化工进展 ›› 2019, Vol. 38 ›› Issue (01): 45-71.DOI: 10.16085/j.issn.1000-6613.2018-1327
李向阳1(),王浩亮1,2,冯鑫1,陈杰1,毛在砂1,李国征1,杨超1,2()
收稿日期:
2018-06-27
修回日期:
2018-10-18
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
杨超
作者简介:
李向阳(1980—),男,博士,副研究员,研究方向为多相反应器测量仪器和方法。E-mail:<email>xyli@ipe.ac.cn</email>。|杨超,研究员,研究方向为反应器工程和绿色化工。E-mail:<email>chaoyang@ipe.ac.cn</email>。
基金资助:
Xiangyang LI1(),Haoliang WANG1,2,Xin FENG1,Jie CHEN1,Zaisha MAO1,Guozheng LI1,Chao YANG1,2()
Received:
2018-06-27
Revised:
2018-10-18
Online:
2019-01-05
Published:
2019-01-05
Contact:
Chao YANG
摘要:
为了增大传质和传热面积,多相反应器中分散相通常以颗粒形式(气泡、液滴或固体颗粒)分散、运动于连续相流体中,与周围的连续相及其他分散相颗粒的相互作用使颗粒和颗粒群呈现复杂的时空非均相行为。多相反应器中非均相特性的准确描述是发展准确的反应器模型、进行定量诊断分析和优化设计高效反应器的必要基础。本文总结了多相反应器中颗粒和颗粒群的复杂时空行为,提出了当前多相反应器非均相特性测量正面临的在线测量、高分散相浓度和多分散相等主要难题;综述了多相反应器测量技术研究的进展,指出了PC和PV等光纤测量技术是较经济的高浓度两相反应器的在线测量技术,而侵入式照相法测量结果更准确,具备解决上述测量难题方面的可行性,具备较好的应用前景,但要实现工业在线测量仍存在一些高难度的技术问题需要解决。
中图分类号:
李向阳, 王浩亮, 冯鑫, 陈杰, 毛在砂, 李国征, 杨超. 多相反应器的非均相特性测量技术进展[J]. 化工进展, 2019, 38(01): 45-71.
Xiangyang LI, Haoliang WANG, Xin FENG, Jie CHEN, Zaisha MAO, Guozheng LI, Chao YANG. Progresses in measurement technologies of heterogeneous characteristics in multiphase reactors[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 45-71.
测量方法 | 装置 | 颗粒速度/m·s-1 | 测量参数 | 作者 |
---|---|---|---|---|
碰撞法 | 固定床及沸腾床 | 0.005~0.3 | 颗粒速度 | Heertjes等[ |
取样法 | 循环流化床锅炉 | 0.9~2.7 | 固体质量流率和颗粒速度 | Zhang等[ |
PV型光纤探头 | 高气固通量的下行床 | 3.6~12.2 | 颗粒速度、固相含率、固体通量 | Wang等[ |
PV型光纤探头 | 稠密颗粒射流撞击壁面 | 0.7~6.5 | 颗粒射流速度 | Shi等[ |
PV型光纤探头 | 环隙式湍动流化床 | 0.25~2.9 | 固相浓度、颗粒速度 | Wu等[ |
表1 PV和其他常见颗粒速度测量方法对比
测量方法 | 装置 | 颗粒速度/m·s-1 | 测量参数 | 作者 |
---|---|---|---|---|
碰撞法 | 固定床及沸腾床 | 0.005~0.3 | 颗粒速度 | Heertjes等[ |
取样法 | 循环流化床锅炉 | 0.9~2.7 | 固体质量流率和颗粒速度 | Zhang等[ |
PV型光纤探头 | 高气固通量的下行床 | 3.6~12.2 | 颗粒速度、固相含率、固体通量 | Wang等[ |
PV型光纤探头 | 稠密颗粒射流撞击壁面 | 0.7~6.5 | 颗粒射流速度 | Shi等[ |
PV型光纤探头 | 环隙式湍动流化床 | 0.25~2.9 | 固相浓度、颗粒速度 | Wu等[ |
1 | 毛在砂 . 颗粒群研究:多相流多尺度数值模拟的基础[J]. 过程工程学报, 2008, 28(4): 645-659. |
MAO Z S . Knowledge on particle swarm: The important basis for multi-scale numerical simulation of multiphase flows[J]. The Chinese Journal of Process Engineering, 2008, 28(4): 645-659. | |
2 | 李良超 . 气液反应器局部分散特性的实验与数值模拟[D]. 杭州: 浙江大学, 2008. |
LI L C . Experiment and numerical simulation of local gas dispersion in gas-liquid reactors[D]. Hangzhou: Zhejiang University, 2008. | |
3 | 王铁峰 . 气液(浆)反应器流体力学行为的实验研究和数值模拟[D]. 北京:清华大学, 2004. |
WANG T F . Experimental study and numerical simulation on the hydrodynamics in gas-liquid (slurry) reactors[D]. Beijing: Tsinghua University, 2004. | |
4 | FENG X , CHENG J C , LI X Y , et al . Numerical simulation of turbulent flow in a baffled stirred tank with an explicit algebraic stress model[J]. Chemical Engineering Science, 2012, 69(1): 30-44. |
5 | FENG X , LI X Y , CHENG J C , et al . Numerical simulation of solid-liquid turbulent flow in a stirred tank with a two-phase explicit algebraic stress model[J]. Chemical Engineering Science, 2012, 82(11): 272-284. |
6 | FENG X , LI X Y , CHENG J C , et al . Numerical simulation of liquid-liquid turbulent flow in a stirred tank with an explicit algebraic stress model[J]. Chemical Engineering Research and Design, 2013, 91(11): 2114-2121. |
7 | LANE C D , PARISIEN V , MACCHI A , et al . Investigation of bubble swarm drag at elevated pressure in a contaminated system[J]. Chemical Engineering Science, 2016, 152: 381-391. |
8 | BOYER C , A-M DUQUENNE , WILD G . Measuring techniques in gas-liquid and gas-liquid-solid reactors[J]. Chemical Engineering Science, 2002, 57: 3185-3215. |
9 | ROLLBUSCH P , BOTHE M , BECKER M , et al . Bubble columns operated under industrially relevant conditions: current understanding of design parameters[J]. Chemical Engineering Science, 2015, 126: 660-678. |
10 | MURTHY B N , GHADGE R S , JOSHI J B . CFD simulations of gas–liquid–solid stirred reactor: Prediction of critical impeller speed for solid suspension[J]. Chemical Engineering Science, 2007, 62(24): 7184-7195. |
11 | MAO Z-S , YANG C . Challenges in study of single particles and particle swarms[J]. Chinese Journal of Chemical Engineering, 2009, 17(4): 535-545. |
12 | PAGLIANTI A , PINTUS S , GIONA M . Time-series analysis approach for the identification of flooding/loading transition in gas–liquid stirred tank reactors[J]. Chemical Engineering Science, 2000, 55(23): 5793-5802. |
13 | BRIDGE A G , LAPIDUS L , ELGIN J C . The mechanics of vertical gas-liquid fluidized systems I: Countercurrent flow[J]. AIChE Journal, 1964, 10(6): 819-826. |
14 | DAVIDSON J F , HARRISON D . The behavior of a continuously bubbling fluidized bed[J]. Chemical Engineering Science, 1966, 21: 731-738. |
15 | LOCKETT M J , KIRKPATRICK R D . Ideal bubbly flow and actual flow in bubble columns[J]. Transactions of the Institution of Chemical Engineers, 1975, 53: 267-273. |
16 | CLIFT R , GRACE J R , WEBBER M E . Bubble, drops, and particles[M]. New York: Academic Press, 1978. |
17 | ISHII M AND ZUBER N . Drag coefficient and relative velocity in bubbly, droplet or particulate flows[J]. AIChE Journal, 1979, 25: 843-855. |
18 | FAN L S , TSUCHIYA K , BRENNER H . Bubble wake dynamics in liquids and liquid-solid suspensions[M]. Stoneham, MA: Butterworth-Heinemann, 1990. |
19 | ZHANG L , YANG C , MAO Z-S . Unsteady motion of a single bubble in highly viscous liquid and empirical correlation of drag coefficient[J]. Chemical Engineering Science, 2008, 63: 2099-2106. |
20 | DAVIDSON J F , HARRISON D . The behaviour of a continuously bubbling fluidized bed[J]. Chemical Engineering Science, 1966, 21: 731-738. |
21 | GRIFFITH P , WALLIS G B . Two-phase slug flow[J]. Journal of Heat Transfer,1961,83(3): 307-318. |
22 | MARRUCCI G . Rising velocity of a swarm of sphereical bubbles [J]. Industrial & Engineering Chemistry Fundamentals, 1965, 4(2): 224-225. |
23 | SIMONNET M , GENTRIC C , OLMOS E , et al . Experimental determination of the drag coefficient in a swarm of bubbles[J]. Chemical Engineering Science, 2007, 62: 858-866. |
24 | GARNIER C , LANCE M , MARIÉ J L . Measurement of local flow characteristics in buoyancy-driven bubbly flow at high void fraction[J]. Experimental Thermal and Fluid Science, 2002, 26: 811-815. |
25 | ROGHAIR I , LAU Y M , DEEN N G , et al . On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers[J]. Chemical Engineering Science, 2011, 66: 3204-3211. |
26 | BEHZADI A , ISSA R I , RUSCHE H . Modelling of dispersed bubble and droplet flow at high phase fractions[J]. Chemical Engineering Science, 2004, 59: 759-770. |
27 | MAO Z S . Numerical simulation of viscous flow through spherical particle assemblage with the modified cell model[J]. Chinese Journal of Chemical Engineering, 2002, 10(2): 149-162. |
28 | MAO Z S , WANG Y F . Numerical simulation of mass transfer in a spherical particle assemblage with the cell model[J]. Powder Technology, 2003, 134(1/2): 145-155. |
29 | LI J H , KWAUK M S . Exploring complex systems in chemical engineering—The multi-scale methodolgy[J]. Chemical Engineering Science, 2003, 58(2): 521-535. |
30 | LAU Y , ROGHAIR I , DEEN N G , et al . Numerical investigation of the drag closure for bubbles in bubble swarms[J]. Chemical Engineering Science, 2011, 66: 3309-3316. |
31 | KAĆUNIĆ A , AKRAP M , KUZMANIĆ N . Effect of impeller type and position in a batch cooling crystallizer on the growth of borax decahydrate crystals[J]. Chemical Engineering Research and Design, 2013, 91(2): 274-285. |
32 | SAWADA K . Mechanisms of crystal growth of ionic crystals in solution. Formation, transformation, and growth inhibition of calcium carbonates[M]//OHTAKI H. Crystallization processes. Chichester, England:John Wiley & Sons Ltd., 1998: 39-68. |
33 | 陆杰, 王静康 . 反应结晶(沉淀)研究进展[J]. 化学工程, 1999, 27(4): 24-27. |
LU J , WANG J K . Progress in the study of reactive crystallization (precipitation)[J]. Chemical Engineering, 1999, 27(4): 24-27. | |
34 | GARG R K , SARKAR D . Polymorphism control of p-aminobenzoic acid by isothermal anti-solvent crystallization[J]. Journal of Crystal Growth, 2016, 454: 180-185. |
35 | 时钧, 汪家鼎, 余国琮, 等 . 化学工程手册[M]. 2版. 北京: 化学工业出版社, 1996. |
SHI J , WANG J D , YU G C , et al . Manual of chemical engineering [M]. 2nd ed. Beijing: Chemical Industry Press, 1996. | |
36 | GREEN D W . Handbook of industrial crystallization(Second Edition) [M]. 2nd ed. Boston: Butterworth-Heinemann,2002. |
37 | DONG Y , NG W K , SHEN S , et al . Controlled antisolvent precipitation of spironolactone nanoparticles by impingement mixing[J]. International Journal of Pharmaceutics, 2011, 410: 175-179. |
38 | PIRKLE C , FOGUTH L C , BRENEK S J , et al . Computational fluid dynamics modeling of mixing effects for crystallization in coaxial nozzles[J]. Chemical Engineering and Processing, 2015, 97: 213-232. |
39 | KITAMURA M . Controlling factor of polymorphism in crystallization process[J]. Journal of Crystal Growth, 2002, 237-239: 2205-2214. |
40 | Ltd Pixact . Pixact crystallization monitoring [EB/OL]. . |
41 | 张佳 . 基于多阶段MPCA方法的间歇过程监测研究[D]. 北京: 北京化工大学, 2006. |
ZHANG J . Multi-phase multiway principal component analysis batch process monitoring study[D]. Beijing: Beijing University of Chemical Technology, 2006. | |
42 | 王津津 . 间歇反应结晶过程产品质量控制中的在线分析[D]. 广州: 华南理工大学, 2012. |
WANG J J . On-line analysis for quality control in the batch reaction and crystallization process[D]. Guangzhou: South China University of Technology, 2012. | |
43 | 姚志湘, 粟晖, 许文强, 等 . 过程分析技术的理念与发展[J]. 广西工学院学报, 2010, 21: 4-10. |
YAO Z X , LI H , XU W Q , et al . Philosophy of process analytical technology and development[J]. Journal of Guangxi University of Technology, 2010, 21: 4-10. | |
44 | LUCAS D , BEYER M , SZALINSKI P , et al . A new database on the evolution of air-water flows along a large vertical pipe[J]. International Journal of Thermal Sciences, 2010, 49: 664-674. |
45 | 高正明, 王英深, 施力田, 等 . 搅拌槽内的气泡尺寸分布[J]. 高校化学工程学报, 1999, 8(3): 283-287. |
GAO Z M , WANG Y S , SHI L T , et al . Bubble size distribution in aerated stirred vessels[J]. Journal of Chemical Engineering of Chinese Universities, 1999, 8(3): 283-287. | |
46 | VLAEV S D , MARTINOV M . Non-uniformity of gas dispersion in turbine-generated viscoelastic circulation flow[J]. The Canadian Journal of Chemical Engineering, 1998, 76(3): 405-412. |
47 | HAN M Y , KIM W T , DOCKKO S . Collision efficiency factor of bubble and particle (alpha bp) in DAF: theory and experimental verification[J]. Water Science and Technology, 2001, 43(8): 139-144. |
48 | TAO D , HONAKER R , PAREKH BK , et al . Development of picobubble flotation for enhanced recovery of coarse phosphate particles[M]//Technical Report, Florida Institute of Phosphate Research, 2006:60. |
49 | YALCIN T , BYERS A , UGHADPAGA K . Dissolved gas method of generating bubbles for potential use in ore flotation[J]. Mineral Processing and Extractive Metallurgy Review, 2002, 23(3/4): 181-197. |
50 | CALDERBANK P H . The interfacial area in gas-liquid contacting with mechanical agitation[J]. Transactions of the Institution of Chemical Engineers, 1958, 36: 443-463. |
51 | ZHANG Y H , YANG C , MAO Z S . Large eddy simulation of the gas–liquid flow in a stirred tank[J]. AIChE Journal, 2008, 54(8): 1963-1974. |
52 | 禹耕之, 毛在砂, 杨超, 等 . 一种适用于甲苯法己内酰胺工艺的多相反应器的流体分布器:CN200810110439.4 [P]. 2008. |
YU G Z , MAO Z S , YANG C , et al . A fluid distributor for multiphase reactors suitable for toluene caprolactam process:CN 200810110439.4 [P]. 2008. | |
53 | WANG S , METCALFE G , STEWART R L , et al . Solid-liquid separation by particle-flow-instability[J]. Energy and Environmental Science, 2014, 7: 3982-3988. |
54 | WANG L J , CHENG Y W , WANG Q B , et al . Progress in the research and development of p-xylene liquid phase oxidation process[J]. Frontiers of Chemical Engineering in China, 2007, 1(3): 317-326. |
55 | ZHANG Y Z . Development outlook of China coal liquefaction technology[J]. Coal Science and Technology, 2006, 34(1): 19-22. |
56 | STEYNBERG A R , DRY M E . Fischer-Tropsch technology[M]. Amsterdam: Elsevier Publisher, 2004. |
57 | BEHKISH A , MEN Z , INGA J R , et al . Mass transfer characteristics in a large-scale slurry bubble column with organic liquid mixtures[J]. Chemical Engineering Science, 2002, 57(16): 3307-3324. |
58 | CHEN P , GUPTA P , DUDUKOVIC M P , et al . Hydrodynamics of slurry bubble column during dimethyl ether (DME) synthesis: gas-liquid recirculation model and radioactive tracer studies[J]. Chemical Engineering Science, 2006, 61(19): 6553-6570. |
59 | VAN ELK E P , BORMAN P C , KUIPERS J A M , et al . Modeling of gas-liquid reactors-stability and dynamic behavior of a hydroformylation reactor[J]. Chemical Engineering Science, 2001, 56(4): 1491-1500. |
60 | ROSSI G . The design of bioreactors[J]. Hydrometallurgy, 2001, 59: 217-231. |
61 | 方兆珩 . 生物氧化浸矿反应器的研究进展[J]. 黄金科学技术, 2002, 10(6): 1-7. |
FANG Z H . A review on design and development of bioreactors[J]. Gold Science and Technology, 2002, 10(6): 1-7. | |
62 | 周云龙, 孙斌, 李洪伟 . 多相流参数检测理论及其应用[M]. 北京: 科学出版社, 2010. |
ZHOU Y L , SUN B , LI H W . Theory and application of multiphase flow parameter detection[M]. Beijing: Science Press, 2010. | |
63 | LI W , ZHENG P , JI J Y , et al . Floatation of granular sludge and its mechanism: a key approach for high-rate denitrifying reactor[J]. Bioresource Technology, 2014, 152: 414-419. |
64 | VASSALLO P F , TRABOLD T A , MOORE W E , et al . Measurement of velocities in gas-liquid 2-phase flow using laser-doppler velocimetry[J]. Experiments in Fluids, 1993, 15: 227-230. |
65 | WARSITO W , FAN L S . Measurement of real-time flow structures in gas-liquid and gas-liquid-solid flow systems using electrical capacitance tomography (ECT)[J]. Chemical Engineering Science, 2001, 56: 6455-6462. |
66 | MENA P C , RUZICKA M C , ROCHA F A , et al . Effect of solids on homogeneous-heterogeneous flow regime transition in bubble columns[J]. Chemical Engineering Science, 2005, 60: 6013-6026. |
67 | JOLY-VUILLEMIN C , DE BELLEFON C , DELMAS H . Solid effects on gas-liquid mass transfer in three-phase slurry catalytic hydrogenation of adiponitrile over Raney nickel[J]. Chemical Engineering Science, 1996, 51: 2149-2158. |
68 | MENA P C , PONS M N , TEIXEIRA J A , et al . Using image analysis in the study of multiphase gas absorption[J]. Chemical Engineering Science, 2005, 60: 5146-5152. |
69 | MENA P , ROCHA F , TEIXEIRA J , et al . Measurement of gas phase characteristics using a monofibre optical probe in a three-phase flow[J]. Chemical Engineering Science, 2008, 63(16): 4100-4115. |
70 | YANG S F , LI X Y , YANG C , et al . Computational fluid dynamics simulation and experimental measurement of gas and solid holdup distributions in a gas-liquid-solid stirred reactor[J]. Industrial and Engineering Chemistry Research, 2016, 55(12): 3276-3286. |
71 | BUSCIGLIO A , GRISAFI F , SCARGIALI F , et al . On the measurement of local gas hold-up, interfacial area and bubble size distribution in gas-liquid contactors via light sheet and image analysis: imaging technique and experimental results[J]. Chemical Engineering Science, 2013, 102: 551-566. |
72 | QIAN L , LU Y , ZHONG W Q , et al . Developing a novel fibre high speed photography method for investigating solid volume fraction in a 3D spouted bed[J]. The Canadian Journal of Chemical Engineering, 2013, 91(11): 1793-1799. |
73 | 于佩潜, 门卓武, 卜亿峰, 等 . 多相流反应器流体力学参数测试技术进展[J]. 化工学报, 2013, 64(s1): 8-20. |
YU P Q , MEN Z W , BU Y F , et al . Progress in measuring techniques of hydrodynamic parameters on muti-phase flow reactors[J]. CIESC Journal, 2013, 64(s1): 8-20. | |
74 | LI X Y , YANG C , YANG S F , et al . Fiber-optical sensors: basics and applications in multiphase reactors[J]. Sensors, 2012, 12(9): 12519-12544. |
75 | WANG G Q , LI X Y , YANG C , et al . New vision probe based on telecentric photography and its demonstrative applications in a multiphase stirred reactor[J]. Industrial and Engineering Chemistry Research, 2017, 56(23): 6608-6617. |
76 | 孙波 . 光纤探针在两相流局部特性研究中的应用[D]. 哈尔滨: 哈尔滨工程大学, 2012. |
SUN B . Research on the local characteristics of two-phase flow by optical fiber probe[D]. Harbin: Harbin Engineering University, 2012. | |
77 | 孔维航 . 基于数据融合的光纤探针持气率估计算法研究及实现[D]. 秦皇岛: 燕山大学, 2013. |
KONG W H . Study on estimation algorithm of optical fiber probe void fraction based on data fusion and implementation[D]. Qinhuangdao: Yanshan University, 2013. | |
78 | 林宗虎 . 能源动力中多相流热物理基础理论与技术研究[M]. 北京: 中国电力出版社, 2010. |
LIN Z H . Theory and technology of multiphase flow thermophysics in energy power[M]. Beijing: China Electric Power Publishing House, 2010. | |
79 | 杨胜, 罗毓珊, 陈听宽, 等 . 垂直上升管中采用光纤探针测量截面气含率的实验研究[J]. 动力工程, 2006, 26(6): 875-878. |
YANG S , LUO M S , CHEN T K , et al . Measurement of void fraction in vertical rising pipes by using optical fiber probes[J]. Journal of Power Engineering, 2006, 26(6): 875-878. | |
80 | ALIYUA A , KIM Y , CHOI S , et al . Development of a dual optical fiber probe for the hydrodynamic investigation of a horizontal annular drive gas liquid ejector[J]. Flow Measurement and Instrumentation, 2017, 56: 45-55. |
81 | 刘凤, 刘志华, 郑君杰, 等 . 基于双针光纤探头改进的破碎波卷入气泡尺寸测量方法研究[J]. 水动力学研究与进展, 2013, 28(3): 283-290. |
LIU F , LIU Z H , ZHENG J J , et al . Methodology of an improved technique for the bubble size measure in breaking waves using dual-tip optical fiber probe[J]. Journal of Hydrodynamics, 2013, 28(3): 283-290. | |
82 | XUE J , AL-DAHHAN M , DUDUKOVIC M P , et al . Bubble dynamics measurements using four-pint optical probe[J]. The Canadian Journal of Chemical Engineering, 2003, 81(3/4): 375-381. / |
83 | ZHOU Y , DUDUKOVIC M P , LIU H , et al . Multiphase hydrodynamics and distribution characteristics in a monolith bed measured by optical fiber probe[J]. AIChE Journal, 2014, 60(2): 740-748. |
84 | MUDDE R F . Advanced measurement techniques for GLS reactors[J]. The Canadian Journal of Chemical Engineering, 2010, 88(4): 638-647. |
85 | SAITO T , OZAWA Y , MATSUDA K , et al . Bubbles and droplets measurement via optical fiber probe processed by femtosecond pulse laser [C]//16th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2008: 803-813. |
86 | 李希, 李兆奇, 管小平, 等 . 气液鼓泡塔流体力学研究进展[J]. 高校化学工程学报, 2015, 29(4): 766-779. |
LI X , LI Z Q , GUAN X P , et al . Progress in hydrodynamics of gas-liquid bubble columns[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(4): 766-779. | |
87 | HERBERT P M , GAUTHIER T A , BRIENS C L , et al . Application of fiber optic reflection probes to the measurement of local particle-velocity and concentration in gas-solid flow[J]. Powder Technology, 1994, 80(3): 243-252. |
88 | MATSUNO Y , YAMAGUCHI H , OKA T , et al . The use of optic fiber probes for the measurement of dilute particle concentrations-calibration and application to gas-fluidized bed carryover[J]. Powder Technology, 1983, 36(2): 215-221. |
89 | ELLIS N , BI H T , LIM C J , et al . Influence of probe scale and analysis method on measured hydrodynamic properties of gas-fluidized beds[J]. Chemical Engineering Science, 2004, 59: 1841-1851. |
90 | HONG J , TOMITA Y . Measurement of distribution of solids concentration on high-density gas-solids flow using an optical-fiber probe system[J]. Powder Technology, 1995, 83(1): 85-91. |
91 | 蔡进, 李涛, 孙启文, 等 . 气固流化床固体浓度分布的冷模研究[J]. 过程工程学报, 2008(5): 839-844. |
CAI J , LI T , SUN Q W , et al . Solid concentration distribution in a gas-solid fluidized bed[J]. The Chinese Journal of Process Engineering, 2008(5): 839-844. | |
92 | ZHOU J , GRACE J R , QIN S , et al . Voidage profiles in a circulating fluidized-bed of square cross-section[J]. Chemical Engineering Science, 1994, 49(19): 3217-3226. |
93 | ZHANG W , TUNG Y , JOHNSSON F . Radial voidage profiles in fast fluidized-beds of different diameters[J]. Chemical Engineering Science, 1991, 46(12): 3045-3052. |
94 | ZHANG H , JOHNSTON P M , ZHU J-X , et al . A novel calibration procedure for a fiber optic solids concentration probe[J]. Powder Technology, 1998, 100(2/3): 260-272. |
95 | WANG C , LI C , ZHU J X . Axial solids flow structure in a high density gas-solids circulating fluidized bed downer[J]. Powder Technology, 2015, 272: 153-164. |
96 | 吴诚, 高用祥, 高希, 等 . 湍动流化床过渡段中颗粒速度分布的光纤测量与模拟[J]. 高校化学工程学报, 2015, 29(1): 11-19. |
WU C , GAO Y X , GAO X , et al . Particle velocity measurements in transition section of turbulent fluidized beds using optical fiber probe and CFD simulation[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(1): 11-19. | |
97 | ZHANG W N , JOHNSSON F , LECKNER B . Momentum probe and sampling probe for measurement of particle flow properties in CFB boilers[J]. Chemical Engineering Science, 1997, 52(4): 497-509. |
98 | YE S , QI X , ZHU J X . Direct measurements of instantaneous solid flux in a CFB riser using a novel multifunctional optical fiber probe[J]. Chemical Engineering and Technology, 2009, 32(4): 580-589. |
99 | WU C , GAO Y , CHENG Y , et al . Solid concentration and velocity distributions in an annulus turbulent fluidized bed[J]. Chinese Journal of Chemical Engineering, 2015, 23(7): 1077-1084. |
100 | GENG Q , WANG P , ZHU X , et al . Flow dynamics and contact efficiency in a novel fast-turbulent fluidized bed with ring-feeder internals[J]. Particuology, 2015, 21: 203-211. |
101 | HEERTJES P M , VERLOOP J , WILLEMS R . Measurement of local mass flow rates and particle velocities in fluid-solids flow[J]. Powder Technology, 1970, 4(1): 38-40. |
102 | SHI Z H , LI W F , QIAN W W , et al . Liquid-like granular film from granular jet impact[J]. Chemical Engineering Science, 2017, 162: 1-9. |
103 | RAZZAK S A , BARGHI S , ZHU J-X . Application of electrical resistance tomography on liquid-solid two-phase flow characterization in an LSCFB riser[J]. Chemical Engineering Science, 2009, 64: 2851-2858. |
104 | SANG L , ZHU J X . Experimental investigation of the effects of particle properties on solids holdup in an LSCFB riser[J]. Chemical Engineering Journal, 2012, 197: 322-329. |
105 | RAZZAK S A , BARGHI S , ZHU J X . Application of electrical resistance tomography on liquid-solid two-phase flow characterization in an LSCFB riser[J]. Powder Technology, 2010, 199: 77-86. |
106 | SUN H Y , MAO Z S , YU G Z . Experimental and numerical study of gas hold-up in surface aerated stirred tanks[J]. Chemical Engineering Science, 2006, 61(12): 4098-4110. |
107 | 朱姝, 包云雨, 陈雷, 等 . 用电导探针测定气液多层桨搅拌槽内气泡尺寸分布[J]. 高校化学工程学报, 2011, 25(6): 977-984. |
ZHU S , BAO Y Y , CHEN L , et al . Bubble size distributions measurement in a gas-liquid multi-impeller stirred tank by using dual-conductivity probe[J]. Journal of Chemical Engineering of Chinese Universities, 2011, 25(6): 977-984. | |
108 | 陈雷 . 热态多相搅拌反应器流体力学性能研究[D]. 北京:北京化工大学, 2009. |
CHEN L . Fluid dynamics of multi-phase stirred reactors at elevated temperature[D]. Beijing: Beijing University of Chemical Technology, 2009. | |
109 | RAMPURE M R , KULKARNI A A , RANADE V V . Hydrodynamics of bubble column reactors at high gas velocity: Experiments and computational fluid dynamics (CFD) simulations[J]. Industrial and Engineering Chemistry Research, 2007, 46(25): 8431-8447. |
110 | CHEN Z , ZHENG C , FENG Y , et al . Local bubble behavior in three-phase fluidized beds[J]. The Canadian Journal of Chemical Engineering, 1998, 76(2): 315-318. |
111 | MAC TAGGART R S , NASR-EL-DIN H A , MASLIYAH J H . A conductivity probe for measuring local solids concentration in a slurry mixing tank[J]. Separations Technology, 1993, 3(3): 151-160. |
112 | MICHELETTI M , NIKIFORAKI L , LEE K C , et al . Particle concentration and mixing characteristics of moderate-to-dense solid-liquid suspensions[J]. Industrial and Engineering Chemistry Research, 2003, 42(24): 6236-6249. |
113 | NASR-EL-DIN H A , MASLIYAH J H , MACTAGGART R S . Local solids concentration measurement in a slurry mixing tank[J]. Chemical Engineering Science, 1996, 51(8): 1209-1220. |
114 | ANGLE C W . Effects of sand fraction on toluene-diluted heavy oil in water emulsions in turbulent flow[J]. The Canadian Journal of Chemical Engineering, 2004, 82(4): 722-734. |
115 | GREAVES M , KAH KOBBACY . Measurement of bubble size distribution in turbulent gas-liquid dispersions[J]. Transactions of the Institution of Chemical Engineers, 1984, 62: 3-12. |
116 | BARIGOU M , GREAVES M . A capillary suction probe for bubble size measurement[J]. Measurement Science and Technology, 1991, 2: 318-326. |
117 | BARIGOU M , GREAVES M . Bubble size distributions in a mechanically agitated gas-liquid contactor[J]. Chemical Engineering Science, 1992, 47: 2009-2025. |
118 | ALVES S S , MAIAA C I , VASCONCELOS J M T , et al . Bubble size in aerated stirred tanks[J]. Chemical Engineering Journal, 2002, 89: 109-117. |
119 | Dynaflow, Inc . Bubble measurements [EB/OL]. . |
120 | WU X J , CHAHINE G L . Development of an acoustic instrument for bubble size distribution measurement[J]. J Hydrodyn., Ser. B,2010, 22(5): 330-336 |
121 | CODY G D , GOLDFARB D J , JR G V S , et al . Particle granular temperature in gas fluidized beds [J]. Powder Technology, 1996, 87(3):211-232. |
122 | BOYD J W R , VARLEY J . The uses of passive measurement of acoustic emissions from chemical engineering processes[J]. Chemical Engineering Science, 2001, 56(5):1749-1767. |
123 | 黄正梁, 王靖岱, 阳永荣 . 声波的多尺度分解与搅拌釜中浆液浓度的测量[J]. 化工学报, 2006, 57(9): 2062-2067. |
HUANG Z L , WANG J D , YANG Y R . Measurement of slurry concentration in stirred vessel based on AE measurement by wavelet transform [J]. Journal of Chemical Industry and Engineering (China), 2006, 57(9): 2062-2067. | |
124 | WANG J D , REN C J , YANG Y R , et al . Characterization of particle fluidization pattern in a gas solid fluidized bed based on acoustic emission (AE) measurement[J]. Industrial & Engineering Chemistry Research, 2009, 48(18): 8508-8514. |
125 | WANG J D , REN C J , YANG Y R . Characterization of flow regime transition and particle motion using acoustic emission measurement in a gas-solid fluidized bed[J]. AIChE Journal, 2010, 56(5): 1173-1183. |
126 | REN C J , WANG J D , SONG D , et al . Determination of particle size distribution by multi-scale analysis of acoustic emission signals in gas-solid fluidized bed[J]. Journal of Zhejiang University—Science A, 2011, 12(4): 260-267. |
127 | BOOK G , ALBION K , BRIENS L , et al . On-line detection of bed fluidity in gas-solid fluidized beds with liquid injection by passive acoustic and vibrometric methods[J]. Powder Technology, 2011, 205(1/2/3): 126-136. |
128 | LIU J T , WANG W , CHU N , et al . Numerical simulations and experimental validation on passive acoustic emissions during bubble formation[J]. Applied Acoustics, 2018, 130: 34-42. |
129 | WU H , PATTERSON G K . Laser-doppler measurements of turbulent-flow parameters in a stirred mixer[J]. Chemical Engineering Science, 1989, 44(10): 2207-2221. |
130 | WANG W J , MAO Z S , YANG C . Experimental and numerical investigation on gas holdup and flooding in an aerated stirred tank with Rushton impeller [J]. Industrial and Engineering Chemistry Research, 2006, 45(3): 1141-1151. |
131 | VAN ENGELANDT G , DE WILDE J , HEYNDERICKX G J , et al . Experimental study of inlet phenomena of 35 degrees inclined non-aerated and aerated Y-inlets in a dilute cold-flow riser[J]. Chemical Engineering Science, 2007, 62(1/2): 339-355. |
132 | KOHNEN C , BOHNET M . Measurement and simulation of fluid flow in agitated solid/liquid suspensions[J]. Chemical Engineering and Technology, 2001, 24: 639-643. |
133 | VIRDUNG T , RASMUSON A . Measurements of continuous phase velocities in solid-liquid flow at elevated concentrations in a stirred vessel using LDV[J]. Chemical Engineering Research and Design, 2007, 85(2): 193-200. |
134 | DEEN N G , SOLBERG T , HJERTAGER B H . Flow generated by an aerated Rushton impeller: two-phase PIV experiments and numerical simulations[J]. The Canadian Journal of Chemical Engineering, 2002, 80(4): 638-652. |
135 | TAMBURINI A , CIPOLLINA A , MICALE G , et al . CFD simulations of dense solid-liquid suspensions in baffled stirred tanks: prediction of suspension curves[J]. Chemical Engineering Journal, 2011, 178: 324-341. |
136 | RAFFEL M , WILLERT C , KOMPENHANS J , et al . Particle image velocimetry: a practical guide [M]. 3rd ed. Berlin: Springer, 2018:8. |
137 | 王希麟, 张大力, 常辙, 等 . 两相流场粒子成像测速技术(PTV-PIV)初探[J]. 力学学报, 1998, 30(1): 121-125. |
WANG X L , ZHANG D L , CHANG Z , et al . Preliminary investigation of particle image velocimetry (PTV-PIV) technique in two-phase flow[J]. Acta Mechanica Sinica, 1998, 30(1): 121-125. | |
138 | MONTANTE G , OCCULTI M H , MAGELLI F , et al. PIV measurements of mean flow and turbulence modulation in dilute solid-liquid stirred tanks [C] Int //15th . Symp. Appl on . of Laser Techniques to Fluid Mechanics, Lisbon, Portugal . 2010. |
139 | 杨斌, 高凯, 淡勇, 等 . 化工搅拌釜内流动测量技术的应用进展[J]. 化工进展, 2012, 31(11): 2364-2372, 2399. |
YANG B , GAO K , DAN Y , et al . Development of the flow measurement techniques used in the experimental study of the chemical stirred tank[J]. Chemical Industry and Engineering Progress, 2012, 31(11): 2364-2372, 2399. | |
140 | MONTANTE G , PAGLIANTI A , MAGELLI F . Analysis of dilute solid-liquid suspensions in turbulent stirred tanks[J]. Chemical Engineering Research and Design, 2012, 90: 1448-1456. |
141 | LI G H , GAO Z M , LI Z P , et al . Particle-resolved PIV experiments of solid-liquid mixing in a turbulent stirred tank[J]. AIChE Journal, 2018, 64(1): 389-402. |
142 | DEVANATHAN N , MOSLEMIAN D , DUDUKOVIC M P . Flow mapping in bubble columns using CARPT[J]. Chemical Engineering Science, 1990, 45(8): 2285-2291. |
143 | RAMMOHAN A R , KEMOUN A , AL-DAHHAN M H , et al . Characterization of single phase flows in stirred tanks via computer automated radioactive particle tracking (CARPT)[J]. Chemical Engineering Research and Design, 2001, 79(A8): 831-844. |
144 | VESVIKAR M S , AL-DAHHAN M . Hydrodynamics investigation of laboratory-scale internal gas-lift loop anaerobic digester using non-invasive CAPRT technique[J]. Biomass and Bioenergy, 2016, 84: 98-106. |
145 | GUIDA A , NIENOW A W , BARIGOU M . Mixing of dense binary suspensions: multi-component hydrodynamics and spatial phase distribution by PEPT[J]. AIChE Journal, 2011, 57(9): 2302-2315. |
146 | WAHAB Y A , RAHIM R A , MHF RAHIMAN , et al . Non-invasive process tomography in chemical mixtures—A review[J]. Sensors and Actuators B: Chemical, 2015, 210: 602-617. |
147 | YANG W Q , BECK M S , BYARS M M . Electrical capacitance tomography—From design to applications[J]. Measurement and Control, 1995, 28(9): 261-266. |
148 | DYAKOWSKI T , EDWARDS R B , XIE C G , et al . Application of capacitance tomography to gas-solid flows[J]. Chemical Engineering Science, 1997, 52(13): 2099-2110. |
149 | 薛倩 . 基于γ- CT/ECT的多相管流可视化测量[D]. 天津: 天津大学, 2012. |
XUE Q . Visualized measurement of multiphase pipe flow using γ-CT/ECT[D]. Tianjin: Tianjin University, 2012. | |
150 | MANN R , WANG M , FORREST A E , et al . Gas-liquid and miscible liquid mixing in a plant-scale vessel monitored using electrical resistance tomography[J]. Chemical Engineering Communications, 1999, 175: 39-48. |
151 | WANG M , DORWARD A , VLAEV D , et al . Measurements of gas-liquid mixing in a stirred vessel using electrical resistance tomography[J]. Chemical Engineering Journal, 2000, 77: 93-98. |
152 | HUI L K , BENNINGTON C P J , DUMONT G A . Cavern formation in pulp suspensions using side entering axial-flow impellers[J]. Chemical Engineering Science, 2009, 64: 509-519. |
153 | HAMIDIPOUR M , LARACHI F . Dynamics of filtration in monolith reactors using electrical capacitance tomography[J]. Chemical Engineering Science, 2010, 65: 504-510. |
154 | WARSITO W , FAN L S . Neural network based multi-criterion optimization image reconstruction technique for imaging two- and three-phase flow systems using electrical capacitance tomography[J]. Measurement Science and Technology, 2001, 12(12): 2198-2210. |
155 | WARSITO W , FAN L S . Dynamics of spiral bubble plume motion in the entrance region of bubble columns and three-phase fluidized beds using 3DECT[J]. Chemical Engineering Science, 2005, 60: 6073-6084. |
156 | CHAOUKI J , LARACHI F , DUDUKOVIC M P . Noninvasive tomography and velocimetric monitoring of multiphase flows[J]. Industrial and Engineering Chemistry Research, 1997, 36: 4476-4503. |
157 | JASON J F , THEODORE J H , TERRENCE C J , et al . X-ray computed tomography of a gas-sparged stirred-tank reactor[J]. Chemical Engineering Science, 2008, 63(8): 2075-2085. |
158 | BIEBERLE M , FISCHER F , SCHLEICHER E , et al . Experimental two-phase flow measurement using ultra fast limited-angle-type electron beam X-ray computed tomography[J]. Experiments in Fluids, 2009, 47(3): 369-378. |
159 | BODEN S , BIEBERLE M , HAMPEL U . Quantitative measurement of gas hold-up distribution in a stirred chemical reactor using X-ray cone-beam computed tomography[J]. Chemical Engineering Journal, 2008, 139(2): 351-362. |
160 | FORD J J , HEINDEL T J , JENSEN T C , et al . X-ray computed tomography of a gas-sparged stirred-tank reactor[J]. Chemical Engineering Science, 2008, 63(8): 2075-2085. |
161 | HEINDEL T J , GRAY J N , JENSEN T C . An X-ray system for visualizing fluid flows[J]. Flow Measurement and Instrumentation, 2008, 19(2): 67-78. |
162 | THATTE A R , GHADGE R S , PATWARDHAN A W , et al . Local gas holdup measurement in sparged and aerated tanks by γ-ray attenuation technique[J]. Industrial and Engineering Chemistry Research, 2004, 43(17): 5389-5399. |
163 | KHOPKAR A R , RAMMOHAN A R , RANADE V V , et al . Gas-liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations[J]. Chemical Engineering Science, 2005, 60(8): 2215-2229. |
164 | JEREMY L H , ALEX C S , THEODORE J H , et al . X-ray computed tomography in large bubble columns[J]. Chemical Engineering Science, 2005, 60(22): 6124-6133. |
165 | HAMPEL U , HRISTOV H V , BIEBERLE A , et al . Application of high-resolution gamma ray tomography to the measurement of gas hold-up distributions in a stirred chemical reactor[J]. Flow Measurement and Instrumentation, 2007, 18(5): 184-190. |
166 | PARUL T , VIVEK V B . Experimental characterization of dense gas-liquid flow in a bubble column using voidage probes[J]. Chemical Engineering Journal, 2017, 308: 912-928. |
167 | DOMINIC P , VALOIS P , CONNOR F , et al . Particle agglomeration in gas-liquid-solid fluidized beds with a dispersed immiscible liquid: study on particle size, shape and material[J]. Powder Technology, 2014, 266: 45-60. |
168 | BESAGNI G , INZOLI F . Bubble size distributions and shapes in annular gap bubble column[J]. Experimental Thermal and Fluid Science, 2016, 74: 27-48. |
169 | GOMEZ C , FINCH J . Gas dispersion measurements in flotation cells[J]. International Journal of Mineral Processing, 2007, 84: 51-58. |
170 | VAZIRIZADEH A , BOUCHARD J , CHEN Y . Effect of particles on bubble size distribution and gas hold-up in column flotation[J]. International Journal of Mineral Processing, 2016, 157: 163-173. |
171 | AMINI E , BRADSHAW D , FINCH J , et al . Influence of turbulence kinetic energy on bubble size in different scale flotation cells [J]. Minerals Engineering, 2013, 45: 146-150. |
172 | MALDONADO M , DESBIENS A , É POULIN , et al . Automatic control of bubble size in a laboratory flotation column[J]. International Journal of Mineral Processing, 2015, 141: 27-33. |
173 | LI X Y , LI P P , ZU L Z , et al . Gas-liquid mass transfer characteristics with microbubble aeration—I. Standard stirred tank[J]. Chemical Engineering & Technology, 2016, 39(5):945-952. |
174 | 陈方圆, 李平平, 李向阳, 等 . 侵入式光纤照相法测量气泡尺寸分布[J].过程工程学报, 2016, 16(3): 361-366. |
CHEN F Y , LI P P , LI X Y , et al . An immerged fibre-optic photoimaging method for measurement of bubble size[J]. The Chinese Journal of Process Engineering, 2016, 16(3): 361-366. | |
175 | HONKANEN M , ELORANTA H , SAARENRINNE P . Digital imaging measurement of dense multiphase flows in industrial processes[J]. Flow Measurement and Instrumentation, 2010, 21(1): 25-32. |
176 | HARTGE E U , RENSNER D , WERTHER J . Circulating fluidized bed technology II[M]. Oxford: Pergamon Press, 1988. |
177 | JOHNSSON H , JOHNSSON F . Measurements of local solids volume-fraction in fluidized bed boilers[J]. Powder Technology, 2001, 115: 13-26. |
178 | 秦邵宗, 李国征 . 运动颗粒图象分析系统的研究[J].化学反应工程与工艺, 1990, 6(2): 58-63. |
QIN S Z , LI G Z . Study on image analysis system for moving particles[J]. Chemical Reaction Engineering and Technology, 1990, 6(2): 58-63. | |
179 | Nanjing Chunhui Science and Technology Industrial Co., Ltd . Quartz beam and optical cable [EB/OL]. . |
180 | Toledo Mettler . Real-time microscopy for crystals, particles and droplets [EB/OL]. . |
181 | GmbH SOPAT . Smart online particle analysis technology [EB/OL]. . |
182 | Ltd Pixact .Solutions [EB/OL]. . |
183 | 杨超, 李向阳, 杨士芳, 等 . 一种浸入式在线多相测量仪及测量方法:CN201610245332.5 [P]. 2016. |
YANG C , LI X Y , YANG S F , et al . An immersive on-line multiphase measuring instrument and its measuring method: CN201610245332.5 [P]. 2016. | |
184 | XIAO Y T , LI X Y , YANG C , et al . Particle scattering photography approach for dim multiphase reactors I: Theoretical model and simulation[J]. Industrial and Engineering Chemistry Research, 2018, 57(25): 8396-8404. |
185 | PANCKOW R P , REINECKE L , CUELLAR M C , et al . Photo-optical in-situ measurement of drop size distributions: applications in research and industry[J]. Oil & Gas Science and Technology: Revue IFP Energies Nouvelles, 2017,72(3): 14-30. |
186 | XIAO Y T , LI X Y , YANG C , et al . Particle scattering photography approach for poorly-illuminated multiphase reactors. II: Experimental validation and optimization[J]. Industrial and Engineering Chemistry Research, 2018, 57(25): 8405-8412. |
187 | 王冠琦 . 基于远心照相的新型照相探头及用于多相搅拌槽测量[D].北京: 中国科学院大学, 2017. |
WANG G Q . New vision probe based on telecentric photography and its demonstrative applications in a multiphase stirred reactor[D].Beijing: University of Chinese Academy of Sciences, 2017. | |
188 | OVERBY D R , JOHNSON M . Studies on depth-of-field effects in microscopy supported by numerical simulations[J]. Journal of Microscopy, 2005, 220: 176-189. |
189 | Co. Baidu ,Ltd . Telecentric [EB/OL]. . |
190 | HAN M , SHA Z L , LAARI A , et al . CFD-PBM coupled simulation of an airlift reactor with non-newtonian fluid[J]. Oil & Gas Science and Technology: Revue IFP Energies Nouvelles, 2017, 72:26. |
191 | BESAGNI G , BRAZZALE P , FIOCCA A , et al . Estimation of bubble size distributions and shapes in two-phase bubble column using image analysis and optical probes[J]. Flow Measurement and Instrumentation, 2016, 52: 190-207. |
192 | RZEHAK R , KRAUß M , KOVÁTS P , et al . Fluid dynamics in a bubble column: new experiments and simulations[J]. International Journal of Multiphase Flow, 2017, 89: 299-312. |
193 | DUDA R O , HART P E . Using the Hough transform to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15: 11-15. |
194 | KYRKI V , KÄLVIÄINEN H . Combination of local and global line extraction[J]. Journal of Real-Time Imaging JRTI, 2000, 6(2): 79-91. |
195 | STROKINA N , MATAS J , EEROLA T , et al . Detection of bubbles as concentric circular arrangements[C]//Pattern Recognition (ICPR), 2012 21st International Conference on. IEEE, 2012: 2655-2659. |
196 | ILONEN J , EEROLA T , MUTIKAINEN H , et al . Estimation of bubble size distribution based on power spectrum [C]//Iberoamerican Congress on Pattern Recognition. Springer, Cham, 2014: 38-45. |
197 | MALITSON I H . Interspecimen comparison of the refractive index of fused silica[J]. Journal of the Optical Society of America, 1965, 55: 1205-1208. |
198 | 杨超, 李向阳, 王冠琦, 等 . 一种多相体系中颗粒浓度和粒径的在线测量方法:CN201610245330.6 [P]. 2016. |
YANG C , LI X Y , WANG G Q , et al . An on-line measurement method for particle concentration and particle size in multiphase system: CN 201610245330.6 [P]. 2016. | |
199 | 马斌 . 取样法测三相搅拌槽局部相含率及气液传质的研究[D]. 北京: 中国矿业大学, 2016. |
MA B . Study on sampling method for measuring local phase holdup and gas-liquid mass transfer in three-phase stirred tank[D]. Beijing: China University of Mining and Technology, 2016. |
[1] | 徐若思, 谭蔚. C形管池沸腾两相流流场模拟与流固耦合分析[J]. 化工进展, 2023, 42(S1): 47-55. |
[2] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[3] | 吴霞, 蒋勋涛, 张余晓, 吕慧园, 黄方, 于筱溪. 基于液滴微流控技术的蛋白质结晶[J]. 化工进展, 2023, 42(4): 2024-2030. |
[4] | 张建伟, 许蕊, 张忠闯, 董鑫, 冯颖. 基于卷积神经网络的撞击流反应器浓度场混合特性[J]. 化工进展, 2023, 42(2): 658-668. |
[5] | 郭志鹏, 卜宪标, 李华山, 龚宇烈, 王令宝. 基于热-流-化耦合作用的单井增强地热系统性能分析[J]. 化工进展, 2023, 42(2): 711-721. |
[6] | 孙义明, 冉宝清, 卞武勋, 刘进超, 尹少鼎, 赵西坡. 聚丙烯蜡固-固相变材料的制备与工艺优化[J]. 化工进展, 2023, 42(1): 336-345. |
[7] | 秦振芳, 廖日红, 马伟芳. 吸收-微藻法固定燃气电厂低浓度CO2同步产油技术研究进展[J]. 化工进展, 2023, 42(1): 94-106. |
[8] | 张辛亥, 赵思琛, 朱辉, 张首石, 王凯. 多种碳材料与碳酸钠复合后脱硫性能对比[J]. 化工进展, 2022, 41(S1): 424-435. |
[9] | 杨程嵛, 刘敏, 袁林, 胡璇, 陈滢. 竹基纤维素纳米纤丝交联改性后对水体中低浓度磷的吸附[J]. 化工进展, 2022, 41(9): 5074-5084. |
[10] | 彭德其, 冯源, 王依然, 谭卓伟, 俞天兰, 吴淑英. 立式缩放管内液固颗粒群浓度分布与汇聚特性[J]. 化工进展, 2022, 41(9): 4662-4672. |
[11] | 徐沛, 贾璇, 王勇, 亓雪娇, 赵玉娇, 李鸣晓. 流场对MEC生物阴极CO2还原性能与产物的影响[J]. 化工进展, 2022, 41(7): 3816-3823. |
[12] | 李娟娟, 张天永, 李祥高. 电泳显示用高质量铁锰黑纳米分散系的构建[J]. 化工进展, 2022, 41(6): 3178-3185. |
[13] | 杨洪海, 张苗, 刘利伟, 周屹, 沈俊杰, 施伟刚, 尹勇. 氧化石墨烯/水脉动热管传热强化及性能预测[J]. 化工进展, 2022, 41(4): 1725-1734. |
[14] | 郑鹏, 李蔚玲, 郭亚飞, 孙健, 王瑞林, 赵传文. 鼓泡床中电石渣加速碳酸化分析与响应面优化[J]. 化工进展, 2022, 41(3): 1528-1538. |
[15] | 陈龙, 李霞霞, 李伟祥, 戚锐, 邓鑫, 吴斌鑫. 聚丙烯非织造布熔喷过程的计算流体力学模拟研究进展[J]. 化工进展, 2022, 41(2): 537-553. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |