cultivation of Chlorella vulgaris in wastewater with waste glycerol: strategies for improving nutrients removal and enhancing lipid production[J]. Bioresource Technology, 2016, 207: 252-261. |
77 | ZHU L D , HILTUNEN E . Application of livestock waste compost to cultivate microalgae for bioproducts production: a feasible framework[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 1285-1290. |
78 | CARNEY L T , REINSCH S S , LANE P D , et al . Microbiome analysis of a microalgal mass culture growing in municipal wastewater in a prototype OMEGA photobioreactor[J]. Algal Research, 2014, 4(2): 52–61. |
79 | Williams P J B , Laurens L M L . Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics[J]. Energy & Environmental Science, 2010, 3(5): 554-590. |
80 | 毕建国, 刘晓欣, 朱俊英, 等 . 温室气体减排与微藻生物能源的集成[J]. 中国科学: 化学, 2014, 44(1): 55-62. |
BI J G , LIU X X , ZHU J Y , et al . Integration of greenhouse gas reduction and algae bio-energy technology[J]. Scientia Sinica Chimica, 2014, 44(1): 55-62. | |
81 | 陈传红, 吴洪, 李青, 等 . 三株栅藻属藻株光合自养产油脂的比较研究[J]. 生物技术通报. 2016, 32(6): 238-243. |
CHEN C H , WU H , LI Q , et al . Lipid production from the photoautotrophy of three strains of scenedesmus species[J]. Biotechnology Bulletin, 2016, 32(6): 238-243. | |
82 | 杨慧敏, 秦焰祯, 杨青峰, 等 . 蛋白核小球藻不同生长阶段油脂和脂肪酸组成的分析[J]. 食品工业科技, 2017, 38(6): 185-188. |
YANG H M , QIN Y Z , YANG Q F , et al . Analysis of lipid content and fatty acid composition of Chlorella pyrenoidosain in different cultivation stages[J]. Science and Technology of Food Industry, 2017, 38(6): 185-188. | |
83 | 王桢璐, 李正光, 谢少林, 等 . 饲料中添加螺旋藻对三角鲤肌肉营养及部分免疫指标的影响[J]. 饲料工业, 2017(6): 7-11. |
WANG Z L , LI Z G , XIE S L , et al . Effects of spirulina on muscle nutrition and some immune indexes of Cyprinus multitaeniata [J]. Food Industry, 2017(6): 7-11. | |
84 | 余清凤, 马丽丽, 陈南春, 等 . 硅藻基As(Ⅴ)离子印迹材料的制备及表征[J]. 环境工程, 2018, 36(3): 64-68. |
YU Q F , MA L L, CHEN N C , et al . Preparation of ion imprinted polymer based on diatom for adsorbing As(Ⅴ) in aqueous solution[J]. Environmental Engineering, 2018, 36(3): 64-68. | |
85 | 申宇卉, 周涵, 范同祥 . 硅藻分级多孔功能材料的研究进展[J]. 材料导报, 2016, 30(7): 1-8. |
SHEN Y H , ZHOU H , FAN T X . Review on diatom-inspired hierarchical porous functional material[J]. Materials Review, 2016, 30(7): 1-8. | |
86 | 胡洪营, 李鑫, 杨佳 . 基于微藻细胞培养的水质深度净化与高价值生物质生产耦合技术[J]. 生态环境学报, 2009, 18(3): 1122-1127. |
HU H Y , LI X , YANG J . Coupling of wastewater deep purification and high quality biomass production based on microalgae cultivation[J]. Ecology and Environmental Sciences, 2009, 18(3): 1122-1127. | |
87 | 张继红, 任丹丹, 姜玉声, 等 . 微藻营养价值及其在水产生物营养强化中的应用[J]. 食品工业科技, 2016, 37(20): 371-376. |
ZHANG J H , REN D D , JIANG Y S , et al . Microalgae in aquaculture: a review to nutritional value and rotifers enrichment[J]. Science and Technology of Food Industry, 2016, 37(20): 371-376. | |
88 | GE S , MADILL M , CHAMPAGNE P . Use of freshwater macroalgae Spirogyra sp. for the treatment of municipal wastewaters and biomass production for biofuel applications[J]. Biomass & Bioenergy, 2017, 111: 213-223. |
[1] | 盛维武, 程永攀, 陈强, 李小婷, 魏嘉, 李琳鸽, 陈险峰. 微气泡和微液滴双强化脱硫反应器操作分析[J]. 化工进展, 2023, 42(S1): 142-147. |
[2] | 黄益平, 李婷, 郑龙云, 戚傲, 陈政霖, 史天昊, 张新宇, 郭凯, 胡猛, 倪泽雨, 刘辉, 夏苗, 主凯, 刘春江. 三级环流反应器中气液流动与传质规律[J]. 化工进展, 2023, 42(S1): 175-188. |
[3] | 许家珩, 李永胜, 罗春欢, 苏庆泉. 甲醇水蒸气重整工艺的优化[J]. 化工进展, 2023, 42(S1): 41-46. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[6] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[7] | 罗成, 范晓勇, 朱永红, 田丰, 崔楼伟, 杜崇鹏, 王飞利, 李冬, 郑化安. 中低温煤焦油加氢反应器不同分配器中液体分布的CFD模拟[J]. 化工进展, 2023, 42(9): 4538-4549. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王晨, 白浩良, 康雪. 大功率UV-LED散热与纳米TiO2光催化酸性红26耦合系统性能[J]. 化工进展, 2023, 42(9): 4905-4916. |
[10] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[11] | 史天茜, 石永辉, 武新颖, 张益豪, 秦哲, 赵春霞, 路达. Fe2+对厌氧氨氧化EGSB反应器运行性能的影响[J]. 化工进展, 2023, 42(9): 5003-5010. |
[12] | 李洞, 王倩倩, 张亮, 李俊, 付乾, 朱恂, 廖强. 非水系纳米流体热再生液流电池串联堆性能特性[J]. 化工进展, 2023, 42(8): 4238-4246. |
[13] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[14] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[15] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |