化工进展 ›› 2019, Vol. 38 ›› Issue (01): 208-216.DOI: 10.16085/j.issn.1000-6613.2018-1139
董立霞1(),夏步田1,罗凯威1,赵亮1(),高金森1,郝天臻2
收稿日期:
2018-05-31
修回日期:
2018-08-13
出版日期:
2019-01-05
发布日期:
2019-01-05
通讯作者:
赵亮
作者简介:
董立霞(1990—),女,博士研究生,研究方向为清洁油品生产。E-mail:<email>alicedong90@163.com</email>。|赵亮,研究员,博士生导师,研究方向为清洁油品生产、石油加工、催化材料、计算化学。E-mail:<email>liangzhao@cup.edu.cn</email>。
基金资助:
Lixia DONG1(),Butian XIA1,Kaiwei LUO1,Liang ZHAO1(),Jinsen GAO1,Tianzhen HAO2
Received:
2018-05-31
Revised:
2018-08-13
Online:
2019-01-05
Published:
2019-01-05
Contact:
Liang ZHAO
摘要:
为满足“史上最严”的国Ⅵ汽油质量标准,发展“低硫、控烯、保辛烷值”的清洁汽油生产新技术成为当前研究热点。当前清洁汽油生产的主流技术是选择性催化加氢脱硫技术,本文首先从催化裂化(FCC)汽油中汽油辛烷值损失与汽油中不同碳数和结构烯烃加氢饱和规律的研究开始,详细分析了当前国Ⅵ升级背景下的加氢脱硫技术发展现状,特别针对提高加氢脱硫催化剂脱硫选择性及辛烷值恢复性能的研究进展进行了综述。基于现有的炼油发展现状及难题,建议了未来清洁油品的发展方向:秉承“分子炼油”理念,进一步完善分子层次的汽油组成认知,不断实现汽油组成中各类烃的精准分离和高效转化,可满足清洁油品的升级需求,还可应对未来油品结构调整。
中图分类号:
董立霞, 夏步田, 罗凯威, 赵亮, 高金森, 郝天臻. 清洁油品升级背景下加氢脱硫技术研究进展[J]. 化工进展, 2019, 38(01): 208-216.
Lixia DONG, Butian XIA, Kaiwei LUO, Liang ZHAO, Jinsen GAO, Tianzhen HAO. Review of hydrodesulfurization technology based on the upgrading requirement of clean gasoline[J]. Chemical Industry and Engineering Progress, 2019, 38(01): 208-216.
项目 | 国Ⅳ | 国Ⅴ | 国ⅥA | 国ⅥB | 目的 |
---|---|---|---|---|---|
辛烷值(RON) | 90,93,97 | 89,92,95 | 89,92,95 | 89,92,95 | |
硫含量/μg·g-1 | ≤50 | ≤10 | ≤10 | ≤10 | |
苯体积分数/% | ≤1.0 | ≤1.0 | ≤0.8 | ≤0.8 | 降低CO、HC、有毒物的排放,减少汽车燃烧室沉积物的产生 |
芳烃体积分数/% | ≤40 | ≤40 | ≤35 | ≤35 | 降低CO、HC、有毒物的排放,减少汽车燃烧室沉积物的产生 |
烯烃体积分数/% | ≤28 | ≤24 | ≤18 | ≤15 | 降低汽油蒸发排放造成的光化学污染和发动机沉积物的产生,提高汽油稳定性 |
氧质量分数/% | ≯2.7 | ≯2.7 | ≯2.7 | ≯2.7 | |
馏程 | |||||
10%蒸发温度/℃ | ≤70 | ≤70 | ≤70 | ≤70 | |
50%蒸发温度/℃ | ≤120 | ≤120 | ≤110 | ≤110 | 优化车辆尾气HC排放,降低发动机的颗粒物排放 |
90%蒸发温度/℃ | ≤190 | ≤190 | ≤190 | ≤190 | — |
终馏点/℃ | ≤205 | ≤205 | ≤205 | ≤205 | — |
残留量体积分数/% | ≤2 | ≤2 | ≤2 | ≤2 | 降低发动机积炭及其他沉积物的产生 |
表1 国Ⅳ、国Ⅴ、国Ⅵ汽油标准主要变化指标[1,2]
项目 | 国Ⅳ | 国Ⅴ | 国ⅥA | 国ⅥB | 目的 |
---|---|---|---|---|---|
辛烷值(RON) | 90,93,97 | 89,92,95 | 89,92,95 | 89,92,95 | |
硫含量/μg·g-1 | ≤50 | ≤10 | ≤10 | ≤10 | |
苯体积分数/% | ≤1.0 | ≤1.0 | ≤0.8 | ≤0.8 | 降低CO、HC、有毒物的排放,减少汽车燃烧室沉积物的产生 |
芳烃体积分数/% | ≤40 | ≤40 | ≤35 | ≤35 | 降低CO、HC、有毒物的排放,减少汽车燃烧室沉积物的产生 |
烯烃体积分数/% | ≤28 | ≤24 | ≤18 | ≤15 | 降低汽油蒸发排放造成的光化学污染和发动机沉积物的产生,提高汽油稳定性 |
氧质量分数/% | ≯2.7 | ≯2.7 | ≯2.7 | ≯2.7 | |
馏程 | |||||
10%蒸发温度/℃ | ≤70 | ≤70 | ≤70 | ≤70 | |
50%蒸发温度/℃ | ≤120 | ≤120 | ≤110 | ≤110 | 优化车辆尾气HC排放,降低发动机的颗粒物排放 |
90%蒸发温度/℃ | ≤190 | ≤190 | ≤190 | ≤190 | — |
终馏点/℃ | ≤205 | ≤205 | ≤205 | ≤205 | — |
残留量体积分数/% | ≤2 | ≤2 | ≤2 | ≤2 | 降低发动机积炭及其他沉积物的产生 |
碳数 | 质量分数/% | 总烯率 /% | ||||
---|---|---|---|---|---|---|
正构烷烃 | 异构烷烃 | 烯烃 | 环烷烃 | 芳烃 | ||
4 | 0.1 | 0.0 | 0.6 | — | — | 1.6 |
5 | 1.2 | 7.8 | 18.0 | — | — | 44.2 |
6 | 1.1 | 5.9 | 11.9 | 2.0 | 0.8 | 29.3 |
7 | 0.9 | 2.2 | 4.3 | 3.2 | 3.7 | 10.7 |
8 | 0.4 | 2.7 | 3.6 | 1.8 | 6.4 | 8.9 |
9 | 0.3 | 1.6 | 1.4 | 1.3 | 7.8 | 3.4 |
10 | 0.2 | 0.7 | 0.7 | 0.2 | 4.0 | 1.5 |
11 | 0.3 | 1.2 | 0.1 | 0.0 | 1.0 | 0.4 |
12 | 0.0 | 0.3 | 0.0 | — | — | 0.0 |
合计 | 4.4 | 22.2 | 40.6 | 8.6 | 23.6 | 100 |
表2 典型FCC汽油烃类组成[18]
碳数 | 质量分数/% | 总烯率 /% | ||||
---|---|---|---|---|---|---|
正构烷烃 | 异构烷烃 | 烯烃 | 环烷烃 | 芳烃 | ||
4 | 0.1 | 0.0 | 0.6 | — | — | 1.6 |
5 | 1.2 | 7.8 | 18.0 | — | — | 44.2 |
6 | 1.1 | 5.9 | 11.9 | 2.0 | 0.8 | 29.3 |
7 | 0.9 | 2.2 | 4.3 | 3.2 | 3.7 | 10.7 |
8 | 0.4 | 2.7 | 3.6 | 1.8 | 6.4 | 8.9 |
9 | 0.3 | 1.6 | 1.4 | 1.3 | 7.8 | 3.4 |
10 | 0.2 | 0.7 | 0.7 | 0.2 | 4.0 | 1.5 |
11 | 0.3 | 1.2 | 0.1 | 0.0 | 1.0 | 0.4 |
12 | 0.0 | 0.3 | 0.0 | — | — | 0.0 |
合计 | 4.4 | 22.2 | 40.6 | 8.6 | 23.6 | 100 |
序号 | 烯烃结构变化 | 辛烷值变化情况 |
---|---|---|
1 | 烯烃含量增加 | 辛烷值增加 |
2 | 烯烃分支增加 | 辛烷值减小 |
3 | 烯烃双键向分子中间移动 | 辛烷值减小 |
4 | 环烯取代基团增加 | 辛烷值减小 |
5 | 烯烃环数增加 | 辛烷值减小 |
6 | 烯烃分子量增加 | 辛烷值增加 |
7 | 环烯侧链增长 | 辛烷值增加 |
8 | 环烯环增大 | 辛烷值增加 |
表3 烯烃结构与辛烷值关系
序号 | 烯烃结构变化 | 辛烷值变化情况 |
---|---|---|
1 | 烯烃含量增加 | 辛烷值增加 |
2 | 烯烃分支增加 | 辛烷值减小 |
3 | 烯烃双键向分子中间移动 | 辛烷值减小 |
4 | 环烯取代基团增加 | 辛烷值减小 |
5 | 烯烃环数增加 | 辛烷值减小 |
6 | 烯烃分子量增加 | 辛烷值增加 |
7 | 环烯侧链增长 | 辛烷值增加 |
8 | 环烯环增大 | 辛烷值增加 |
1 | 中华人民共和国国家质量监督检验检疫总局,环境保护部 . 轻型汽车污染物排放限值及测量方法:GB18352.6 —2016[S]. 北京:中国标准出版社, 2016. |
General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Ministry of Ecology and Environment of the People's Republic of China . Limits and measurement methods for emissions from light-duty vehicles (CHINA 6): GB18352.6 —2016 [S]. Beijing:Standards Press of China,2016. | |
2 | 中华人民共和国国家质量监督检验检疫总局,环境保护部 . 车用汽油有害物质控制标准(第四、五阶段): GWKB1.1—2011[S]. 北京:中国标准出版社, 2011. |
General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,Ministry of Ecology and Environment of the People's Republic of China . Hazardous materials control standard for motor vehicle gasoline (Ⅳ,Ⅴ): GWKB1.1—2011 [S]. Beijing:Standards Press of China, 2011. | |
3 | 申兴海 . FCC汽油萃取蒸馏脱硫制取欧Ⅳ清洁汽油的研究[D]. 上海:华东理工大学, 2011. |
SHEN X H . Removing sulfur Compounds from fluid catalytic cracking gasoline by extractive distillation for producing Europe Ⅳ gasoline[D]. Shanghai: East China University of Science and Technology, 2011. | |
4 | 娄永峰 . 满足国Ⅴ汽油标准的汽油加氢脱硫工艺最新进展[J]. 山东化工, 2016, 45(18): 38-43. |
LOU Y F . Latest advances of gasoline hydrodesulfurization process for gasoline meeting National Standard Ⅴ[J]. Shandong Chemical Industry, 2016, 45(18): 38-43. | |
5 | BACO F , DEBUISSCHE Q , MARCHAL N . Prime G+ process desulfurization of FCC gasoline with minimized octane loss[C]// Proceedings of the Fifth International Conference on Refinery Processing, AIChE 2002 Spring National Meeting. March 11-14,OrleansNew, LA . 2002. |
6 | BRIGNAC B G . The SCAN fining hydrotreatment process[J]. World Refining, 2000, 10(7): 14-18. |
7 | GARDNER R , EA SCHWARZ K R . Start-up of the first CDHydro/CDHDS Unit at Irving Oil's Saint John, New Brunswick Refinery[C]//NPRA Annual Meeting. 2001. |
8 | 高晓东,张登前,李明丰,等 . 满足国Ⅴ汽油标准的RSDS-Ⅲ技术的开发及应用[J]. 石油学报(石油加工), 2015, 31(2): 482-486. |
GAO X D , ZHANG D Q , LI M F , et al . Development and application of RSDS-Ⅲ technology for National Ⅴ gasoline production[J]. Acta Petrolei Sinica(Petroleum Processing Section), 2015, 31(2): 482-486. | |
9 | SHIH S S , OWENS P , PALIT J . Mobil's OCTGAIN Proeess: FCC gasoline desulfurization reaches a new Performance level [C] //NPRA Annual Meeting, Antonio San ,Texas . 1999. |
10 | 李明丰,夏国富,褚阳,等 . 催化裂化汽油选择性加氢脱硫催化剂RSDS-1的开发[J]. 石油炼制与化工, 2003, 34(7): 1-4. |
LI M F , XIA G F , ZHU Y , et al . Preparation of selective hydrodesulfurization catalyst RSDS-I for naphtha[J]. Petroleum Processing and Petrochemicals, 2003, 34(7): 1-4. | |
11 | 石冈,范煜,鲍晓军,等 . 催化裂化汽油加氢改质GARDES技术的开发及工业试验[J]. 石油炼制与化工, 2013, 44(9): 66-72. |
SHI G , FAN Y , BAO X J , et al . Development and application of GARDES technology for fluid catalytic cracking gasoline hydro-upgrading[J]. Petroleum Processing and Petrochemicals, 2013, 44(9): 66-72. | |
12 | 接瑜 . 催化汽油加氢脱硫装置国Ⅴ升级改造设计[J]. 石油与天然气化工, 2017(4): 11-15. |
JIE Y . Revamp design of the FCC gasoline hydrodesulfurization unit to upgrade to NationalⅤgasoline[J]. Chemical Engineering of Oil & Gas, 2017(4): 11-15. | |
13 | 乔景辉,李程飞,周雪梅 . 吉化Prime G+装置国Ⅴ质量升级技术方案及运行分析[J]. 化工科技, 2017, 25(6): 62-66. |
QIAO J H , LI C F , ZHOU X M . Technical scheme and operation analysis of China Ⅴ quality upgrading of Jilin Petrochemical Prime G+ unit [J]. Science & Technology in Chemical Industry, 2017, 25(6): 62-66. | |
14 | 李志超,肖立刚,张晓光,等 . 燃料型炼油厂国Ⅵ汽油升级路线分析[J]. 炼油技术与工程, 2017(6): 40-43. |
LI Z C , XIAO L G , ZHANG X G , et al . Analysis of upgrading process for Guo Ⅵ gasoline for fuel-type refinery[J]. Petroleum Refinery Engineering, 2017(6): 40-43. | |
15 | 曹湘洪 . 面向未来, 我国生产汽油的技术路线选择[J]. 石油炼制与化工, 2012, 43(8): 1-6. |
CAO X H . The choice of china`s gasoline production process route for the future[J]. Petroleum Processing and Petrochemicals, 2012,43(8): 1-6. | |
16 | Gilbert W . Formation of thiophenic species in FCC gasoline from H2S generating sulfur sources in FCC conditions[J]. Fuel, 2014, 121: 65-71. |
17 | 魏秀萍,贾黎黎,赵运芳 . 催化裂化汽油中含硫化物类型及分布规律[J]. 精细石油化工, 2013(6): 70-74. |
WEI X P , JIA L L , ZHAO Y F . Type and distribution patterns of sulfur compounds in fluid catalytic cracking gasoline[J]. Specialty Petrochemicals, 2013(6): 70-74. | |
18 | LEFLAIVE P , LEMBERTON J , PEROT G , et al . On the origin of sulfur impurities in fluid catalytic cracking gasoline: reactivity of thiophene derivatives and of their possible precursors under FCC conditions[J]. Applied Catalysis A: General, 2002, 227(1): 201-215. |
19 | CIS R , JHOSN J , GODOY J , et al . Characterization of Tungsten-modified ultrastable Y zeolite catalysts and their activity in thiophene hydrodesulfurization[J]. Journal of Catalysis, 1993, 141: 206-218. |
20 | 邢金仙,刘晨光 . 催化裂化汽油中硫和族组成及硫化物类型的馏分分布[J]. 炼油技术与工程, 2003(6): 6-9. |
XING J X , LIU C G . Distribution of sulfur, group composition and types of sulfur compounds in FCC naphtha [J]. Petroleum Refinery Engineering, 2003(6): 6-9. | |
21 | 李凤琪,全瀛寰,朱凌辉,等 . 哈油FCC汽油硫及烯烃含量分布特征研究[J]. 炼油技术与工程, 2015(7): 18-20. |
LI F Q , QUAN Y H , ZHU L H , et al . Study on sulfur and olefin distribution of FCC gasoline from Kazakhstan crude oil[J]. Petroleum Refinery Engineering, 2015(7): 18-20. | |
22 | 朱全力,赵旭涛,赵振兴,等 . 加氢脱硫催化剂与反应机理的研究进展[J].分子催化, 2006(4): 372-383. |
ZHU Q L , ZHAO X T , ZHAO Z X , et al . Research progress on hydrodesulfurization catalyst and reaction mechanism [J]. Journal of Molecular Catalysis, 2006(4): 372-383. | |
23 | 蔡目荣,丁福臣,李术元 . FCC汽油烯烃的生成机理与影响因素[J]. 石油与天然气化工, 2003(2): 92-94. |
CAI M R , DING F C , LI S Y . Formation mechanism and influencing factors of FCC gasoline olefins[J]. Chemical Engineering of Oil and Gas, 2003(2): 92-94. | |
24 | 赵悦,李振兵,王忠,等 . 催化裂化汽油在加氢脱硫过程中烯烃饱和研究[J]. 当代化工, 2016(9): 2113-2115. |
ZHAO Y , LI Z B , WANG Z , et al . Study on olefin saturation of FCC gasoline during hydrodesulfurization [J]. Contemporary Chemical Industry, 2016(9): 2113-2115. | |
25 | 樊莲莲,高晓冬,习远兵 . FCC汽油选择性加氢脱硫过程中烃类组成与辛烷值损失的关系[J]. 石油炼制与化工, 2010, 41(9): 70-73. |
FAN L L , GAO X D , XI Y B . Study on the relation between hydrocarbon group compositions and octane loss during selective hydrodesulfurization of FCC naphtha[J]. Petroleum Processing and Petrochemicals, 2010, 41(9): 70-73. | |
26 | 习远兵,高晓冬,李明丰,等 . 催化裂化汽油选择性加氢脱硫过程中烯烃加氢饱和反应动力学研究[J]. 石油炼制与化工, 2011, 42(9): 9-12. |
XI | GAO Y B , , LI M F , et al . Study on olefin hydrogenation saturation reaction kinetics during selective hydrodesulfurization of FCC gasoline[J]. Petroleum Processing and Petrochemicals, 2011, 42(9): 9-12. |
27 | KIRGINA M , IVANCHINA E , D0 LGANOV I , et al . Computer program for optimizing compounding of high-octane gasoline[J]. Chemistry and Technology of Fuels and Oils, 2014, 50(1): 17-27. |
28 | MAYLIN M , KIRGINA M , SVIRIDOVA E , et al . Calculation of gasoline octane numbers taking into account the reaction interaction of blend components[J]. Procedia Chemistry, 2014,10: 477-484. |
29 | ALBAHRI T . Structural group contribution method for predicting the octane number of pure hydrocarbon liquids[J]. Ind. Eng. Chem. Res., 2003, 42: 657-662. |
30 | MEUSINGER R , MOROS R . Determination of octane numbers of gasoline compounds from their chemical structure by 13C NMR spectroscopy and neural networks[J]. Fuel, 2001, 80(5): 613-621. |
31 | DONG L X , LUO K , ZHAO L , et al . Quantitative relationship between olefin saturation and octane loss during HDS process: an insight from molecular structure to experimental activity[J]. Chemical Engineering Science, 2018, 191: 183-190. |
32 | 董立霞 . FCC汽油加氢脱硫过程中烯烃饱和与辛烷值损失规律的研究[D]. 北京: 中国石油大学(北京), 2017. |
DONG L X . Study on olefin saturation and octane loss during FCC gasoline hydrodesulfurization[D]. Beijing: China University of Petroleum(Beijing), 2017. | |
33 | 孙万堂 . 助剂改性钴钼加氢脱硫催化剂制备过程研究[D]. 青岛: 青岛科技大学, 2016. |
SUN W T . Preparation of cobalt-molybdenum hydrodesulfurization catalyst with additives[D]. Qingdao: Qingdao University of Science and Technology, 2016. | |
34 | ISHUTENKO D , NIKULSHIN P , PIMERZIN A . Relation between composition and morphology of K(Co)MoS active phase species and their performances in hydrotreating of model FCC gasoline[J]. Catalysis Today, 2016, 271:16-27. |
35 | 王猛 . 全馏分FCC汽油低温选择性加氢脱硫催化剂的研究[D]. 大连: 大连理工大学, 2011. |
WANG M . Study on low temperature selective hydrodesulfurization catalyst for FCC gasoline[J]. Dalian: Dalian University of Technology, 2011. | |
36 | NIKULSHIN P , ISHUTENKO D , M0 ZHAEV A , et al . Effects of composition and morphology of active phase of CoMo/Al2O3 catalysts prepared using Co2Mo10-heteropolyacid and chelating agents on their catalytic properties in HDS and HYD reactions[J]. Journal of Catalysis, 2014, 312: 152-169. |
37 | DAAGE M , CHIANELLI R . Structure-function relations in molybdenum sulfide catalysts: the "Rim-Edge" model[J]. Journal of Catalys, 1994, 149(2): 414-427. |
38 | CLAUSEN B . Importance of Co-Mo-S type structures in hydrodesulfurization[J]. Catalysis Reviews, 1984, 26(3/4): 395-420. |
39 | TRAKARNPRUK W , SEENTRAKOON B , TRAKARNPRUK B , et al . Hydrodesulfurization activity of MoS2 and bimetallic catalysts prepared by in situ decomposition of thiophene [J]. Silpakorn University Science & Technology Journal, 2007, 47(7): 1874-1882. |
40 | HENSEN M , KOOYMAN J , MEER D , et al . The relation between morphology and hydrotreating activity for supported MoS2, particles[J]. Journal of Catalysis, 2001, 199(2): 224-235. |
41 | LI M , LI H , JIANG F , et al . The relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalysts [J]. Catalysis Today, 2010, 149: 35-39. |
42 | PIMERZIN A , MOZHAEV A , VARAKIO A , et al . Comparison of citric acid and glycol effects on the state of active phase species and catalytic properties of CoPMo/Al2O3 hydrotreating catalysts[J]. Applied Catalysis B: Environmental, 2017, 205: 93-103. |
43 | RASHIDI F , KHARAT N , RASHIDI M , et al . Fractal geometry approach to describe mesostructured boehmite and gamma-alumina nanorods[J]. European Journal of Inorganic Chemistry, 2010(10): 1544-1551. |
44 | FAN Y , LIN X , SHI G , et al . Realumination of dealuminated HZSM-5 zeolite by citric acid treatment and its application in preparing FCC gasoline hydro-upgrading catalyst[J]. Micropor. Mesopor. Mat., 2007, 98: 174-181. |
45 | 孔飞飞,王海彦,项洪涛,等 . ZSM-5催化剂加氢脱硫及烯烃芳构化反应研究[J]. 石油炼制与化工, 2016, 47(3): 60-66. |
KONG F F , WANG H Y , XIANG H T ,et al . ZSM-5 zeolite modified by alkali treatment and study on the hydrodesulfurization and aromatization [J]. Petroleum Processing and Petrochemicals, 2016, 47(3): 60-66. | |
46 | 王智峰 . 催化裂化汽油芳构化生产清洁油品的技术研究[D]. 天津: 天津大学, 2008. |
WANG Z F . Study on aromatization of FCC gasoline for clean oil production[D]. Tianjin: Tianjin University, 2008. | |
47 | NADEINA K , KLIMOV O , DANILOVA I , et al . Amorphous silica-alumina-perspective supports for selective hydrotreating of FCC gasoline: Influence of Mg[J]. Applied Catalysis B: Environmental, 2018, 223: 22-35. |
48 | 刘磊,吴新民 . 加氢脱硫催化剂载体和活性组分的研究进展[J]. 工业催化, 2008, 16(8): 1-7. |
LIU L , WU X M .Latest researches in the supports and active component of HDS catalyst[J]. Industrial Catalysis, 2008, 16(8): 1-7. | |
49 | ZHANG Y , WANG Y , CHEN F , et al . Research on a dual solvent to separate olefin/aromatic-sulfide from heavy fluid catalytic cracking naphtha[J]. Energy & Fuels, 2018, 32(3): 4057-4064. |
50 | 张宇豪, 王永涛, 陈丰, 等 . 清洁油品生产中溶剂萃取分离技术的研究进展[J]. 中国科学(化学), 2018(4): 319-328. |
ZHANG Y H , WANG Y T , CHEN F , et al . Development of solvent extraction separation process for clean oil production [J]. Scientia Sinica Chimica, 2018(4): 319-328. |
[1] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[2] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[3] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[4] | 韩恒文, 韩伟, 李明丰. 烯烃水合反应工艺与催化剂研究进展[J]. 化工进展, 2023, 42(7): 3489-3500. |
[5] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[6] | 王嘉, 彭冲, 唐磊, 陆安慧. 渣油加氢催化剂活性相结构调控及对反应性能影响[J]. 化工进展, 2023, 42(4): 1811-1821. |
[7] | 李玲, 马超峰, 卢春山, 于万金, 石能富, 金佳敏, 张建君, 刘武灿, 李小年. 新型含氟替代品1,1,2-三氟乙烯的合成工艺与催化剂研究进展[J]. 化工进展, 2023, 42(4): 1822-1831. |
[8] | 李光文, 华渠成, 黄作鑫, 达志坚. 聚甲基丙烯酸酯类黏度指数改进剂的研究进展[J]. 化工进展, 2023, 42(3): 1562-1571. |
[9] | 李乃珍, 孙瑞洁, 秦志峰, 苗茂谦, 吴琼笑, 常丽萍, 孙鹏程, 曾剑, 刘毅. 焦炉煤气常量含碳气氛对加氢脱硫催化剂活性、选择性和积炭的影响[J]. 化工进展, 2023, 42(2): 783-793. |
[10] | 黄起中, 刘冰, 马红鹏, 吕文杰. 基于新型微通道分离技术的甲醇制烯烃废水处理[J]. 化工进展, 2023, 42(2): 669-676. |
[11] | 刘美佳, 王刚, 张忠东, 何盛宝, 高金森. 石蜡基原油直接催化裂解制低碳烯烃新型炼化工艺的开发[J]. 化工进展, 2023, 42(10): 5191-5199. |
[12] | 黄格省, 师晓玉, 丁文娟, 王春娇, 慕彦君, 侯雨璇. 光伏电池封装胶膜材料发展现状与前景分析[J]. 化工进展, 2023, 42(10): 5037-5046. |
[13] | 包进, 宋永辉, 董萍, 李一凡, 朱荣燕, 廖龙. 氰化尾渣矿浆电解液中铁离子的萃取富集[J]. 化工进展, 2023, 42(1): 517-525. |
[14] | 郭振雪, 于海斌, 张国辉, 张景成, 卢雁飞, 何艳贞, 孙彦民, 韩恩山. Si改性对NiMo/Al2O3催化剂加氢脱硫性能的影响[J]. 化工进展, 2022, 41(S1): 210-220. |
[15] | 叶玉玺, 丁晓茜, 池华睿, 朱楷伦, 刘杨, 王凌云, 郭庆杰. 疏水性低共熔溶剂氢键交互作用调控及萃取铜性能[J]. 化工进展, 2022, 41(S1): 397-406. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |